CN113004888B - 铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用 - Google Patents

铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用 Download PDF

Info

Publication number
CN113004888B
CN113004888B CN202110207565.7A CN202110207565A CN113004888B CN 113004888 B CN113004888 B CN 113004888B CN 202110207565 A CN202110207565 A CN 202110207565A CN 113004888 B CN113004888 B CN 113004888B
Authority
CN
China
Prior art keywords
europium complex
europium
titanium dioxide
sensing material
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110207565.7A
Other languages
English (en)
Other versions
CN113004888A (zh
Inventor
唐建国
杨文斌
苏宝泽
牛思琪
王世超
王瑶
凯图尔·波帕特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202110207565.7A priority Critical patent/CN113004888B/zh
Publication of CN113004888A publication Critical patent/CN113004888A/zh
Application granted granted Critical
Publication of CN113004888B publication Critical patent/CN113004888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/671Chalcogenides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

本发明公开了一种铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用,在常温下,将钛酸四丁酯或四氯化钛、无水乙醇、乙酸经超声分散充分混合配制成纳米二氧化钛前驱体溶液;将氯化铕或硫酸铕与有机配体在磁力搅拌器上搅拌合成铕络合物溶液,将两种溶液在磁力搅拌器上加热搅拌混合后转移至聚四氟乙烯内衬的不锈钢水热反应釜中;将反应釜缓慢升温至100‑180℃,反应结束后,将聚四氟乙烯内衬的不锈钢水热反应釜自然冷却至室温,水洗产物并经离心分离,得铕络合物掺杂的二氧化钛纳米粒子荧光传感材料;可以用来双重检测金属离子的浓度,检测范围为1μmol/L~1mmol/L,有效检出限为1μmol/L~200μmol/L。

Description

铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和 应用
技术领域
本发明涉及荧光传感材料,尤其涉及的是一种铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用。
背景技术
近年来,荧光光谱法已用于某些元素的测定。荧光传感器由于其高灵敏度和选择性,低成本和技术简单性而引起了极大的兴趣,然而,基于单波长的荧光传感器会受到浓度,环境和激发强度的影响,从而限制了其应用。比例荧光传感器可以通过测量不同波长下两个或多个发射带的比率来缓解这些问题,通过比较可以提高灵敏度和选择性。纳米材料荧光传感器因其大的比表面积,强大的封装能力,可控的孔径,可预测的纳米结构,多色和可调节的发射特性而被证明是传感的新平台。传统上,以能够发出强光致发光(PL)发射的稀土元素离子为中心,可以通过使用UV激发与稀土元素离子形成f-f或f-d能量转移系统。
发明内容
本发明针对现有技术的不足提供一种铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用。
本发明技术方案如下:
一种铕络合物掺杂TiO2纳米粒子荧光传感材料的制备方法,包括以下步骤:在常温下,将钛酸四丁酯或四氯化钛、无水乙醇、乙酸经超声分散充分混合配制成纳米二氧化钛前驱体溶液;将氯化铕或硫酸铕与有机配体在磁力搅拌器上搅拌合成铕络合物溶液,将两种溶液在磁力搅拌器上加热搅拌混合后转移至聚四氟乙烯内衬的不锈钢水热反应釜中;将反应釜缓慢升温至100-180℃,反应结束后,将聚四氟乙烯内衬的不锈钢水热反应釜自然冷却至室温,水洗产物并经离心分离,得铕络合物掺杂的二氧化钛纳米粒子荧光传感材料。
所述的制备方法,钛酸四丁酯或四氯化钛、无水乙醇、乙酸三者按照体积比1:5:5、1:6:6、1:7:7、1:8:8、1:9:9或1:10:10添加;其中最优比例为1:10:10;。
所述的制备方法,所述铕络合物溶液为含铕的无机盐和稀土有机配合物2-噻吩甲酰三氟丙酮和1,10-菲罗啉一水合物按照物质的量铕:2-噻吩甲酰三氟丙酮:1,10-菲罗啉一水合物为1:1:1、1:2:2或1:3:1络合而成;其中最优比例为1:3:1。
所述的制备方法,所述铕络合物溶液浓度为1*10-4~1*10-1mol/L。
所述的制备方法,铕络合物溶液采用逐滴加入的方式加入到二氧化钛前驱体溶液中,待完全加入到二氧化钛前驱体溶液中后,再加入到反应釜中进行升温反应,反应时间为8~24小时;
所述的制备方法,反应所得产物需要用去离子水和无水乙醇多次离心,离心得到的上清液进行pH测试,pH值为7时,洗涤结束。
一种铕络合物掺杂的二氧化钛纳米粒子荧光传感材料,将铕络合物掺杂进入二氧化钛纳米粒子晶格中,通过任一所述方法得到;所获得的铕络合物掺杂二氧化钛纳米粒子拥有两个发光峰即二氧化钛的发光峰位于454nm和铕络合物的发光峰位于616nm。
所述的荧光传感材料的应用,用来双重检测金属离子的浓度,检测范围为1μmol/L~1mmol/L,有效检出限为1μmol/L~200μmol/L。
铕络合物在TiO2纳米粒子中的引入引起形貌变化,并且其吸收边的红移,TiO2纳米粒子的结晶度和微晶尺寸减小。铕络合物掺杂的二氧化钛纳米粒子在393nm的激发下显示出相当强的光致发光即双发射峰分别为二氧化钛发光峰位于454nm和铕络合物发光峰位于616nm。随着TiO2纳米颗粒中铕络合物浓度的增加,荧光强度增加。铕络合物掺杂二氧化钛纳米粒子荧光传感材料根据荧光淬灭可以用来对金属离子进行双峰检测浓度。
附图说明
图1为纯二氧化钛纳米粒子和铕络合物掺杂的二氧化钛纳米粒子的透射电子显微镜(TEM)图;
图2为铕络合物掺杂的二氧化钛纳米粒子的紫外可见吸收光谱((UV-vis)图;
图3为铕络合物掺杂的二氧化钛纳米粒子的荧光(PL)图;
图4为根据浓度与在454nm峰值处的荧光强度的关系计算出的线性关系图;
图5为根据浓度与在616nm峰值处的荧光强度的关系计算出的线性关系图;
图6为通过双峰的荧光强度比例(y1/y2)与对应的具体浓度C的线性关系图;
具体实施方式
以下结合具体实施例,对本发明进行详细说明。
实施例一:
将0.183g氯化铕,0.99g的2-噻吩甲酰三氟丙酮,1.11g的1,10-菲罗啉一水合物和50ml无水乙醇加入烧杯搅拌2h,配制浓度为0.02mol/L的Eu(TTA)3Phen铕络合物溶液,将5ml钛酸四丁酯、25ml乙醇和25ml的乙酸加入到烧杯中混合成二氧化钛前驱体溶液,将5ml铕络合物溶液与二氧化钛前驱体溶液混合并超声分散。将分散后的溶液转移至聚四氟乙烯内衬的不锈钢水热反应釜中,再将水热反应釜置于高温烘箱中,缓慢升温至100℃,反应8h后,自然冷却至室温,水洗产物并经离心分离,即得铕络合物掺杂的二氧化钛纳米荧光传感材料。图1可以看出制备出的铕络合物掺杂的二氧化钛纳米粒子为方形颗粒(图b),纯二氧化钛纳米粒子为椭圆形(图a)。
实施例二:
将0.366g氯化铕,0.99g的2-噻吩甲酰三氟丙酮,1.11g的1,10-菲罗啉一水合物和50ml无水乙醇加入烧杯搅拌2h,配制浓度为0.04mol/L的Eu(TTA)3Phen铕络合物溶液,将5ml钛酸四丁酯、30ml乙醇和30ml的乙酸加入到烧杯中混合成二氧化钛前驱体溶液,将5ml铕络合物溶液与二氧化钛前驱体溶液混合并超声分散。将分散后的溶液转移至聚四氟乙烯内衬的不锈钢水热反应釜中,再将水热反应釜置于高温烘箱中,缓慢升温至120℃,反应12h后,自然冷却至室温,水洗产物并经离心分离,即得Eu(TTA)3Phen掺杂的二氧化钛纳米荧光材料。
实施例三:
将0.549g氯化铕,0.99g的2-噻吩甲酰三氟丙酮,1.11g的1,10-菲罗啉一水合物和50ml无水乙醇加入烧杯搅拌2h,配制浓度为0.06mol/L的Eu(TTA)3Phen铕络合物溶液,将5ml铕络合物溶液,5ml钛酸四丁酯40ml乙醇和40ml的乙酸加入到烧杯中混合成二氧化钛前驱体溶液,将5ml铕络合物溶液与二氧化钛前驱体溶液混合并超声分散。将分散后的溶液转移至聚四氟乙烯内衬的不锈钢水热反应釜中,再将水热反应釜置于高温烘箱中,缓慢升温至140℃,反应16h后,自然冷却至室温,水洗产物并经离心分离,即得Eu(TTA)3Phen掺杂的二氧化钛纳米荧光材料。
实施例四:
将0.732g氯化铕,0.99g的2-噻吩甲酰三氟丙酮,1.11g的1,10-菲罗啉一水合物和50ml无水乙醇加入烧杯搅拌2h,配制浓度为0.08mol/L的Eu(TTA)3Phen铕络合物溶液,将5ml钛酸四丁酯50ml乙醇和50ml的乙酸加入到烧杯中混合成二氧化钛前驱体溶液,将5ml铕络合物溶液与二氧化钛前驱体溶液混合并超声分散。将分散后的溶液转移至聚四氟乙烯内衬的不锈钢水热反应釜中,再将水热反应釜置于高温烘箱中,缓慢升温至160℃,反应20h后,自然冷却至室温,水洗产物并经离心分离,即得Eu(TTA)3Phen掺杂的二氧化钛纳米荧光材料。图2可以看出随着浓度变化,紫外吸收红移。
检测实施例五:
将质量为0.1g的铕络合物掺杂的二氧化钛纳米粒子荧光传感材料加入到配制好浓度为1μmol/L~1000μmol/L的Mn7+溶液中,用394激发波长一次性检测在454nm和616nm处的荧光强度,得到铕络合物掺杂的二氧化钛纳米粒子荧光传感材料的荧光光谱图,如图3所示。图3可以明显看出含有两个发射峰,随着金属离子浓度升高,铕络合物掺杂的二氧化钛纳米粒子荧光强度逐渐下降。根据荧光光谱图在454nm峰值处的荧光强度(y1)与浓度的关系,绘制出图4所示的线性公式,根据荧光光谱图在616nm峰值处的荧光强度(y2)与浓度的关系,绘制出图5所示的线性公式。再根据双峰的荧光强度比值和浓度计算出线性公式。在待定浓度的Mn7+溶液中可以根据加入铕络合物掺杂的二氧化钛纳米粒子荧光传感材料检测出的双峰的荧光强度,通过把双峰的荧光强度比例(y1/y2)带入公式y1/y2=0.29655C+5.76499来计算出对应的具体浓度C。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (6)

1.一种铕络合物掺杂TiO2纳米粒子荧光传感材料的制备方法,其特征在于,包括以下步骤:在常温下,将钛酸四丁酯或四氯化钛、无水乙醇、乙酸经超声分散充分混合配制成纳米二氧化钛前驱体溶液;将氯化铕或硫酸铕与有机配体在磁力搅拌器上搅拌合成铕络合物溶液,将两种溶液在磁力搅拌器上加热搅拌混合后转移至聚四氟乙烯内衬的不锈钢水热反应釜中;将反应釜缓慢升温至100-180℃,反应结束后,将聚四氟乙烯内衬的不锈钢水热反应釜自然冷却至室温,水洗产物并经离心分离,得铕络合物掺杂的二氧化钛纳米粒子荧光传感材料;所述铕络合物溶液为含铕的无机盐和稀土有机配合物2-噻吩甲酰三氟丙酮和1,10-菲罗啉一水合物按照物质的量铕:2-噻吩甲酰三氟丙酮:1,10-菲罗啉一水合物为1:1:1、1:2:2或1:3:1络合而成;铕络合物溶液采用逐滴加入的方式加入到二氧化钛前驱体溶液中,待完全加入到二氧化钛前驱体溶液中后,再加入到反应釜中进行升温反应,反应时间为8~24小时。
2.如权利要求1所述的制备方法,其特征在于,钛酸四丁酯或四氯化钛、无水乙醇、乙酸三者按照体积比1:5:5、1:6:6、1:7:7、1:8:8、1:9:9或1:10:10添加。
3.如权利要求1所述的制备方法,其特征在于,所述铕络合物溶液浓度为1*10-4~1*10- 1mol/L。
4.如权利要求1所述的制备方法,其特征在于,反应所得产物需要用去离子水和无水乙醇多次离心,离心得到的上清液进行pH测试,pH值为7时,洗涤结束。
5.一种铕络合物掺杂的二氧化钛纳米粒子荧光传感材料,其特征在于,将铕络合物掺杂进入二氧化钛纳米粒子晶格中,通过权利要求1~4任一项所述方法得到;所获得的铕络合物掺杂二氧化钛纳米粒子拥有两个发光峰即二氧化钛的发光峰位于454nm和铕络合物的发光峰位于616nm。
6.如权利要求5所述的荧光传感材料的应用,其特征在于,用来双重检测金属离子Mn7+的浓度,检测范围为1 µmol/L~1 mmol/L,有效检出限为1 µmol/L~200 µmol/L。
CN202110207565.7A 2021-02-24 2021-02-24 铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用 Active CN113004888B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110207565.7A CN113004888B (zh) 2021-02-24 2021-02-24 铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110207565.7A CN113004888B (zh) 2021-02-24 2021-02-24 铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用

Publications (2)

Publication Number Publication Date
CN113004888A CN113004888A (zh) 2021-06-22
CN113004888B true CN113004888B (zh) 2023-06-06

Family

ID=76385862

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110207565.7A Active CN113004888B (zh) 2021-02-24 2021-02-24 铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用

Country Status (1)

Country Link
CN (1) CN113004888B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707244A (zh) * 2004-06-11 2005-12-14 中国科学院大连化学物理研究所 一种二氧化钛纳米铕荧光探针及其应用
WO2010022191A2 (en) * 2008-08-19 2010-02-25 Battelle Memorial Institute Organic-Inorganic Complexes Containing a Luminescent Rare earth-Metal Nanocluster and an Antenna Ligand, Luminescent Articles, and Methods of Making Luminescent Compositions
CN103131413A (zh) * 2013-03-08 2013-06-05 湖北工程学院 一种掺杂铕的球形硼酸钇荧光材料的制备方法
CN103521248A (zh) * 2013-10-16 2014-01-22 江苏大学 一种石墨烯基复合可见光催化材料的制备方法
CN104059648A (zh) * 2014-06-28 2014-09-24 吉林大学 一种一维TiO2:Eu3+纳米颗粒和纳米棒发光材料的制备方法
CN104087297A (zh) * 2014-07-07 2014-10-08 吉林大学 一种三价铕离子掺杂的一维TiO2纳米纺锤体发光材料的制备方法
CN105754598A (zh) * 2016-04-13 2016-07-13 大连民族大学 稀土掺杂纳米球型TiO2上转换化合物及其制备方法
CN106350057A (zh) * 2016-08-18 2017-01-25 青岛大学 一种荧光纳米杂化粒子的制备方法
CN108034420A (zh) * 2017-12-27 2018-05-15 青岛大学 无机纳米粒子包埋铽络合物杂化发光材料及其制备方法
CN109294553A (zh) * 2018-11-28 2019-02-01 青岛大学 一种二氧化钛掺杂稀土络合物复合材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5008047B2 (ja) * 2005-06-17 2012-08-22 独立行政法人物質・材料研究機構 希土類元素がドープされた二酸化チタン粒子およびその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1707244A (zh) * 2004-06-11 2005-12-14 中国科学院大连化学物理研究所 一种二氧化钛纳米铕荧光探针及其应用
WO2010022191A2 (en) * 2008-08-19 2010-02-25 Battelle Memorial Institute Organic-Inorganic Complexes Containing a Luminescent Rare earth-Metal Nanocluster and an Antenna Ligand, Luminescent Articles, and Methods of Making Luminescent Compositions
CN103131413A (zh) * 2013-03-08 2013-06-05 湖北工程学院 一种掺杂铕的球形硼酸钇荧光材料的制备方法
CN103521248A (zh) * 2013-10-16 2014-01-22 江苏大学 一种石墨烯基复合可见光催化材料的制备方法
CN104059648A (zh) * 2014-06-28 2014-09-24 吉林大学 一种一维TiO2:Eu3+纳米颗粒和纳米棒发光材料的制备方法
CN104087297A (zh) * 2014-07-07 2014-10-08 吉林大学 一种三价铕离子掺杂的一维TiO2纳米纺锤体发光材料的制备方法
CN105754598A (zh) * 2016-04-13 2016-07-13 大连民族大学 稀土掺杂纳米球型TiO2上转换化合物及其制备方法
CN106350057A (zh) * 2016-08-18 2017-01-25 青岛大学 一种荧光纳米杂化粒子的制备方法
CN108034420A (zh) * 2017-12-27 2018-05-15 青岛大学 无机纳米粒子包埋铽络合物杂化发光材料及其制备方法
CN109294553A (zh) * 2018-11-28 2019-02-01 青岛大学 一种二氧化钛掺杂稀土络合物复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. Su et al..Europium-functionalized luminescent titania nanotube arrays: Utilizing interactions with glucose, cholesterol and triglycerides for rapid detection application.《Materials Science &amp Engineering C》.2020,第114卷第111054(1-10)页. *
Enhanced luminescence of novel rare earth complexes Eu(3,5-DNBA)(3)Phen in nano-TiO2;Y. Lv et al.;《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》;第72卷;第22-25页 *

Also Published As

Publication number Publication date
CN113004888A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
Ntwaeaborwa et al. Structural, optical and photoluminescence properties of Eu3+ doped ZnO nanoparticles
Kumar et al. Influence of ultrasonication times on the tunable colour emission of ZnO nanophosphors for lighting applications
Shahroosvand et al. Solution-based synthetic strategies for Eu doped ZnO nanoparticle with enhanced red photoluminescence
Liu et al. Correlated structural and optical investigation of terbium-doped zinc oxide nanocrystals
Fan et al. Selective synthesis and luminescent properties of monazite-and zircon-type LaVO4: Ln (Ln= Eu, Sm, and Dy) nanocrystals
Meroni et al. Sol–gel synthesis of CaTiO3: Pr3+ red phosphors: tailoring the synthetic parameters for luminescent and afterglow applications
Murugadoss Synthesis and photoluminescence properties of zinc sulfide nanoparticles doped with copper using effective surfactants
Dong et al. Synthesis and characterization of Mn doped ZnS d-dots with controllable dual-color emissions
Aboulaich et al. Rapid synthesis of Ce 3+-doped YAG nanoparticles by a solvothermal method using metal carbonates as precursors
Parma et al. Structural and photoluminescence properties of ZrO2: Eu3+@ SiO2 nanophosphors as a function of annealing temperature
Mesaros et al. A valence states approach for luminescence enhancement by low dopant concentration in Eu-doped ZnO nanoparticles
Zhang et al. Uniform hollow TiO2: Sm3+ spheres: Solvothermal synthesis and luminescence properties
Pushpendra et al. Rapid, room temperature synthesis of Eu3+ Doped NaBi (MoO4) 2 nanomaterials: structural, optical, and photoluminescence properties
Song et al. Preparation of Y3Al5O12: Ce nanophosphors using salt microemulsion method and their luminescent properties
Wangkhem et al. Facile synthesis of re-dispersible YVO4: Ln3+ (Ln3+= Dy3+, Eu3+, Sm3+) nanocrystals: luminescence studies and sensing of Cu2+ ions
Iso et al. Effects of annealing on the photoluminescence properties of citrate-capped YVO4: Bi3+, Eu3+ nanophosphor
Tsuchiya et al. Fluorochromic properties of undoped and Ln3+-doped CaWO4 phosphor particles
Ferhi et al. Hydrothermal synthesis and luminescence properties of nanospherical SiO2@ LaPO4: Eu3+ (5%) composite
Tomar et al. Optical properties of Silica capped Mn doped ZnS quantum dots
Zhao et al. Hydrothermal synthesis and photoluminescence properties of In3+ co-doped YVO4: Eu3+ phosphors
Murugadoss Luminescence properties of multilayer coated single structure ZnS/CdS/ZnS nanocomposites
CN113004888B (zh) 铕络合物掺杂的TiO2纳米粒子荧光传感材料及制备方法和应用
CN105754585A (zh) 一种高效发光的油酸包覆稀土氟化钙纳米晶的制备方法
Nannuri et al. Microwave-assisted synthesis and upconversion luminescence of NaYF4: Yb, Gd, Er and NaYF4: Yb, Gd, Tm nanorods
Macedo et al. Luminescent SiO2-coated Gd2O3: Eu3+ nanorods/poly (styrene) nanocomposites by in situ polymerization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant