CN108410459A - 稀土掺杂纳米球型上转换发光化合物的制备方法 - Google Patents

稀土掺杂纳米球型上转换发光化合物的制备方法 Download PDF

Info

Publication number
CN108410459A
CN108410459A CN201810540597.7A CN201810540597A CN108410459A CN 108410459 A CN108410459 A CN 108410459A CN 201810540597 A CN201810540597 A CN 201810540597A CN 108410459 A CN108410459 A CN 108410459A
Authority
CN
China
Prior art keywords
solution
concentration
rare earth
preparation
luminescent material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810540597.7A
Other languages
English (en)
Inventor
新梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Minzu University
Original Assignee
Dalian Nationalities University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Nationalities University filed Critical Dalian Nationalities University
Priority to CN201810540597.7A priority Critical patent/CN108410459A/zh
Publication of CN108410459A publication Critical patent/CN108410459A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7768Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及稀土掺杂纳米球型上转换化合物的制备方法,属于纳米上转换发光化合物领域。本发明化合物为TiO2:1%Ho,10%Yb,10%K。本发明的有益效果为:纳米尺寸的球型上转换发光材料尺寸小、可以应用于生物成像领域;球形发光材料更有利于涂屏且大大提高了显示屏的分辨率;具备其他纳米发光材料生物毒性小、稳定、发光时间长的优势。

Description

稀土掺杂纳米球型上转换发光化合物的制备方法
本申请为申请号为2016102275031、申请日为2016年4月13日、发明名称为“稀土掺杂纳米球型TiO2上转换化合物及其制备方法”的分案申请。
技术领域
本发明涉及纳米上转换发光化合物以及制备方法,特别是稀土掺杂纳米球型TiO2上转换化合物的制备方法。
背景技术
上转换发光,即反-斯托克斯发光(Anti-Stokes),由斯托克斯定律而来。斯托克斯定律认为材料只能受到高能量的光激发,发出低能量的光,换句话说,就是波长短的频率高的激发出波长长的频率低的光。比如紫外线激发发出可见光,或者蓝光激发出黄色光,或者可见光激发出红外线。但是后来人们发现,其实有些材料可以实现与上述定律正好相反的发光效果,于是我们称其为反斯托克斯发光,又称上转换发光。因此上转换发光是将近红外光转换为可见光的过程,可通过双光子或三光子的吸收来完成发射光的波长小于激发光的波长。上转换材料在照明光源,显示显像,X射线增感屏,光学传感,印刷标识防伪,全固化短波长激光器以及生物标识等领域具有广泛的应用前景。
目前制备上转换发光材料,氧化物基质具有物理化学性能稳定,制备工艺简单,更适合生产和应用等优点。其中二氧化钛具有高折射率,良好的光学透明性和物理化学特性。但氧化物材料的不足之处是相对硫化物和氟化物来讲其声子能量高而影响了此材料的上转换发光效率。要想提高其发光效率可制成纳米材料。而目前大部分稀土掺杂氧化物的发明成果均不是纳米尺寸的。纳米尺寸的发光材料均为下转换发光材料,即为利用波长短的频率高的激发出波长长的频率低的光。如CN 200610135394.7公开了一种稀土掺杂二氧化钛纳米发光材料及其制备方法,选择的激发波长为460-470nm的绿色可见光,发射的波长为613-617nm。
因此,需要开发出纳米尺寸的上转换发光材料以使上转换材料的发光效率得以提高。
发明内容
本发明的目的在于克服现有技术的不足,制作出纳米级上转换发光材料。本发明提供稀土掺杂纳米球型TiO2上转换化合物,所述化合物的化学式为式I:TiO2:X%M,Y%Yb,Z%N(I);
其中M为Y、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的一种或多种;N为轻金属中的一种或多种;X、Y、Z的摩尔比满足下面的条件:1≤X≤l.8,Y=10,0≤Z≤20。
优选地,X=1.5,Z=20。
优选地,M为Er、Ho、Eu、Tm中的一种或多种,N为Li、Na、K、Rb中的一种或多种。
本发明还保护包含所述的化合物的发光材料,当用发射峰在980nm的波长范围的光激发时,所述发光材料表现出在450nm—750nm的波长范围内的发光峰。
本发明还保护稀土掺杂纳米球型TiO2上转换发光化合物的制备方法,包含下列步骤:S1.将钛酸四丁酯和乙醇胺或二乙醇胺或三乙醇胺溶于无水乙醇,混合均匀得到溶液1;S2.将稀土硝酸盐或稀土氯化物和去离子水、无水乙醇混和均匀得到溶液2;S3.将溶液2在不断搅拌下逐滴加到溶液1中,并持续搅拌得到均匀、透明的溶胶3;S4.将溶胶3放入高压釜中加热得到生成物4,将所述生成物4清洗离心干燥获得发光粉末5,将获得的所述发光粉末5放入坩埚中退火冷却,获得所述上转换发光材料。
优选地,各组分摩尔配比为:
钛酸四丁酯:1;
乙醇胺或二乙醇胺或三乙醇胺:1~5;
稀土硝酸盐或稀土氯化物:0.01~0.1;
去离子水:0.5~5;
无水乙醇:1~30。
优选地,所述S2制备溶液2时加入轻金属氯化物。
优选地,所述所述轻金属氯化物为LiCl、KCl、NaCl、RbCl中的一种或多种。
优选地,所述所述轻金属氯化物摩尔配比为0.05~0.2。
优选地,稀土硝酸盐或稀土氯化物是指Y、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu的硝酸盐或氯化物中的一种或多种。
本发明的优点和积极效果是:纳米尺寸的球型上转换发光材料首先该发明具备尺寸小的优势,可以应用于纳米光电器件;本发明还可以应用于生物成像领域,更具体地讲本发明可以通过细胞内吞作用进入细胞从而实现生物细胞成像,包括且不限于:体外细胞成像以及小动物活体成像等。其次,本发明为球形发光材料,因此更有利于涂屏从而大大提高了显示屏的分辨率。并且,本发明具备其他纳米发光材料生物毒性小、稳定、发光时间长的优势。
附图说明
图1、图2为本发明制备的发光材料的扫描电子显微镜照片;
图3为本发明制备的发光材料的X射线衍射谱图;
图4为本发明制备的发光材料在980nm激光激发无照明环境下拍摄的照片;
图5为本发明制备的发光材料在980nm激光激发有照明环境下拍摄的照片;
图6为本发明所制备的发光材料在980nm激光激发下的上转换发光光谱图。
具体实施方式
下面结合附图、通过具体实施例对本发明作进一步详述。以下实施例只是描述性的,不是限定性的,不能以此限定本发明的保护范围。实施例中所述实验方法如无特殊说明,均为常规方法;如无特殊说明,所述试剂和生物材料,均可从商业途径获得。
以下两表为本发明各实施例中所用试剂及实验仪器来源:
可以由下述实施例制备的发光化合物的化学式为:
TiO2:X%M,Y%Yb,Z%N(I);
其中M为Y、Sc、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu中的一种或多种;N为轻金属中的一种或多种;X、Y、Z的摩尔比满足下面的条件:1≤X≤l.8,Y=10,0≤Z≤20。
其中,TiO2为发光化合物基质,M起发光作用,Yb起敏化作用,N起到加强发光化合物光强的作用。在下列实施例1-4中,M依次为Er、Ho、Eu、Tm,N为Li、K、Na、Rb为例进行描述。
实施例1
(1)量取浓度为0.966g/mL的钛酸四丁酯3.6mL,浓度为1.02g/mL的乙醇胺1.08mL混合均匀得到溶液1;
(2)0.18mL去离子水,7.2mL无水乙醇,浓度为0.01mol/L的15.3mL ErC13·6H2O,浓度为0.1mol/L的10.2mL硝酸镱,浓度为0.5mol/L的4.08mL LiCl,混和均匀制成溶液2;
(3)不断搅拌下,将溶液2逐滴滴入到溶液1中,并持续搅拌得到均匀、透明的掺杂TiO2溶胶;
(4)将此溶液放入50mL高压釜的聚四氟乙烯的内衬中,于120℃加热6小时后自然冷却到室温,生成物离心后用去离子水清洗两遍、放入80℃电热恒温干燥箱中干燥;
(5)将获得的发光粉末放入坩埚中800℃退火4h,等冷却后研磨。
由实施例1方法制成的稀土掺杂纳米球型TiO2上转换发光化合物化学式为:TiO2:1.5%Er,10%Yb,20%Li。
实施例2
(1)称取浓度为0.966g/mL的钛酸四丁酯5mL,浓度为1.097g/mL的二乙醇胺6.8mL,混合得到混合溶液1;
(2)1.3mL去离子水,10mL无水乙醇,浓度为0.01mol/L的Ho(NO3)3·5H2O 14.2mL,浓度为0.1mol/L的Yb(NO3)3·5H2O 14.2mL,浓度为0.5mol/L的KCl 2.84mL,混和均匀制成溶液2;
(3)不断搅拌下,将溶液2逐滴滴入到溶液1中,并持续搅拌得到均匀、透明的掺杂TiO2溶胶;
(4)将此溶液放入高压釜的聚四氟乙烯的内衬中,于90℃加热3小时后自然冷却到室温,生成物离心后用去离子水清洗两遍、放入80℃电热恒温干燥箱中干燥;
(5)将获得的发光粉末放入坩埚中900℃退火2h,等冷却后研磨。
由实施例2方法制成的稀土掺杂纳米球型TiO2上转换发光化合物化学式为:TiO2:1%Ho,10%Yb,10%K。
实施例3
(1)称取浓度为0.966g/mL的钛酸四丁酯5mL,浓度为1.097g/mL的二乙醇胺1.36mL,混合得到混合溶液1;
(2)0.5mL去离子水,10mL无水乙醇,浓度为0.01mol/L的Eu(NO3)3·5H2O 17mL,浓度为0.1mol/L的Yb(NO3)35H2O 14.2mL,浓度为0.5mol/L的NaCl 1.42mL,混和均匀制成溶液2;
(3)不断搅拌下,将溶液2逐滴滴入到溶液1中,并持续搅拌得到均匀、透明的掺杂TiO2溶胶;
(4)将此溶液放入50mL高压釜的聚四氟乙烯的内衬中,于120℃加热3小时后自然冷却到室温,生成物离心后用去离子水清洗两遍、放入80℃电热恒温干燥箱中干燥;
(5)将获得的发光粉末放入坩埚中600℃退火4h,等冷却后研磨。
由实施例3方法制成的稀土掺杂纳米球型TiO2上转换发光化合物化学式为:TiO2:1.2%Eu,10%Yb,5%Na。
实施例4
(1)称取浓度为0.966g/mL的钛酸四丁酯5mL,浓度为1.125g/mL的三乙醇胺4mL,混合得到混合溶液1;
(2)0.5mL去离子水,10mL无水乙醇,浓度为0.01mol/L的Tm(NO3)3·5H2O 25.56mL,浓度为0.1mol/L的Yb(NO3)3·5H2O 10.2mL,浓度为0.5mol/L的RbCl 2.84mL,混和均匀制成溶液2;
(3)不断搅拌下,将溶液2逐滴滴入到溶液1中,并持续搅拌得到均匀、透明的掺杂TiO2溶胶;
(4)将此溶液放入50mL高压釜的聚四氟乙烯的内衬中,于120℃加热2小时后自然冷却到室温,生成物离心后用去离子水清洗两遍、放入80℃电热恒温干燥箱中干燥;
(5)将获得的发光粉末放入坩埚中750℃退火4h,等冷却后研磨。
由实施例4方法制成的稀土掺杂纳米球型TiO2上转换发光化合物化学式为:TiO2:1.8%Tm,10%Yb,10%Rb。
从图1、图2所示的实施例1所制备的发光材料扫描电子显微镜照片图可以看出,所制得的发光材料是直径在80nm左右,形貌为球型的纳米粒子。
从图3所示的实施例1所制备的发光材料的X射线衍射谱图可以看出,衍射峰对应于二氧化钛的金红石和锐钛矿相,还出现了氧化镱的衍射峰,由于掺杂的Er离子较少,未出现含Er化合物的衍射峰。
从图4、图5所示的实施例1所制备的发光材料在980nm激光照射下分别在无照明和有照明环境下拍摄的照片图可以看出,在980nm激光激发下样品发射出明亮的绿光。图4以及图5中灰色光斑为样品发射出明亮的绿光。
从图6所示的实施例1所制备的发光材料在980nm激光激发下的发光光谱图可以看出,在980nm激光激发下,样品在450nm—750nm波段范围内分别发射出绿色和红色上转换发光,分别对应于Er3+离子的跃迁,其中在560nm的绿色上转换发光最强。

Claims (1)

1.稀土掺杂纳米球型上转换发光化合物的制备方法,其特征在于,该化合物化学式为:TiO2:1%Ho,10%Yb,10%K,制备方法包括以下步骤:
(1)称取浓度为0.966g/mL的钛酸四丁酯5mL,浓度为1.097g/mL的二乙醇胺6.8mL,混合得到混合溶液1;
(2)1.3mL去离子水,10mL无水乙醇,浓度为0.01mol/L的Ho(NO3)3·5H2O 14.2mL,浓度为0.1mol/L的Yb(NO3)3·5H2O 14.2mL,浓度为0.5mol/L的KCl 2.84mL,混和均匀制成溶液2;
(3)不断搅拌下,将溶液2逐滴滴入到溶液1中,并持续搅拌得到均匀、透明的掺杂TiO2溶胶;
(4)将此溶液放入高压釜的聚四氟乙烯的内衬中,于90℃加热3小时后自然冷却到室温,生成物离心后用去离子水清洗两遍、放入80℃电热恒温干燥箱中干燥;
(5)将获得的发光粉末放入坩埚中900℃退火2h,等冷却后研磨,获得所述上转换发光材料。
CN201810540597.7A 2016-04-13 2016-04-13 稀土掺杂纳米球型上转换发光化合物的制备方法 Pending CN108410459A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810540597.7A CN108410459A (zh) 2016-04-13 2016-04-13 稀土掺杂纳米球型上转换发光化合物的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610227503.1A CN105754598A (zh) 2016-04-13 2016-04-13 稀土掺杂纳米球型TiO2上转换化合物及其制备方法
CN201810540597.7A CN108410459A (zh) 2016-04-13 2016-04-13 稀土掺杂纳米球型上转换发光化合物的制备方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610227503.1A Division CN105754598A (zh) 2016-04-13 2016-04-13 稀土掺杂纳米球型TiO2上转换化合物及其制备方法

Publications (1)

Publication Number Publication Date
CN108410459A true CN108410459A (zh) 2018-08-17

Family

ID=56334934

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201810540597.7A Pending CN108410459A (zh) 2016-04-13 2016-04-13 稀土掺杂纳米球型上转换发光化合物的制备方法
CN201610227503.1A Pending CN105754598A (zh) 2016-04-13 2016-04-13 稀土掺杂纳米球型TiO2上转换化合物及其制备方法
CN201810541658.1A Pending CN108485663A (zh) 2016-04-13 2016-04-13 稀土掺杂纳米球型TiO2上转换化合物的应用

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201610227503.1A Pending CN105754598A (zh) 2016-04-13 2016-04-13 稀土掺杂纳米球型TiO2上转换化合物及其制备方法
CN201810541658.1A Pending CN108485663A (zh) 2016-04-13 2016-04-13 稀土掺杂纳米球型TiO2上转换化合物的应用

Country Status (1)

Country Link
CN (3) CN108410459A (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108039410B (zh) * 2017-11-22 2020-11-24 河南大学 TiO2掺杂材料及其制备方法和应用
CN108192607B (zh) * 2018-01-09 2021-07-30 南京大学 一种上转换强红光发射TiO2纳米材料的制备及应用
CN108404964B (zh) * 2018-04-07 2020-07-24 江西龙正科技发展有限公司 一种多功能光催化高分散钛白粉及其制备方法
CN108611096B (zh) * 2018-06-02 2020-06-19 湖南省祝天峰生物科技有限公司 一种土壤高效修复剂及其制备方法
CN109781817A (zh) * 2019-02-19 2019-05-21 大连工业大学 一种检测副溶血性弧菌的光电化学生物传感器及其制备方法
CN113387564B (zh) * 2020-03-13 2022-04-05 包头稀土研究院 掺镨和铒的发光玻璃及其制备方法
CN111693585B (zh) * 2020-06-29 2022-08-02 大连工业大学 一种半导体纳米生物传感器及其制备方法
CN113004888B (zh) * 2021-02-24 2023-06-06 青岛大学 铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用
CN116064036A (zh) * 2023-01-16 2023-05-05 海南大学 一种上转换发光材料及其制备方法
CN118085864B (zh) * 2024-04-18 2024-07-12 新明珠集团股份有限公司 一种光致发光粉体的制备方法、陶瓷墨水及隐形防伪陶瓷

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792427A (zh) * 2005-12-21 2006-06-28 南开大学 膨胀珍珠岩负载掺杂纳米二氧化钛光催化剂及制备方法
CN1903979A (zh) * 2006-07-28 2007-01-31 大连海事大学 一种微细氧化物上转换发光材料
CN101210180A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 一种稀土掺杂二氧化钛纳米发光材料及其制备方法
KR20120002222A (ko) * 2010-06-30 2012-01-05 재단법인 대구테크노파크 태양전지용 상향변환 산화물 형광체 조성물 및 이를 이용한 고효율 태양전지의 제조방법
CN105244172A (zh) * 2015-10-29 2016-01-13 哈尔滨工业大学 一种染料敏化太阳能电池光阳极的制备方法及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100433373C (zh) * 2005-12-28 2008-11-12 大连海事大学 一种纳米TiO2-M薄膜紫外光传感器及其制备方法
CN102002361B (zh) * 2010-11-15 2013-04-03 四川理工学院 一种多波长激光低功率激发的二氧化钛基质上转换发光材料
CN103045245B (zh) * 2011-10-17 2015-11-25 海洋王照明科技股份有限公司 镨镱共掺杂二氧化钛上转换发光材料、制备方法及其应用
CN104178151A (zh) * 2013-05-22 2014-12-03 海洋王照明科技股份有限公司 钐镱共掺杂二氧化钛上转换发光材料、制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1792427A (zh) * 2005-12-21 2006-06-28 南开大学 膨胀珍珠岩负载掺杂纳米二氧化钛光催化剂及制备方法
CN1903979A (zh) * 2006-07-28 2007-01-31 大连海事大学 一种微细氧化物上转换发光材料
CN101210180A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 一种稀土掺杂二氧化钛纳米发光材料及其制备方法
KR20120002222A (ko) * 2010-06-30 2012-01-05 재단법인 대구테크노파크 태양전지용 상향변환 산화물 형광체 조성물 및 이를 이용한 고효율 태양전지의 제조방법
CN105244172A (zh) * 2015-10-29 2016-01-13 哈尔滨工业大学 一种染料敏化太阳能电池光阳极的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
余丹梅等: "《大学化学实验》", 31 October 2014, 重庆大学出版社 *
俞泽民等: "溶胶-凝胶法制备二氧化钛及其上转换发光研究", 《哈尔滨商业大学学报(自然科学版)》 *
范叶霞等: "镱浓度对钬镱双掺二氧化钛上转换发光的影响", 《光子学报》 *

Also Published As

Publication number Publication date
CN108485663A (zh) 2018-09-04
CN105754598A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
CN108410459A (zh) 稀土掺杂纳米球型上转换发光化合物的制备方法
JP3870418B2 (ja) 蛍光体及びこれを含む蛍光体組成物
Phogat et al. Crystallographic and judd-ofelt parametric investigation into Ca9Bi (VO4) 7: Eu3+ nanophosphor for NUV-WLEDs
Du et al. The dual-model up/down-conversion green luminescence of Gd 6 O 5 F 8: Yb 3+, Ho 3+, Li+ and its application for temperature sensing
CN103215041B (zh) 一种近红外超长余辉发光纳米材料的制备方法
CN111286332A (zh) 一类稀土基多模态发光钙钛矿材料及其制备方法和应用
Chen et al. Dual mode emission of core–shell rare earth nanoparticles for fluorescence encoding
Del-Castillo et al. Sol–gel preparation and white up-conversion luminescence in rare-earth doped PbF 2 nanocrystals dissolved in silica glass
Xiao et al. Morphology control and temperature sensing properties of micro‐rods NaLa (WO4) 2: Yb3+, Er3+ phosphors
Saloni et al. Structural and photoluminescence properties of YVO4: Re3+ (Re= Sm, Dy, Er and Eu) phosphors
CN106701074B (zh) 一种钛酸盐基红色上转换发光材料及其制备方法
CN111778025B (zh) 铒镱共掺钼酸钪热增强上下转换发光材料及其制备方法
CN108384536A (zh) Er3+/Yb3+共掺杂氟铝酸钙绿色上转换发光材料及其制备方法
Nannuri et al. Microwave-assisted synthesis and upconversion luminescence of NaYF4: Yb, Gd, Er and NaYF4: Yb, Gd, Tm nanorods
CN115746850B (zh) 一种锰离子激活卤氧化物红色发光材料及其制备方法
CN111253941A (zh) 一种分温区纳米荧光温度计及其制备方法和荧光测温方法
RU2390535C2 (ru) Инфракрасный люминофор на основе оксисульфида иттрия
Du et al. Upconversion luminescence and temperature sensing properties of Yb 2 (MoO 4) 3: Ln 3+(Ln= Ho, Tm, Er) phosphors based on energy transfer
CN108504357B (zh) 一种钛铝酸盐基上转换发光材料、制备方法及应用
CN106085430B (zh) 一种上转换荧光粉及其制备方法和应用
CN107828415A (zh) 一种二氧化锆基钐掺杂余辉荧光材料的制备方法
CN106590653B (zh) Er3+/Yb3+共掺杂上转换发光材料及其制备方法
He et al. Enhanced red and near-infrared upconversion luminescence properties in CaSc2O4 microcrystals
Ermakova et al. Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates
CN112538350A (zh) 一种Ti4+/Mn4+共掺的远红光荧光粉及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180817