CN108349728A - 碳纳米管的制造装置和制造方法 - Google Patents

碳纳米管的制造装置和制造方法 Download PDF

Info

Publication number
CN108349728A
CN108349728A CN201680058037.7A CN201680058037A CN108349728A CN 108349728 A CN108349728 A CN 108349728A CN 201680058037 A CN201680058037 A CN 201680058037A CN 108349728 A CN108349728 A CN 108349728A
Authority
CN
China
Prior art keywords
chamber
carbon nanotube
gas
carbon source
crystallizing field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680058037.7A
Other languages
English (en)
Other versions
CN108349728B (zh
Inventor
桥本刚
高野庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meijo Nano Carbon Co Ltd
Original Assignee
Meijo Nano Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meijo Nano Carbon Co Ltd filed Critical Meijo Nano Carbon Co Ltd
Publication of CN108349728A publication Critical patent/CN108349728A/zh
Application granted granted Critical
Publication of CN108349728B publication Critical patent/CN108349728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/825Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/835Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1836Heating and cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/164Preparation involving continuous processes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45576Coaxial inlets for each gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/511Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/602Nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00893Feeding means for the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

通过本发明提供的CNT制造装置(1)包括筒体的腔室(10)和设置于排气管(50)的控制阀(60)。腔室(10)包括:设置于该腔室(10)的筒轴方向的一部分范围的反应区(20);设置于比反应区(20)靠下游的位置的沉积区(22);检测表示沉积区(22)中的碳纳米管的沉积状态的物性值的沉积状态检测部(40)。CNT制造装置(1)构成为如下:在由沉积状态检测部(40)检测的物性值为规定的阈值以下时,关闭控制阀(60)而使碳纳米管沉积在沉积区(22);在该物性值超过规定的阈值时,打开控制阀(60)而回收沉积在沉积区(22)的碳纳米管。

Description

碳纳米管的制造装置和制造方法
技术领域
本发明涉及利用所谓的化学气相沉积法(CVD法)制造碳纳米管的技术。
其中,本国际申请主张基于在2015年10月1日提出的日本专利申请第2015-196221号的优先权,在本说明书中引入了该申请的全部内容作为参照。
背景技术
碳纳米管(以下,有时也标记为“CNT”。)由于具有导电性、热传导性、机械强度等优异的特性,所以是受到多个领域关注的新型材料。一般而言,CNT通过将碳或含碳的原料根据需要在催化剂的存在下放置在高温条件下而合成。作为主要的制造方法,已知有激光蒸发法、电弧放电法和化学气相沉积法。其中,化学气相沉积法(即,CVD法)为将含碳的原料(碳源)热分解而合成CNT的方法。作为有关利用CVD法制造CNT的现有技术文献,可以举出专利文献1。专利文献1涉及在流动的气相中制造CNT的流动气相CVD法的技术。
现有技术文献
专利文献
专利文献1:日本特开2013-35750号公报
发明内容
在此,如果能够提供利用流动气相CVD法以高收率制造更高品质的CNT的技术,则非常有用。本发明的目的在于提供能够解决上述课题的CNT制造装置。本发明的另一目的在于提供能够解决上述课题的CNT制造方法。
通过本发明,提供生成碳纳米管的碳纳米管制造装置。该装置包括:筒体的腔室;从开口于上述腔室的碳源供给口向该腔室供给碳源的碳源供给部;从开口于上述腔室的气体供给口向该腔室供给非氧化性气体的气体供给部;构成为能够从气体排出口排出上述腔室内的气体的排气管;和设置于上述排气管的控制阀。上述腔室具有:设置于该腔室的筒轴方向的一部分范围、加热至生成碳纳米管的温度的反应区;设置于比上述反应区靠下游并且比上述气体排出口靠上游的位置、将上述所生成的碳纳米管冷却并沉积的沉积区;和检测表示上述沉积区中的碳纳米管的沉积状态的物性值的沉积状态检测部。其中,上述装置构成为如下:在由上述沉积状态检测部检测的表示碳纳米管的沉积状态的物性值为规定的阈值以下的情况下,关闭上述控制阀而使碳纳米管沉积在上述沉积区;在该物性值超过规定的阈值的情况下,打开上述控制阀而回收沉积在上述沉积区的碳纳米管。
其中,“碳纳米管(CNT)”是指管状的碳同素异形体(典型地为石墨结构的圆筒型结构物),不限定于特别的形态(长度、直径)。所谓的单层CNT、多层CNT、或者管前端为角状的碳纳米角是包含于这里所说的CNT的概念的典型例。这里公开的技术特别适合用于单层CNT的制造。另外,在本说明书中,CNT制造装置的“上游”是指从气体供给口至气体排出口的气体流动的上游,“下游”是指从气体供给口至气体排出口的气体流动的下游。
利用这种构成的装置,通过关闭控制阀而使CNT沉积在沉积区(典型地为,附着在腔室的内壁),能够使碳源更好地停留在比该沉积区靠上游的反应区内(即,抑制向反应区的下游侧的扩散),能够由该碳源高效(例如以高收率)生成高品质的CNT。另外,在沉积区中CNT的沉积进展一定程度后,打开控制阀而回收沉积在沉积区的CNT,由此能够连续制造CNT。即,上述构成的装置适于CNT的连续生产。
这里公开的装置的优选的一个方式,还包括回收上述碳纳米管的回收部。上述回收部配置于比上述沉积区靠下游并且比上述气体排出口靠上游的位置。通过这种构成,在排气从沉积区向气体排出口移动的期间,同样从沉积区向气体排出口移动的CNT被回收到回收部。因此,能够高效地回收CNT。
这里公开的装置的优选的一个方式中,上述回收部配置于上述腔室的下方。而且,构成为使沉积在上述沉积区的碳纳米管下落至上述回收部。如此,与排气的流动一起,使CNT因自重而下落,能够更高效地回收CNT。
这里公开的装置的优选的一个方式中,表示上述碳纳米管的沉积状态的物性值为上述腔室内的压力。通过这样,能够简便地掌握沉积区中的CNT的沉积状态。
这里公开的装置的优选的一个方式中,上述碳源供给口配置于上述反应区(制造CNT时,即,从该供给口供给碳源时,加热至生成CNT的温度的区域)或其附近。通过这样设为碳源直接供给到高温区域的构成,能够由该碳源更高效地生成CNT。另外,在将常温为液体的材料用作上述碳源时,上述构成在使从碳源供给口供给的碳源的液体在短时间内气(蒸汽)化的方面上有利。因此,也能够优选用于将这种材料用作碳源的CNT的制造。特别是,作为将常温为液体的材料(例如甲苯)用作上述碳源来制造CNT的装置有用。
这里公开的装置的优选的一个方式中,上述碳源供给部包括碳源导入管,该碳源导入管在上述反应区内延伸,与上述碳源供给口(优选配置于反应区或其附近。)相连。通过这种构成,将上述反应区的热从碳源供给口通过上述碳源导入管的壁面向该导入管内的碳源传导,由此能够使从碳源供给口供给的碳源(液体)在短时间内气化。这从使该装置连续运行(即,连续生产CNT)的方面来看有利。例如能够更长时间适当制造CNT。在将常温下为液体(例如甲苯)的物质用作上述碳源时,能够特别良好地发挥通过采用上述构成得到的效果。
这里公开的装置的优选的一个方式中,上述气体供给部包括气体供给管,该气体供给管在上述反应区内延伸,与上述气体供给口相连。而且,上述气体供给管和上述碳源导入管具有以该气体供给管为外管、以该碳源导入管为内管的双重管结构。通过这样设置,从气体供给口供给的非氧化性气体与从碳源供给口供给的碳源(液体)接触,促进该碳源的气化和扩散。由此,能够使气化的碳源更好地向反应区内扩散。因此,能够高效(例如以高收率)生成更高品质的CNT。
这里公开的装置的优选的一个方式中,上述气体供给部构成为:从上述气体供给口向上述腔室一起供给非氧化性气体和碳源气体。通过这种构成,能够高效生成控制为均匀的直径(例如2nm以下、典型地为1nm~2nm左右)的CNT。
通过本发明,还提供向筒体的腔室供给碳源和非氧化性气体而生成碳纳米管的碳纳米管的制造方法。
在该方法中,上述腔室中设有:反应区,其设置于该腔室的筒轴方向的一部分范围,且被加热至生成碳纳米管的温度;沉积区,其设置于比该反应区靠下游并且比排出腔室内的气体的气体排出口靠上游的位置,并将上述生成的碳纳米管冷却并沉积;和沉积状态检测部,其检测表示该沉积区中的碳纳米管的沉积状态的物性值。
其中,该方法包括以下的工序:
在表示上述沉积区中的碳纳米管的沉积状态的物性值为规定的阈值以下时,关闭与上述气体排出口连结的排气管的控制阀而使碳纳米管沉积在上述沉积区的工序(沉积工序);和
在该物性值超过规定的阈值时,打开上述控制阀而回收沉积在上述沉积区的碳纳米管的工序(回收工序)。
利用这种方法,通过重复进行上述沉积工序和上述回收工序,能够连续地高效(例如以高收率)获得高品质的CNT。
优选的一个方式中,在上述腔室的下方配置有回收部。在回收上述碳纳米管的工序中,可以使沉积在上述沉积区的碳纳米管下落到上述回收部。另外,优选的一个方式中,表示上述碳纳米管的沉积状态的物性值为上述腔室内的压力。
附图说明
图1是表示一个实施方式的CNT制造装置的一例的示意图。
图2是一个实施方式的CNT制造装置的控制流程图。
具体实施方式
以下,一边参照附图,一边说明本发明的实施方式。在以下的附图中,对发挥相同作用的部件、部位附上相同的符号进行说明。此外,各图中的尺寸关系(长度、宽度、厚度等)并不反映实际的尺寸关系。此外,在本说明书中,作为除特别提及的事项以外且对本发明的实施所必需的事情(例如,用于调节反应区的温度或压力等反应条件的具体操作方法等的有关CVD法的一般事项等),能够作为基于该领域的现有技术的本领域技术人员的设计事项来掌握。本发明能够基于本说明书所公开的内容和该领域的技术常识来实施。
(第一实施方式)
关于这里公开的CNT制造装置的优选的一个方式,一边参照附图一边进行说明。如图1所示,本实施方式的CNT制造装置1为在流动的气相中生成CNT的CNT制造装置。该装置1包括:筒体的腔室10;从开口于腔室10的碳源供给口32向该腔室10供给碳源A的碳源供给部30;从开口于腔室10的气体供给口82向该腔室10供给非氧化性气体的气体供给部80;构成为能够排出腔室10内的气体的排气管50;设置于排气管50的控制阀60;和与控制阀60电连接的控制部90。
<碳源供给部>
碳源供给部30构成为从开口于腔室10的碳源供给口32向该腔室10供给(例如喷雾)碳源A。该实施方式中,碳源供给部30包括碳源导入管34,其在腔室10内的后述的反应区20内延伸并与碳源供给口32相连。设置于碳源导入管34的前端的碳源供给口32开口于反应区20或其附近。设置于碳源导入管34的前端的碳源供给口32开口于腔室10的上游侧。通过如此设为碳源A被直接供给到反应区20(高温区域)的构成,能够使从碳源供给口32供给的碳源(典型地为液体)A在短时间内气(蒸汽)化,从而由该碳源A更高效地生成CNT。另外,通过使用碳源导入管34,将反应区20的热从碳源供给口32通过碳源导入管34的壁面向该导入管34内的碳源(液体)A传导,由此能够使从碳源供给口32供给的碳源A在短时间内气化。
作为这里公开的技术中的碳源,可以使用能够通过CVD法生成CNT的各种含碳(C)材料。优选为在常温(25℃)呈液体形态的碳源。作为碳源,例如能够使用:甲苯、苯、二甲苯、萘、蒽、四氢化萘等芳香族烃;己烷、庚烷、辛烷、壬烷、癸烷、十一烷、十二烷、十三烷、十四烷、十五烷、十六烷、十七烷等非环式饱和脂肪族烃;十氢化萘、环己烷、己烷、十四氢菲等环式饱和脂肪族烃;它们的混合物;等。优选使用含碳率高的碳源。例如,作为碳源能够优选使用甲苯、苯等。这些碳源在从碳源供给口32向腔室10的反应区20供给后能够在短时间内气(蒸汽)化的方面上优选。
碳源供给部30能够从碳源供给口32向腔室10一起供给上述碳源、和催化剂金属或催化剂金属化合物。作为上述催化剂金属,可以使用能够在CVD法中催化碳源(例如甲苯)的热分解的一种或两种以上的金属。作为催化剂金属,例如能够使用选自铁(Fe)、钴(Co)、镍(Ni)、钪(Sc)、钛(Ti)、钒(V)、铬(Cr)、锰(Mn)、钼(Mo)、钌(Ru)、铜(Cu)等中的一种或两种以上。优选使用Fe和Co中的至少一者。由此,能够得到品质更好的产物。另外,能够进一步提高CNT的生成速度。作为催化剂金属化合物,可以列举有机过渡金属化合物、无机过渡金属化合物等。作为有机过渡金属化合物,可以例示二茂铁、二茂镍、二茂钴、羰基铁、乙酰丙酮铁、油酸铁等。其中,优选使用二茂铁。
碳源供给部30能够从碳源供给口32向腔室10将硫化合物与上述碳源和催化剂金属一起供给。作为硫化合物,可以列举有机硫化合物、无机硫化合物等。作为有机硫化合物,可以例示噻吩、硫茚、苯并噻吩等的含硫杂环式化合物。另外,作为无机硫化合物,例如可以例示硫化氢等。其中,优选使用噻吩。由此,利用与上述催化剂金属的相互作用,能够进一步提高CNT的生成速度。
<气体供给部>
气体供给部80构成为从开口于腔室10的气体供给口82向该腔室10供给非氧化性气体(载气)。该实施方式中,气体供给部80包括气体供给管84,其在反应区20内延伸并与气体供给口82相连。设置于气体供给管84的前端的气体供给口82开口于反应区20或其附近。设置于气体供给管84的前端的气体供给口82开口于腔室10的上游侧。
作为从气体供给口82向腔室10供给的载气,适合使用非氧化性气体。换言之,作为载气,优选使用选自还原性气体和不活泼气体中的一种或两种以上。作为还原性气体,可以例示氢(H2)气、氨(NH3)气等。作为不活泼气体,可以例示氩(Ar)气、氮(N2)气、氦(He)气等。这里公开的制造方法的优选的一个方式中,作为上述载气使用还原性气体(例如H2气)。
另外,从气体供给口82向腔室10供给的非氧化性气体可以包含常温下为气体的碳源气体。作为碳源气体,优选为比从上述碳源供给口32向腔室10供给的碳源在更低的温度热分解的物质。作为具有这种性质的碳源气体,可以列举具有双键的乙烯、丙烯、具有三键的乙炔等不饱和脂肪族烃。可以将它们的混合物用作碳源气体。通过将这样的碳源气体和上述液态的碳源并用,能够高效生成被控制为均匀的直径(例如2nm以下、典型地为1nm~2nm左右)的CNT。
在优选的一个方式中,上述气体供给部80和上述碳源供给部30具有以气体供给管84为外管、以碳源导入管34为内管的双重管结构。换言之,设置于气体供给管84的前端的气体供给口82、与设置于碳源导入管34的前端的碳源供给口32以同心圆状配置。该例中,设置于碳源导入管34的前端的碳源供给口32比设置于气体供给管84的前端的气体供给口82向下游侧(下方)突出。作为碳源使用常温下为液体的材料时,这种构成在将从碳源供给口32供给的碳源的液体气(蒸汽)化和扩散的方面上有利。即,通过设为以气体供给管84为外管、以碳源导入管34为内管的双重管结构,从气体供给口82供给的非氧化性气体与从碳源供给口32供给的碳源(液体)接触,促进该碳源(液体)的气化和扩散。由此,能够使气化的碳源在反应区20内良好地分散。因此,能够高效(例如以高收率)生成更高品质的CNT。
<排气管>
排气管50构成为能够从配置得比腔室10的后述的沉积区22靠下游的气体排出口52排出腔室10内的气体。该实施方式中,排气管50的气体排出口52开口于与腔室10的下游侧(下方)连结的后述的回收部(回收容器)70的侧面。另外,在排气管50的中途设置有控制阀60。该控制阀(例如电磁阀)60构成为与控制部90电连接且通过控制部90的控制而开闭自如。控制阀60在通常的使用时(即,CNT的制造时)被控制为关闭状态。而且,在回收后述的CNT时,从关闭状态切换至打开状态。另外,该实施方式中,排气管50包括不经由控制阀60的旁通管54。由此,即使控制阀60为关闭状态,也可以使一定量的气体从气体排出口52经由旁通管54排出。优选的一个方式中,适当设定从气体供给口82向腔室10供给的非氧化性气体(载气)的量与在控制阀60关闭的状态下从气体排出口52经由旁通管54排出的气体(除上述载气以外,还可以包含通过碳源的热分解而生成的反应气体、未反应的碳源等。)的量的平衡,由此,能够控制气化的碳源的移动,以使气化的碳源不扩散至比反应区20靠上游侧和下游侧的位置(换言之,以使气化的碳源留在反应区20内)。
<腔室>
腔室10典型地以直管状(即,轴以直线状延伸的方式)形成,其截面形状优选为圆形、椭圆形、卵型、长圆形等的带弧度的形状。或者,上述截面形状可以为多边(优选为六边以上、例如六边~二十边)形状。腔室10的内径和长度能够考虑所期望的CNT生产能力、设备成本等而适当设定。从高效生成CNT的观点考虑,这里公开的CNT制造装置能够优选以使用例如内径为大约50mm~500mm的筒体的方式实施。通常,优选将腔室10的内径设为大约50mm~200mm。腔室10的长度能够设为内径的大约1倍以上(典型地为1~10倍左右)的长度。本实施方式的装置1的腔室10的长度为约1400mm,其中,反应区20的长度为约800mm、沉积区22的长度为约400mm。作为腔室10的构成材质,能够适当采用具有与上述CNT生成温度相称的耐热性并且化学稳定性高的材质。作为特别优选的材质,可以列举陶瓷。腔室10的上游侧的开口被上游盖12封住。另一方面,腔室10的下游端为开口状态。
<反应区>
反应区20为腔室10内加热至生成CNT的温度的区域。该实施方式中,腔室10的筒轴方向的一部分范围(在此为上部和中央部)被加热器3包围,位于其被包围的区域内侧的部分成为反应区20。加热器3能够将反应区20加热至适于生成CNT的温度(典型地为大约500~2000℃、优选大约1000~1600℃、例如大约1100~1200℃)即可,其形状和加热方式没有特别限定。作为能够优选使用的加热器3的一例,举出电炉。本实施方式中,作为加热器3使用截面形状为大致半圆形的两个电炉,构成为使这些电炉对置并包围腔室10的一部分范围。通过将反应区20加热至生成CNT的温度,从碳源供给口32供给的碳源气(蒸汽)化,进而热分解,从而生成CNT。
<沉积区>
沉积区22为腔室10内设置得比反应区20靠下游且将所生成的CNT24冷却并沉积的区域。即,通过在反应区20将碳源进行热分解而生成的CNT24移动到沉积区22而被冷却,并典型地在腔室10的出口附近沉积。随此,腔室10的出口附近被CNT24逐渐覆盖得较厚。可以在沉积区22的周围配置用于对沉积区22进行强制性冷却的冷却机构(例如水冷夹套)。通过如此,能够在沉积区22高效沉积CNT24。如此,通过使比反应区20靠下游的沉积区22被CNT覆盖得较厚(甚至接近堵塞状态),气化的碳源容易在反应区20内积存(即,抑制向反应区20的下游侧的扩散)。由此,能够由该碳源更高效(例如以高收率)生成高品质的CNT。另外,通过将上述的控制阀(电磁阀)60切换至打开状态,能够回收沉积在沉积区22的CNT。即,将控制阀60切换至打开状态时,在反应区20积存的大量的高压气体(气化的碳源和非氧化性气体)经由沉积区22和后述的回收部70从气体排出口52排出。随着该气流,使沉积在沉积区22的CNT移动至回收部70,从而能够在回收部70回收。
<沉积状态检测部>
沉积状态检测部40作为检测表示沉积区22中的CNT的沉积状态的物性值的部件构成。沉积状态检测部40只要能够检测表示CNT的沉积状态的物性值,则没有特别限制。该实施方式中,沉积状态检测部40为压力传感器40。即,当沉积区22被CNT覆盖得较厚而接近堵塞状态时,气化的碳源和非氧化性气体在反应区20内积存,因此,腔室10内的压力上升。因此,通过测量腔室10内的压力,能够掌握沉积区22中的CNT的沉积状态。压力传感器40配置于比沉积区22靠上游侧的位置即可。该实施方式中,压力传感器40安装在封闭腔室10的上游侧的上游盖12的下表面。
<回收部>
本实施方式所涉及的装置1包括回收部70,其在将控制阀60切换至打开状态时,回收从沉积区22送至下游侧的CNT。回收部70配置于比沉积区22靠下游并且比气体排出口52靠上游的位置。通过如此配置,能够在排气从沉积区22向气体排出口52移动的期间高效回收CNT。该实施方式中,回收部70为回收容器70。气体排出口52开口于回收容器70的侧面。另外,回收容器70以上方开口的状态与腔室10的下游端连结。即,回收容器70以上方开口的状态配置于沉积区22的下方。而且,构成为在将控制阀60切换至打开状态时,使沉积在沉积区22的CNT下落到回收容器70。如此,通过使CNT因自重而下落,能够更高效回收CNT。回收部70可以包括网眼钢等捕集机构,以使得容易回收CNT。
<控制部>
控制部90构成为在由沉积状态检测部(该例中为压力传感器)40检测的表示CNT的沉积状态的物性值(在此为腔室10的内压)为规定的阈值以下时,关闭控制阀60而使CNT沉积在沉积区22。并且,构成为在表示该CNT的沉积状态的物性值超过规定的阈值时,打开控制阀60而使沉积在沉积区22的CNT移动至回收部70,并在该回收部70回收。控制部90的典型的构成至少包括:存储有用于进行这种控制的程序的ROM(只读存储器,Read OnlyMemory);能够执行该程序的CPU(中央处理器,Central Processing Unit);暂时存储数据的RAM(随机存取存储器,random access memory);和未图示的输入输出端口。来自上述的沉积状态检测部(压力传感器)40等的各种信号(输出)等经由输入端口而输入至该控制部90。另外,从该控制部90经由输出端口而输出向控制阀60的开闭驱动信号等。ROM中存储有成为控制阀的开闭的判断基准的压力的阈值等。
对如此构成的CNT制造装置1的动作进行说明。图2为表示通过本实施方式所涉及的控制部90的CPU执行的控制阀的开闭控制处理例行程序的一例的流程图。该开闭控制处理例行程序从装置1运转后立即在每规定时间重复执行。
执行图2所示处理例行程序时,控制部90首先在步骤S10中,读取从压力传感器40输入的信号,测定腔室10内的压力。接下来在步骤S20中,判断由上述压力传感器40测量的压力的测定值是否超过规定的阈值。在由压力传感器40测量的压力的测定值未超过规定的阈值时(“(否)NO”时),控制部90判断为并非回收沉积在沉积区22的CNT的时间点,进入步骤S30而将控制阀60设为关闭状态。由此,在沉积区22沉积CNT。在CNT沉积在沉积区22的状态下,气化的碳源更良好地积存在反应区20内,因此能够高效生成高品质的CNT。
另一方面,在由压力传感器40测量的压力的测定值超过规定的阈值时(“YES(是)”时),控制部90判断为是回收沉积在沉积区22的CNT的时间点,进入步骤S40而将控制阀60设为打开状态。由此,沉积在沉积区22的CNT与气体流动一起移动到下游侧并在回收部70被回收。通过如此,能够将沉积在沉积区22的CNT在适合的时间点回收。此后,再次回到开始,以后重复步骤S10~步骤S40的操作。
利用上述装置1,通过关闭控制阀60而使CNT沉积在沉积区22(典型地为附着在腔室的内壁),能够使碳源更容易地积存在比该沉积区22靠上游的反应区20内(即,抑制向反应区20的下游侧的扩散),从而能够由该碳源高效地(例如以高收率)生成高品质的CNT。另外,在沉积区22中CNT的沉积进展一定程度后,打开控制阀60而回收沉积在沉积区22的CNT,由此能够连续制造CNT。即,上述构成的装置1适于CNT的连续生产。
利用这里公开的技术,能够提供向筒体的腔室10供给碳源和非氧化性气体而生成碳纳米管的碳纳米管的制造方法。
在该方法中,上述腔室10中设有:反应区20,其设置于该腔室10的筒轴方向的一部分范围且被加热至生成碳纳米管的温度;沉积区22,其设置于比该反应区20靠下游且比排出腔室10内的气体的气体排出口52靠上游的位置,并且将所生成的碳纳米管冷却并沉积;和沉积状态检测部40,其检测表示该沉积区22中的碳纳米管的沉积状态的物性值。
该方法中,包括以下的工序:
在表示上述沉积区22中的碳纳米管的沉积状态的物性值为规定的阈值以下时,关闭与上述气体排出口52连结的排气管50的控制阀60而使碳纳米管沉积在上述沉积区22的工序(沉积工序);和
在该物性值超过规定的阈值时,打开上述控制阀60而回收沉积在上述沉积区22的碳纳米管的工序(回收工序)。
利用这种方法,通过重复进行上述沉积工序和上述回收工序,能够连续高效地(例如以高收率)获得高品质的CNT。
(第二实施方式)
以上,对本发明的一个实施方式所涉及的CNT制造装置1中执行的控制阀的开闭控制进行了说明。接下来,对能够利用本发明的另一实施方式所涉及的CNT制造装置1执行的控制阀的开闭控制进行说明。
该实施方式中,表示腔室10的沉积区22中的CNT的沉积状态的物性值为从用摄像装置40拍摄的沉积区22的图像计算得到的CNT的沉积量,在该点上与上述的实施方式1不同。
即,该实施方式中,利用摄像装置40直接掌握CNT的沉积状态。作为摄像装置40,只要能够从腔室10的外部以高分辨率拍摄沉积区22的周边,则能够没有特别限定地使用。例如能够使用利用CCD图像传感器、CMOS图像传感器等公知的摄像装置(相机)。摄像装置40将制造CNT的过程的沉积区22中的CNT的沉积状态以摄像数据的形式获取,并将该摄像数据发送到控制部90。优选的一个方式中,摄像装置40构成为从与CNT的沉积方向(腔室10的径向)正交的方向(例如在腔室10的上游盖12设置摄像装置40、从该位置向下方)对沉积区22进行摄像。通过如此构成,能够更准确地拍摄沉积在沉积区22的CNT的沉积状态。另外,摄像装置40构成为对制造CNT的过程的沉积区22持续地(经时地)进行摄像。摄像装置40将沉积区22中的CNT的沉积状态以摄像数据的形式持续地(经时地)获取,并将该摄像数据向控制部90持续地(经时地)发送。此外,这里所说的“持续地”包括:不间断地进行摄像的方式、以及摄像以每一定时间断续地持续进行的方式。
通过上述构成,能够更直接且准确地掌握沉积在沉积区22的CNT的沉积状态。因此,能够在适当的时间点回收沉积在沉积区22的CNT。
以上,详细说明了本发明的具体例,但这些仅为例示,并不限定权利要求书的范围。记载于权利要求书的技术中,包括将以上例示的具体例进行各种变形、变更的方案。
例如,上述的实施方式中,例示了表示腔室10的沉积区22中的CNT的沉积状态的物性值为由压力传感器测量的腔室10内的压力、或从由摄像装置拍摄的沉积区22的图像计算的CNT的沉积量的情况。但是,表示沉积区22中的CNT的沉积状态的物性值并不限定于此。例如,可以利用腔室10内的温度等物性值掌握CNT的沉积状态。
另外,上述实施方式中,在腔室10的下方设置有回收容器70,但也可以省略这种回收容器70。此外,构成CNT制造装置1的腔室10的材质不受上述实施方式那样的陶瓷任何限定,不言而喻,能够进行适当变更。此外,腔室10、碳源导入管34、气体供给管84、加热器3、回收容器70的形状等具体构成也全部能够在本发明所要求的范围内任意自如地进行设计变更。
产业上的可利用性
利用本发明,能够提供采用CVD法高效制造CNT的装置和方法。

Claims (11)

1.一种碳纳米管制造装置,其为生成碳纳米管的碳纳米管制造装置,该装置的特征在于,包括:
筒体的腔室;
碳源供给部,其从开口于所述腔室的碳源供给口向该腔室供给碳源;
气体供给部,其从开口于所述腔室的气体供给口向该腔室供给非氧化性气体;
排气管,其构成为能够从气体排出口排出所述腔室内的气体;和
控制阀,其设置于所述排气管,
所述腔室包括:
反应区,其设置于该腔室的筒轴方向的一部分范围,且被加热至生成碳纳米管的温度;
沉积区,其设置于比所述反应区靠下游且比所述气体排出口靠上游的位置,并且将所述生成的碳纳米管冷却并沉积;和
沉积状态检测部,其检测表示所述沉积区中的碳纳米管的沉积状态的物性值,
其中,在由所述沉积状态检测部检测的表示碳纳米管的沉积状态的物性值为规定的阈值以下时,构成为关闭所述控制阀而使碳纳米管沉积在所述沉积区,
在该物性值超过规定的阈值时,构成为打开所述控制阀而回收沉积在所述沉积区的碳纳米管。
2.如权利要求1所述的装置,其特征在于:
还包括回收所述碳纳米管的回收部,
所述回收部配置于比所述沉积区靠下游且比所述气体排出口靠上游的位置。
3.如权利要求2所述的装置,其特征在于:
所述回收部配置于所述腔室的下方,
构成为使沉积在所述沉积区的碳纳米管下落到所述回收部。
4.如权利要求1~3中任一项所述的装置,其特征在于:
表示所述碳纳米管的沉积状态的物性值为所述腔室内的压力。
5.如权利要求1~4中任一项所述的装置,其特征在于:
所述碳源供给口配置于所述反应区或其附近。
6.如权利要求5所述的装置,其特征在于:
所述碳源供给部包括碳源导入管,该碳源导入管在所述反应区内延伸且与所述碳源供给口相连。
7.如权利要求6所述的装置,其特征在于:
所述气体供给部包括气体供给管,该气体供给管在所述反应区内延伸且与所述气体供给口相连,
所述气体供给管和所述碳源导入管具有以该气体供给管为外管且以该碳源导入管为内管的双重管结构。
8.如权利要求1~7中任一项所述的装置,其特征在于:
所述气体供给部构成为从所述气体供给口向所述腔室一起供给非氧化性气体和碳源气体。
9.一种碳纳米管制造方法,其特征在于:
其为向筒体的腔室供给碳源和非氧化性气体而生成碳纳米管的碳纳米管的制造方法,
所述腔室中设有:反应区,其设置于该腔室的筒轴方向的一部分范围且被加热至生成碳纳米管的温度;沉积区,其设置于比该反应区靠下游且比排出腔室内的气体的气体排出口靠上游的位置并且将所述生成的碳纳米管冷却并沉积;沉积状态检测部,其检测表示该沉积区中的碳纳米管的沉积状态的物性值,
其中,所述方法包括以下的工序:
在表示所述沉积区中的碳纳米管的沉积状态的物性值为规定的阈值以下时,关闭与所述气体排出口连结的排气管的控制阀而使碳纳米管沉积在所述沉积区的工序;和;
在该物性值超过规定的阈值时,打开所述控制阀而回收沉积在所述沉积区的碳纳米管的工序。
10.如权利要求9所述的制造方法,其特征在于:
在所述腔室的下方配置有回收部,
在回收所述碳纳米管的工序中,沉积在所述沉积区的碳纳米管下落到所述回收部。
11.如权利要求9或10所述的制造方法,其特征在于:
表示所述碳纳米管的沉积状态的物性值为所述腔室内的压力。
CN201680058037.7A 2015-10-01 2016-09-30 碳纳米管的制造装置和制造方法 Active CN108349728B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015196221 2015-10-01
JP2015-196221 2015-10-01
PCT/JP2016/079159 WO2017057751A1 (ja) 2015-10-01 2016-09-30 カーボンナノチューブの製造装置および製造方法

Publications (2)

Publication Number Publication Date
CN108349728A true CN108349728A (zh) 2018-07-31
CN108349728B CN108349728B (zh) 2021-12-24

Family

ID=58424057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680058037.7A Active CN108349728B (zh) 2015-10-01 2016-09-30 碳纳米管的制造装置和制造方法

Country Status (5)

Country Link
US (2) US20180264443A1 (zh)
JP (2) JP6479202B2 (zh)
KR (1) KR20180064437A (zh)
CN (1) CN108349728B (zh)
WO (1) WO2017057751A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533834A (zh) * 2020-04-03 2020-08-14 珠海冠宇电池股份有限公司 一种复合材料制备装置及制备方法
CN114174220A (zh) * 2019-08-09 2022-03-11 学校法人早稻田大学 碳纳米管的制造装置和制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271677B1 (ko) * 2016-06-15 2021-07-02 주식회사 엘지화학 탄소나노튜브 압축 펠렛 건조 및 회수 장치
CN116963996A (zh) 2021-10-07 2023-10-27 同和热处理技术株式会社 碳纳米管回收装置和碳纳米管制造装置以及碳纳米管的回收方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790426B1 (en) * 1999-07-13 2004-09-14 Nikkiso Co., Ltd. Carbonaceous nanotube, nanotube aggregate, method for manufacturing a carbonaceous nanotube
US20100278717A1 (en) * 2006-12-08 2010-11-04 Denso Corporation Method and apparatus for manufacturing carbon nanotube
CN102482098A (zh) * 2009-09-10 2012-05-30 国立大学法人东京大学 碳纳米管和氢的同时制造方法以及碳纳米管和氢的同时制造装置
CN103502146A (zh) * 2011-03-21 2014-01-08 阿克马法国公司 用于制造碳纳米管的方法及用于实施该方法的装置
CN105439119A (zh) * 2015-12-02 2016-03-30 苏州捷迪纳米科技有限公司 立式连续碳纳米管纤维的制备装置以及制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004011793T2 (de) * 2003-09-05 2009-02-12 William Marsh Rice University, Houston Fluoreszierende sicherheitstinten und markierstoffe mit kohlenstoffnanoröhrchen
KR100887588B1 (ko) * 2004-07-16 2009-03-10 독립행정법인 과학기술진흥기구 촉매 입경 제어식 카본 나노구조물의 제조방법, 제조장치및 카본 나노구조물
US7651668B2 (en) * 2004-09-24 2010-01-26 Japan Science And Technology Agency Production method and production device for carbon nano structure
JP4968643B2 (ja) * 2004-12-13 2012-07-04 日機装株式会社 単層カーボンナノチューブの製造方法
JP4758130B2 (ja) * 2005-04-12 2011-08-24 国立大学法人北見工業大学 ナノ炭素の製造方法およびナノ炭素製造用触媒反応装置
EP2025643B1 (en) * 2006-04-24 2018-03-07 National Institute of Advanced Industrial Science and Technology Method for producing single-walled carbon nanotubes
JP5176199B2 (ja) * 2007-03-06 2013-04-03 学校法人 名城大学 カーボンナノチューブ製造装置と製造方法
WO2009008291A1 (ja) * 2007-07-06 2009-01-15 National Institute Of Advanced Industrial Science And Technology カーボンナノチューブ成膜方法、成膜装置及びカーボンナノチューブ膜
JP5340665B2 (ja) * 2008-07-31 2013-11-13 学校法人 名城大学 カーボンナノチューブの製造装置および製造方法
JP5678881B2 (ja) * 2009-02-17 2015-03-04 学校法人 名城大学 複合材料の製造方法および製造装置
SG10201500043YA (en) * 2010-02-19 2015-03-30 Incubation Alliance Inc Carbon material and method for producing same
GB201021870D0 (en) * 2010-12-23 2011-02-02 Element Six Ltd A microwave plasma reactor for manufacturing synthetic diamond material
JP6015862B2 (ja) * 2013-07-22 2016-10-26 村田機械株式会社 糸製造装置
JP2015151316A (ja) * 2014-02-17 2015-08-24 株式会社クラレ カーボンナノチューブの製造装置と製造方法
JP6418690B2 (ja) * 2015-02-20 2018-11-07 学校法人早稲田大学 カーボンナノチューブの製造装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790426B1 (en) * 1999-07-13 2004-09-14 Nikkiso Co., Ltd. Carbonaceous nanotube, nanotube aggregate, method for manufacturing a carbonaceous nanotube
US20100278717A1 (en) * 2006-12-08 2010-11-04 Denso Corporation Method and apparatus for manufacturing carbon nanotube
CN102482098A (zh) * 2009-09-10 2012-05-30 国立大学法人东京大学 碳纳米管和氢的同时制造方法以及碳纳米管和氢的同时制造装置
CN103502146A (zh) * 2011-03-21 2014-01-08 阿克马法国公司 用于制造碳纳米管的方法及用于实施该方法的装置
CN105439119A (zh) * 2015-12-02 2016-03-30 苏州捷迪纳米科技有限公司 立式连续碳纳米管纤维的制备装置以及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114174220A (zh) * 2019-08-09 2022-03-11 学校法人早稻田大学 碳纳米管的制造装置和制造方法
CN114174220B (zh) * 2019-08-09 2023-06-30 学校法人早稻田大学 碳纳米管的制造装置和制造方法
CN111533834A (zh) * 2020-04-03 2020-08-14 珠海冠宇电池股份有限公司 一种复合材料制备装置及制备方法
CN111533834B (zh) * 2020-04-03 2022-04-12 珠海冠宇电池股份有限公司 一种复合材料制备装置及制备方法

Also Published As

Publication number Publication date
JPWO2017057751A1 (ja) 2018-08-09
JP2019064918A (ja) 2019-04-25
JP6479202B2 (ja) 2019-03-06
US20180264443A1 (en) 2018-09-20
WO2017057751A1 (ja) 2017-04-06
KR20180064437A (ko) 2018-06-14
CN108349728B (zh) 2021-12-24
US20220372625A1 (en) 2022-11-24
JP6786638B2 (ja) 2020-11-18

Similar Documents

Publication Publication Date Title
CN108349728A (zh) 碳纳米管的制造装置和制造方法
CN104995134B (zh) 生产碳纳米结构的方法及装置
US8137653B1 (en) System and method for producing carbon nanotubes
US8551413B2 (en) System and method for producing carbon nanotubes
JP2001192204A (ja) カーボンナノコイルの製造方法
CN101707904A (zh) 碳纳米管成膜方法、成膜装置及碳纳米管薄膜
KR20190138832A (ko) 탄소나노튜브의 단일 스테이지 연속제조 장치 및 방법
JP6230071B2 (ja) 熱交換式反応管
JP2010173889A (ja) カーボンナノチューブの製造装置、およびカーボンナノチューブの製造方法
JP2004076196A (ja) カーボンナノファイバーの製造方法及び装置
Zolotarenko et al. Effect of the nature of the reactor wall material on morphology and structure of products resulted from arc graphite sputtering
JP3404543B1 (ja) カーボンナノチューブの製造方法
CN1960942B (zh) 原料喷射式碳纳米结构体制造方法及装置
KR20120108049A (ko) Cnt의 제조
JP6256073B2 (ja) 反応管及び触媒担持方法
KR100933030B1 (ko) 탄소나노튜브 제조장치 및 그 방법
KR101016031B1 (ko) 탄소나노튜브 합성 장치
Sano et al. Selective formation of Fe-included carbon nanocapsules and nanotubes by fall-to-stop pyrolysis reactor with ferrocene
Onundi et al. Growth of carbon nanomaterials on granular activated carbon
Sehrawat et al. Floating catalyst chemical vapour deposition (FCCVD) for direct spinning of CNT aerogel: A review
Saleh et al. Development a method for production of carbon nanotubes
JP5269037B2 (ja) カーボンナノ構造物製造方法及び装置
SKOROHOD et al. EFFECT OF THE NATURE OF THE REACTOR WALL MATERIAL ON MORPHOLOGY AND STRUCTURE OF PRODUCTS RESULTED FROM ARC GRAPHITE SPUTTERING AD ZOLOTARENKO, AF SAVENKO, AN ANTROPOV, MI MAYSTRENKO, A. YU. VLASENKO, VK PISHUK
JP2013189338A (ja) ナノカーボン製造装置
JP2011162421A (ja) カーボンナノ構造物の製造方法及びカーボンナノ構造物製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant