CN108192607B - 一种上转换强红光发射TiO2纳米材料的制备及应用 - Google Patents

一种上转换强红光发射TiO2纳米材料的制备及应用 Download PDF

Info

Publication number
CN108192607B
CN108192607B CN201810019534.7A CN201810019534A CN108192607B CN 108192607 B CN108192607 B CN 108192607B CN 201810019534 A CN201810019534 A CN 201810019534A CN 108192607 B CN108192607 B CN 108192607B
Authority
CN
China
Prior art keywords
tio
sol
acetylacetone
red light
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810019534.7A
Other languages
English (en)
Other versions
CN108192607A (zh
Inventor
徐骏
张阳熠
吴仰晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201810019534.7A priority Critical patent/CN108192607B/zh
Publication of CN108192607A publication Critical patent/CN108192607A/zh
Application granted granted Critical
Publication of CN108192607B publication Critical patent/CN108192607B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了上转换强红光发射TiO2纳米材料的制备方法与应用,采用钛酸四丁酯为原料,无水乙醇作为溶剂,乙酰丙酮作为稳定剂,浓硝酸作为催化剂制备TiO2溶胶;使用Yb3+和Er3+作为掺杂离子,通过对TiO2溶胶进行低温烘干和高温退火制备上转换红光TiO2纳米颗粒;以600‑800℃度退火处理Yb3+/Er3+掺杂TiO2纳米材料在980nm激光器激发下的上转换荧光具有大的红绿强度比Ired/Igreen,其值6.5以上。

Description

一种上转换强红光发射TiO2纳米材料的制备及应用
一、技术领域
本发明涉及上转换纳米材料及其制备方法,具体涉及到一种强红光发射Yb3+/Er3+共掺杂TiO2纳米颗粒的制备方法。
二、背景技术
上转换过程一种非线性光学过程,是通过多光子机制将长波辐射(红外光)转换成短波辐射(可见光或者紫外光)的过程。上转换荧光材料具有独特的光学特性,其在三维显示、全固态激光器、太阳能电池、防伪标识、生物医学等领域有着广泛的应用价值。随着纳米技术的发展,上转换纳米材料作为生物荧光标签应用于生物成像具有抗光漂白、无闪烁和对生物样本损伤小等优点。上转换纳米材料一般采用红外光来激发,红外光对生物组织具有较强的穿透力,这有利于深层细胞组织的成像。600-1000nm(红光到近红外)波段的光被称之为“生物光学窗口”,生物组织对该波段的光呈现出低吸收和高分散的特点。具有“生物光学窗口”波段荧光发射的上转换纳米材料,尤其是具有红光 (600-700nm)发射的上转换纳米材料可以更好的应用于的生物组织成像。目前已经有一些方法可以制备具有较高亮度的稀土掺杂上转换纳米材料,然而一般情况下为了获得高亮度通常需要提供较高的激发光功率,这有可能在生物应用领域中破坏生物组织。因此如何获得在低激发功率条件下具有较强红光发射的上转换纳米材料仍然是一项挑战。
在众多的上转换基质材料中,氟化物具有较低的声子能量(350cm-1),其中六角相NaYF4被认为是最优越的上转换材料之一。然而,氟化物纳米材料是具有弱毒性的,其应用于生物领域需要对其进行表面修饰处理。此外,目前关于β-NaYF4:Yb/Er的报道大多是具有非常强的绿光发射(547nm波段),而在“生物光学窗口”的红光发射(658nm 波段)却很弱。相较而言,稀土掺杂氧化物表现出较高的化学稳定性和热稳定性,其中 TiO2纳米材料更是具有对人体无毒、较低的声子能量、光学性能好、价格低廉等优点,有望成为一种优越的上转换纳米基质材料。目前关于稀土掺杂TiO2上转换材料的报道大多具有较强的绿光发射(547nm波段),整体表现为绿光、黄光或橙光,然而对于具有较强红光发射的稀土掺杂TiO2纳米材料未见报道。因此,成功制备出具有强红光发射的 TiO2纳米材料,对应用于生物成像等领域是十分有意义的。
三、发明内容
鉴于此,本发明所要解决的问题在于提供一种具有上转换强红光发射TiO2纳米材料的制备方法,由该方法制备得到的TiO2纳米材料相对于其他波段的可见光具有较强的红光上转换发射。
本发明提供一种具有上转换强红光发射TiO2纳米材料的制备方法,其基本特点是首先采用钛酸四丁酯为主要原料,无水乙醇作为溶剂,乙酰丙酮作为稳定剂,浓硝酸作为催化剂配置TiO2溶胶,其中钛酸四丁酯、无水乙醇、乙酰丙酮和去离子水总的摩尔比为 1:15:1.2:2.5。通过对Yb3+/Er3+掺杂TiO2溶胶进行低温烘干和高温退火处理获得具有较强红光发射的TiO2纳米材料。本发明一种上转换强红光发射TiO2纳米材料的制备方法,其具体包括以下步骤:
(1)按照钛酸四丁酯、无水乙醇和乙酰丙酮摩尔浓度比1:8-12:1-1.4,将乙酰丙酮加入无水乙醇溶液中,搅拌使其混合均匀;将钛酸四丁酯缓缓加入上述乙酰丙酮和无水乙醇混合溶液中,持续搅拌形成透明的淡黄色溶液A以备用;
(2)无水乙醇和去离子水2-10:1,并充分混合,然后加入少许硝酸,调节PH值约2-3左右,形成无色透明的乙醇、水和硝酸混合液B;
(3)一边搅拌一边将步骤(2)所得的混合液B逐滴的加入步骤(1)所得的混合液A中,置于60±15℃水浴环境中持续搅拌4±2小时形成前驱体溶液,然后将所得的前驱体溶液冷却至室温并静置24±8小时,最终形成透明的淡黄色TiO2溶胶;
(4)根据TiO2:xYb3+/0.02Er3+元素摩尔浓度配比称量Yb(NO3)3·6H2O和Er(NO3)3·6H2O 稀土硝酸盐,其中x=0.1~0.4,并将其充分溶解于步骤(3)所得的TiO2溶胶中;
(5)将一定量步骤(4)所得的稀土掺杂TiO2溶胶置于干燥箱中,保持150±20℃温度环境30±15分钟,将其烘干形成TiO2凝胶;
(6)将步骤(5)所得的TiO2凝胶进行1±0.5小时退火处理,退火温度为600℃~800℃,最终得到Yb3+/Er3+共掺杂TiO2纳米材料。
所述的方法得到的上转换强红光发射TiO2纳米材料的应用,以600-800℃度退火处理Yb3+/Er3+掺杂TiO2纳米材料在980nm激光器激发下的上转换荧光具有大的红绿强度比Ired/Igreen,其值6.5以上;整体表现为红光效果。
有益效果:本发明的制备方法具有以下特点:
(1)使用本方法所制备的上转换TiO2纳米材料为纳米颗粒,平均尺寸约40nm。
(2)使用本方法所制备的上转换TiO2纳米颗粒,在980nm激光器较低激发功率密度的激发下具有较强的上转换红光发射。
(3)使用本方法所制备上转换TiO2纳米材料工序简单,方便推广,还可以用于其它光谱。
四、附图说明
图1是本发明制备流程图。
图2为30mol%Yb3+/2mol%Er3+掺杂TiO2纳米材料的X射线衍射(XRD)图谱,样品呈现出烧绿石相(Yb2Ti2O7)。
图3为30mol%Yb3+/2mol%Er3+掺杂TiO2纳米材料的透射电子显微镜(TEM)图片,其形貌表现为颗粒状,平均尺寸约40nm左右。
图4为600度退火处理30mol%Yb3+/2mol%Er3+掺杂TiO2纳米材料在980nm激光器激发下(Power≈0.325W/cm2)的上转换荧光光谱图。
图5为700度退火处理40mol%Yb3+/2mol%Er3+掺杂TiO2纳米材料在980nm激光器激发下(Power≈0.325W/cm2)的上转换荧光光谱图。
五、具体实施方式
结合附图及具体实施例对本发明进行进一步的描述。
上转换强红光发射TiO2纳米材料的制备方法,首先采用钛酸四丁酯为主要原料,无水乙醇作为溶剂,乙酰丙酮作为稳定剂,浓硝酸作为催化剂配置TiO2溶胶,其中钛酸四丁酯、无水乙醇、乙酰丙酮和去离子水总的摩尔比为1:15:1.2:2.5。通过对Yb3+/Er3+掺杂TiO2溶胶进行低温烘干和高温退火处理获得具有较强红光发射的TiO2纳米材料。本发明一种上转换强红光发射TiO2纳米材料的制备方法,其具体包括以下步骤:
(1)量取8ml乙酰丙酮将其加入38ml无水乙醇溶液中,搅拌使其混合均匀。量取22ml钛酸四丁酯,缓缓加入上述乙酰丙酮和无水乙醇混合溶液中,持续搅拌形成透明的淡黄色溶液A以备用。
(2)量取18ml无水乙醇和3ml去离子水,并将其充分混合。往上述乙醇水溶液中滴加少许硝酸,调节PH值约为2-3左右,形成无色透明的乙醇、水和硝酸混合液B。
(3)一边搅拌一边将步骤(2)中所得的混合液B逐滴的加入步骤(1)所得的混合液A中,然后置于60℃水浴环境中持续搅拌4小时形成前驱体溶液,将所得的前驱体溶液冷却至室温并静置24小时,最终形成透明的淡黄色TiO2溶胶。
(4)按照实验要求的摩尔浓度配比称量Yb(NO3)3·6H2O(10、20、30和40mol%) 和Er(NO3)3·6H2O(2mol%)稀土硝酸盐,并将其充分溶解于步骤(3)所得的TiO2溶胶中。
(5)将一定量步骤(4)所得的稀土掺杂TiO2溶胶置于干燥箱中,保持150℃30分钟,将其烘干形成TiO2凝胶。
(6)将步骤(5)所得的TiO2凝胶进行600℃、700℃、800℃退火处理1小时,最终得到Yb3+/Er3+共掺杂TiO2纳米材料。
具体实施例1:
量取8乙酰丙酮将其加入38ml无水乙醇溶液中,搅拌使其混合均匀。量取22ml钛酸四丁酯,缓缓加入上述乙酰丙酮和无水乙醇混合溶液中,持续搅拌形成透明的淡黄色溶液A以备用;量取18ml无水乙醇和3ml去离子水,并将其充分混合,然后滴加少许浓硝酸,调节PH值约为2-3左右,形成无色透明的乙醇、水和硝酸混合液B;一边搅拌一边将混合液B逐滴的加入混合液A中,在60℃水浴环境中持续搅拌4小时形成前驱体溶液,将所得的前驱体溶液冷却至室温并静置24小时,最终形成透明的淡黄色TiO2溶胶。
按照摩尔浓度比称量Yb(NO3)3·6H2O(30mol%)和Er(NO3)3·6H2O(2mol%)稀土硝酸盐,并将其充分溶解于TiO2溶胶中。将所得的稀土掺杂TiO2溶胶置于干燥箱中,保持 150℃温度环境30分钟,将其烘干形成TiO2凝胶。将所得的TiO2凝胶进行700度退火处理,得到TiO2:Yb3+/Er3+纳米材料。。
30mol%Yb3+/2mol%Er3+掺杂TiO2纳米材料700度退火的XRD图谱和TEM图如图2和图 3所示,样品呈现出烧绿石相Yb2Ti2O7结构,平均尺寸约40nm的颗粒。
实施例2:
制备稀土掺杂TiO2凝胶的方法同实施例1,将所得的稀土掺杂TiO2凝胶进行600度退火处理,得到TiO2:Yb3+/Er3+纳米材料。
在980nm红外激光器的激发下(Power≈0.325W/cm2),600度退火 30mol%Yb3+/2mol%Er3+掺杂TiO2纳米颗粒的上转换荧光光谱图如图4所示,红光和绿光的积分强度比Ired/Igreen≈6.9。
实施例3:
制备稀土掺杂TiO2凝胶的方法同实施例1,将所得的稀土掺杂TiO2凝胶进行800度退火处理,得到TiO2:Yb3+/Er3+纳米材料。
实施例4:
制备TiO2溶胶的方法同实施例1,改变Yb3+离子的掺杂浓度,称量Yb(NO3)3·6H2O(10mol%)和Er(NO3)3·6H2O(2mol%)稀土硝酸盐,并将其充分溶解于TiO2溶胶中。将所得的溶胶置于干燥箱中烘干形成凝胶,然后进行700度退火处理,得到TiO2: 10mol%Yb3+/2mol%Er3+纳米材料。
实施例5:
制备TiO2溶胶的方法同实施例1,改变Yb3+离子的掺杂浓度,称量Yb(NO3)3·6H2O(20mol%)和Er(NO3)3·6H2O(2mol%)稀土硝酸盐,并将其充分溶解于TiO2溶胶中。将所得的溶胶置于干燥箱中烘干形成凝胶,然后进行700度退火处理,得到TiO2: 20mol%Yb3+/2mol%Er3+纳米材料。
实施例6:
制备TiO2溶胶的方法同实施例1,改变Yb3+离子的掺杂浓度,称量Yb(NO3)3·6H2O(40mol%)和Er(NO3)3·6H2O(2mol%)稀土硝酸盐,并将其充分溶解于TiO2溶胶中。将所得的溶胶置于干燥箱中烘干形成凝胶,然后进行700度退火处理,得到TiO2: 40mol%Yb3+/2mol%Er3+纳米材料。
在980nm红外激光器的激发下(Power≈0.325W/cm2),40mol%Yb3+/2mol%Er3+掺杂TiO2纳米颗粒的上转换荧光光谱图如图5所示,红光和绿光的积分强度比Ired/Igreen≈11.6。

Claims (2)

1.一种上转换强红光发射TiO2纳米材料的制备,其特征在于,采用钛酸四丁酯为原料,无水乙醇作为溶剂,乙酰丙酮作为稳定剂,浓硝酸作为催化剂制备TiO2溶胶;使用Yb3+和Er3+作为掺杂离子,通过对TiO2溶胶进行低温烘干和高温退火制备上转换红光TiO2纳米颗粒;制备步骤如下:
(1)按照钛酸四丁酯、无水乙醇和乙酰丙酮摩尔浓度比1:8-12:1-1.4,将乙酰丙酮加入无水乙醇溶液中,搅拌使其混合均匀;将钛酸四丁酯缓缓加入上述乙酰丙酮和无水乙醇混合溶液中,持续搅拌形成透明的淡黄色溶液A以备用;
(2)无水乙醇和去离子水2-10:1充分混合,然后加入少许硝酸,调节pH值2-3,形成无色透明的乙醇、水和硝酸混合液B;
(3)一边搅拌一边将步骤(2)所得的混合液B逐滴的加入步骤(1)所得的混合液A中,置于60±15℃水浴环境中持续搅拌4±2小时形成前驱体溶液,然后将所得的前驱体溶液冷却至室温并静置24±8小时,最终形成透明的淡黄色TiO2溶胶;
(4)根据TiO2:xYb3+/0.02Er3+元素摩尔浓度配比称量Yb(NO3)3·6H2O和Er(NO3)3·6H2O稀土硝酸盐,其中x=0.1~0.4,并将其充分溶解于步骤(3)所得的TiO2溶胶中;
(5)将一定量步骤(4)所得的稀土掺杂TiO2溶胶置于干燥箱中,保持150±20℃温度环境30±15分钟,将其烘干形成TiO2凝胶;
(6)将步骤(5)所得的TiO2凝胶进行1±0.5小时退火处理,退火温度为700℃,最终得到Yb3+/Er3+共掺杂TiO2纳米材料;
所述的钛酸四丁酯、无水乙醇、乙酰丙酮和去离子水总的摩尔比为1:15:1.2:2.5;
步骤(4)中Yb3+离子的摩尔浓度为10-40mol%,Er3+离子的摩尔浓度为2mol%;
以上述700℃度退火处理的Yb3+/Er3+掺杂TiO2纳米材料在980nm激光器激发下的上转换荧光具有大的红绿强度比Ired/Igreen,其值6.5以上;整体表现为红光效果。
2.根据权利要求1所述的上转换强红光发射TiO2纳米材料的制备,其特征在于,步骤(6)中为空气中退火1小时。
CN201810019534.7A 2018-01-09 2018-01-09 一种上转换强红光发射TiO2纳米材料的制备及应用 Active CN108192607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810019534.7A CN108192607B (zh) 2018-01-09 2018-01-09 一种上转换强红光发射TiO2纳米材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810019534.7A CN108192607B (zh) 2018-01-09 2018-01-09 一种上转换强红光发射TiO2纳米材料的制备及应用

Publications (2)

Publication Number Publication Date
CN108192607A CN108192607A (zh) 2018-06-22
CN108192607B true CN108192607B (zh) 2021-07-30

Family

ID=62588909

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810019534.7A Active CN108192607B (zh) 2018-01-09 2018-01-09 一种上转换强红光发射TiO2纳米材料的制备及应用

Country Status (1)

Country Link
CN (1) CN108192607B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108192607B (zh) * 2018-01-09 2021-07-30 南京大学 一种上转换强红光发射TiO2纳米材料的制备及应用
CN113980679A (zh) * 2021-09-03 2022-01-28 昆明理工大学 一种TiO2:Yb,Er上转换发光防伪荧光粉的制备和应用
CN114958376B (zh) * 2022-06-20 2023-11-03 滁州学院 一种高效NaYF4上转换纳米晶的低温制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210180A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 一种稀土掺杂二氧化钛纳米发光材料及其制备方法
CN103397302A (zh) * 2013-07-01 2013-11-20 复旦大学 一种上转换发光的Er/Yb共掺杂TiO2薄膜的制备方法
CN105754598A (zh) * 2016-04-13 2016-07-13 大连民族大学 稀土掺杂纳米球型TiO2上转换化合物及其制备方法
CN108192607A (zh) * 2018-01-09 2018-06-22 南京大学 一种上转换强红光发射TiO2纳米材料的制备及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101210180A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 一种稀土掺杂二氧化钛纳米发光材料及其制备方法
CN103397302A (zh) * 2013-07-01 2013-11-20 复旦大学 一种上转换发光的Er/Yb共掺杂TiO2薄膜的制备方法
CN105754598A (zh) * 2016-04-13 2016-07-13 大连民族大学 稀土掺杂纳米球型TiO2上转换化合物及其制备方法
CN108192607A (zh) * 2018-01-09 2018-06-22 南京大学 一种上转换强红光发射TiO2纳米材料的制备及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Efficient up-conversion red emission from TiO2:Yb,Er nanocrystals;YANGQING WU等;《OPTICS EXPRESS》;20170908;第25卷;第22648-22657页 *
稀土上转换发光材料性能研究;李晓鹏;《中国优秀硕士学位论文全文数据库(基础科学辑)》;20141115;第A005-22页 *

Also Published As

Publication number Publication date
CN108192607A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
Li et al. Microwave-assisted synthesis and up–down conversion luminescent properties of multicolor hydrophilic LaF 3: Ln 3+ nanocrystals
Zhang et al. Formation of hollow upconversion rare-earth fluoride nanospheres: nanoscale kirkendall effect during ion exchange
Stouwdam et al. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles
Mao et al. Synthesis and luminescence properties of erbium-doped Y2O3 nanotubes
Xu et al. Ln3+ (Ln= Eu, Dy, Sm, and Er) ion-doped YVO4 nano/microcrystals with multiform morphologies: hydrothermal synthesis, growing mechanism, and luminescent properties
Kolesnikov et al. Eu3+ concentration effect on luminescence properties of YAG: Eu3+ nanoparticles
CN108192607B (zh) 一种上转换强红光发射TiO2纳米材料的制备及应用
Huang Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF 3: Yb 3+/Ln 3+(Ln= Er, Tm, and Ho) upconversion nanoparticles
Wu et al. Tunable upconversion luminescence of monodisperse Y2O3: Er3+/Yb3+/Tm3+ nanoparticles
CN105899461B (zh) 光学化合物、其用途和生产方法
Silver et al. Yttrium oxide upconverting phosphors. Part 2: temperature dependent upconversion luminescence properties of erbium in yttrium oxide
Pushpendra et al. NaBi0. 9Eu0. 1 (MoO4) 2 nanomaterials: tailoring the band gap and luminescence by La3+ substitution for light-emitting diodes
CN102994089A (zh) 超小核壳结构碱土氟化物纳米晶的制备方法
He et al. Reducing grain size and enhancing luminescence of NaYF4: Yb3+, Er3+ upconversion materials
CN109266346A (zh) 一类稀土离子掺杂的钨酸复盐上转换超细纳米发光材料及其制备和应用
Majeed et al. Dispersible crystalline nanobundles of YPO 4 and Ln (Eu, Tb)-doped YPO 4: rapid synthesis, optical properties and bio-probe applications
CN107603623B (zh) 一种小尺寸β-NaREF4荧光粉的制备方法
Luo et al. Na (1-x) Li x (Gd0. 39Y0. 39Yb0. 2Er0. 02) F4 (0≤ x≤ 1) Solid Solution Microcrystals: Li/Na Ratio-Induced Transition of Crystalline Phase and Morphology and Their Enhanced Upconversion Emission
Gao et al. Synthesis of Yb 3+, Ho 3+ and Tm 3+ co-doped β-NaYF 4 nanoparticles by sol–gel method and the multi-color upconversion luminescence properties
Anjana et al. Clean synthesis of YOF: Er3+, Yb3+ upconversion colloidal nanoparticles in water through liquid phase pulsed laser ablation for imaging applications
CN107955610B (zh) 一种尺寸可调上转换NaYF4纳米晶的制备方法
He et al. Fluoride source-induced tuning of morphology and optical properties of YF3: Eu3+, Bi3+ and its application for luminescent inks
Kumar et al. Optimization of sensitizer concentration for upconversion photoluminescence of Yb3+/Er3+: La10W22O81 nanophosphor rods
Chen et al. Rapid aqueous-phase synthesis of highly stable K 0.3 Bi 0.7 F 2.4 upconversion nanocrystalline particles at low temperature
Li et al. Spectral probing of surface luminescence of cubic Lu2O3: Eu3+ nanocrystals synthesized by hydrothermal approach

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant