CN108120729A - Ct检查系统和ct成像方法 - Google Patents

Ct检查系统和ct成像方法 Download PDF

Info

Publication number
CN108120729A
CN108120729A CN201711451912.0A CN201711451912A CN108120729A CN 108120729 A CN108120729 A CN 108120729A CN 201711451912 A CN201711451912 A CN 201711451912A CN 108120729 A CN108120729 A CN 108120729A
Authority
CN
China
Prior art keywords
detection
detection device
radiation source
source device
goes out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711451912.0A
Other languages
English (en)
Other versions
CN108120729B (zh
Inventor
康克军
李荐民
倪秀琳
李玉兰
李元景
陈志强
张丽
李亮
邹湘
喻卫丰
周合军
宗春光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Nuctech Co Ltd
Original Assignee
Tsinghua University
Nuctech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Nuctech Co Ltd filed Critical Tsinghua University
Priority to CN201711451912.0A priority Critical patent/CN108120729B/zh
Publication of CN108120729A publication Critical patent/CN108120729A/zh
Priority to PCT/CN2018/120339 priority patent/WO2019128704A1/zh
Priority to US16/234,625 priority patent/US10935691B2/en
Priority to PL19150074.3T priority patent/PL3505977T3/pl
Priority to EP19150074.3A priority patent/EP3505977B1/en
Application granted granted Critical
Publication of CN108120729B publication Critical patent/CN108120729B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

本发明涉及CT检测技术领域,特别涉及一种CT检查系统和CT成像方法。本发明所提供的CT检查系统,包括放射源装置、探测装置、旋转监控装置和成像装置,其中:探测装置获取探测数据的频率为放射源装置出束频率的N倍;旋转监控装置检测探测装置的旋转角度并在探测装置每旋转预设角度时向成像装置发送信号;成像装置根据旋转监控装置所发送的信号以及探测装置的探测数据确定放射源装置每次出束时探测装置的转动位置信息,并基于放射源装置每次出束时探测装置的探测数据及转动位置信息生成CT图像。本发明能够较为准确地确定放射源装置每次出束时探测装置的转动位置信息,从而可以有效减少图像形变,提高检测结果的准确性。

Description

CT检查系统和CT成像方法
技术领域
本发明涉及CT检测技术领域,特别涉及一种CT检查系统和CT成像方法。
背景技术
除了被应用于医疗领域,CT检查系统还被广泛应用于物品检测等技术领域,且不仅能够检测行包及航空箱等较小物品,还能够检测集装箱和车辆等较大物品。工作时,CT检查系统利用其产生高能X射线的辐射源和能接收穿过待检物X射线的探测装置对待检物进行扫描,根据X射线强度变化,来反映待检物密度分布变化,并将射线强度变化转换成图像灰度,获得待检物的透视图像。
现有的CT检查系统,其放射源和探测装置通常对待检物进行转动扫描,并且,在转动过程中,通常存在加速度,即,通常进行非匀速转动扫描。基于目前的常规图像采集方案,重构处的CT图像存在形变,影响检测结果的准确性。
发明内容
本发明所要解决的一个技术问题是:现有的对待检物进行非匀速转动扫描的CT检查系统所重构的CT图像存在形变,检测结果准确性较差。
为了解决上述技术问题,本发明第一方面提供了一种CT检查系统,其包括放射源装置、探测装置、旋转监控装置和成像装置,其中:
放射源装置和探测装置在对待检物进行扫描的至少部分过程中同步地进行非匀速转动,且探测装置获取探测数据的频率为放射源装置出束频率的N倍,N大于或等于2;
旋转监控装置检测探测装置的旋转角度并在探测装置每旋转预设角度时向成像装置发送信号;
成像装置根据旋转监控装置所发送的信号以及探测装置的探测数据确定放射源装置每次出束时探测装置的转动位置信息,并基于放射源装置每次出束时探测装置的探测数据及转动位置信息生成CT图像。
可选地,成像装置根据旋转监控装置所发送的信号、探测装置的探测数据以及放射源装置的出束信息确定放射源装置每次出束时探测装置的转动位置信息。
可选地,成像装置包括信息处理装置和图像处理装置,信息处理装置接收旋转监控装置所发送的信号及探测装置的探测数据并基于旋转监控装置所发送的信号及探测装置的探测数据确定放射源装置每次出束时探测装置的转动位置信息,图像处理装置则基于放射源装置每次出束时探测装置的探测数据及转动位置信息生成CT图像。
可选地,信息处理装置还获取放射源装置的出束信息,且信息处理装置基于旋转监控装置所发送的信号、探测装置的探测数据以及放射源装置的出束信息确定放射源装置每次出束时探测装置的转动位置信息。
可选地,成像装置根据探测装置在旋转监控装置每发送相邻两个信号之间的探测数据确定放射源装置每次出束时探测装置的转动位置信息。
可选地,CT检查系统还包括倍频装置,倍频装置对放射源装置的出束频率进行N倍倍频,探测装置基于倍频装置倍频后的频率获取探测数据,以使探测装置获取探测数据的频率为放射源装置出束频率的N倍。
可选地,旋转监控装置包括位置检测装置,位置检测装置检测探测装置在扫描过程中的转动角度,根据位置检测装置的检测结果,旋转监控装置在探测装置每旋转预设角度时向成像装置发送信号。
可选地,旋转监控装置还包括旋转控制装置,根据位置检测装置的检测结果,旋转控制装置并在探测装置每旋转预设角度时向成像装置发送信号。
可选地,旋转控制装置还控制放射源装置和探测装置的旋转速度和/或对放射源装置进行出束控制。
本发明第二方面还提供了一种CT成像方法,其包括以下步骤:
利用扫描装置的放射源装置和探测装置的配合对待检物进行扫描,放射源装置和探测装置在扫描的至少部分过程中进行非匀速转动;
利用旋转监控装置检测探测装置的旋转角度并在探测装置每旋转预设角度时向成像装置发送信号;
利用成像装置根据旋转监控装置所发送的信号以及探测装置的探测数据确定放射源装置每次出束时探测装置的转动位置信息,并利用成像装置基于放射源装置每次出束时探测装置的探测数据及转动位置信息生成CT图像。
本发明所提供的CT检查系统,其在放射源装置、探测装置、旋转监控装置和成像装置的配合作用下,能够较为准确地确定放射源装置每次出束时探测装置的转动位置信息,从而相对于传统的图像采集方案,可以有效减少图像形变,提高检测结果的准确性。
通过以下参照附图对本发明的示例性实施例进行详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出本发明一实施例的CT检查系统的结构示意图。
图2示出图1所示CT检查系统的图像生成原理图。
图中:
1、放射源装置;2、探测装置;3、支架;41、位置检测装置;42、旋转控制装置;51、倍频装置;52、信息处理装置;53、图像处理装置;a、待检物。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有开展创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
成像装置对图像进行重构时,需要知道所获取到的探测装置的数据是在哪个位置上获得的。现有CT检查系统的成像装置,只能在扫描装置匀速转动时,根据旋转速度及起始位置,判断出每一次的探测装置数据的位置,而对于存在非匀速转动的扫描过程,却无法再有效确定所获取到的探测装置数据与实际位置的对应关系,以致于会造成CT重构图像出现形变,增加识别难度,甚至可能导致无法判图。
为了解决上述技术问题,本发明提供了一种CT检查系统。图1-2示出了本发明CT检查系统的一个实施例。
参照图1-2,本发明所提供的CT检查系统包括放射源装置1、探测装置2、旋转监控装置和成像装置,其中:放射源装置1和探测装置2在对待检物a进行扫描的至少部分过程中同步地进行非匀速转动,且探测装置2获取探测数据的频率为放射源装置1出束频率的N倍,N大于或等于2;旋转监控装置检测探测装置2的旋转角度并在探测装置2每旋转预设角度时向成像装置发送信号;成像装置根据旋转监控装置所发送的信号以及探测装置2的探测数据确定放射源装置1每次出束时探测装置2的转动位置信息,并基于放射源装置1每次出束时探测装置2的探测数据及转动位置信息生成CT图像。
在本发明中,CT检查系统的探测装置2不再与放射源装置1等频率地获取探测数据,而是以放射源装置1出束频率的N倍频率获取探测数据,且CT检查系统中设置旋转监控装置在探测装置2每旋转预设角度时向成像装置发送信号,使得成像装置可以基于探测数据和旋转监控装置所发送的信号来较为准确地获知探测装置2在放射源装置1每次出束时的实际转动位置,从而成像装置可以不受非匀速转动扫描过程的影响,重构生成形变较小、甚至没有形变的CT图像,进而降低识别难度,提高检测结果准确性。
如前所述,成像装置对图像进行重构时,需要知道探测装置所获取的探测数据具体是在哪个位置上获得的,而在非匀速转动扫描过程中,现有CT检查系统无法有效确定探测装置2在放射源装置1出束时的实际转动位置,以致于会造成图像变形。虽然单独增设旋转监控装置对探测装置2的转动角度进行检测,相对于不设置旋转监控装置的情况,可以粗略确定探测装置2在放射源装置1出束时的实际转动位置,在一定程度上减少图像变形,但由于旋转监控装置检测精度等原因的限制,导致并非探测装置2每旋转预设角度时放射源装置1恰好出束,也即并非旋转监控装置每次发送信号时所对应的角度位置恰好为探测装置2获取放射源装置1出束时的探测数据(简称为有用探测数据)的实际角度位置,因此,仅基于旋转监控装置的信号仍有可能无法准确获知探测装置2在放射源装置1每次出束时的实际转动位置,以致于仍然会引起图像变形问题。
例如,可能在旋转监控装置发送信号之前或之后,放射源装置1才发出射线(即出束),探测装置2才真正获取有用探测数据,也即,探测装置2可能在转动至旋转监控装置所发送相邻两个信号之间的角度位置时才获取有用探测数据,此时若仍直接将旋转监控装置发送信号时的角度位置作为探测装置2获取有用探测数据的实际位置,则显然存在误差,影响图像真实性。
而本发明的CT检查系统,其不仅设有旋转监控装置,还将探测装置2设置为不再与放射源装置1等频率地获取探测数据,而是以N倍出束频率获取探测数据,使得在放射源装置1每次出束时,探测装置2可以不再只获取一组探测数据,而是可以获取N组探测数据,其中包括放射源装置1出束时对应的有用探测数据和放射源装置1实际未出束时对应的无用探测数据,由于探测数据增多,因此,旋转监控装置在探测装置2每旋转预设角度时所发送的每个信号可以对应更多的探测数据,使得多组探测数据可以将探测装置2每次旋转的预设角度分成多份儿,甚至当探测数据足够多时,即N的数量足够大时,可以认为多组探测数据均分探测装置2每次旋转的预设角度,这就便于成像装置更准确地确定放射源装置1每次出束时探测装置2的实际转动位置,提高探测装置2在放射源装置1每次出束时实际位置的确定精度,而无需再受限于旋转监控装置的检测精度等实际条件的制约。
例如,在本发明中,成像装置可以根据探测装置2在旋转监控装置每发送相邻两个信号之间的探测数据确定放射源装置1每次出束时探测装置2的转动位置信息。如前所述,探测装置2获取有用探测数据时可能恰好转动至旋转监控装置发送相邻两个信号之间的某个角度位置,因此,将成像装置设置为根据探测装置2在旋转监控装置每发送相邻两个信号之间的探测数据来确定放射源装置1每次出束时探测装置2的转动位置信息,准确度更高。其中,由于探测装置2在每次出束时获取N组探测数据,因此,旋转监控装置每发送相邻两个信号之间不止存在一组探测数据,而是存在多组探测数据,这多组探测数据可以对相邻两个角度信号之间的转动角度(即预设转动角度)进行细分,使得其中有用探测数据所对应的角度位置精度更高,因此,可以降低确定放射源装置1每次出束时探测装置2实际转动位置时的误差,更准确地确定探测装置2每次获取有用探测数据时的实际空间位置,进而更有效地减少图像变形,提高检测结果准确性。
作为本发明成像装置的一种实施方式,成像装置可以包括信息处理装置52和图像处理装置53,信息处理装置52接收旋转监控装置所发送的信号及探测装置2的探测数据,并基于旋转监控装置所发送的信号及探测装置2的探测数据确定放射源装置1每次出束时探测装置2的转动位置信息;图像处理装置53则基于放射源装置1每次出束时探测装置2的探测数据及转动位置信息生成CT图像。这样,在信息处理装置52和图像处理装置53的配合作用下,成像装置可以方便准确地确定探测装置2在放射源装置1每次出束时的转动位置信息并生成形变较小、甚至没有形变的CT图像。而且,由于放射源装置1每次出束时探测装置2的探测数据及转动位置信息由信息处理装置52确定,而无需图像处理装置53确定,因此,图像处理装置53的结构较为简单,相对于现有的图像处理装置53无需做过多改变,有利于节约成本,降低改进难度。
其中,信息处理装置52还可以进一步设置为:能够获取放射源装置1的出束信息,且基于旋转监控装置所发送的信号、探测装置2的探测数据以及放射源装置1的出束信息确定放射源装置1每次出束时探测装置2的转动位置信息。在该设置中,成像装置不仅可以获取旋转监控装置所发送的信号及探测装置2的探测数据,还同时可以获取放射源装置1的出束信息,由于根据放射源装置1是否出束,可以确定探测装置所获取的数据是否为有用探测数据,即是否为放射源装置1实际出束时对应的探测数据,因此,便于成像装置确定放射源装置1每次出束时的探测数据,并进而便于成像装置结合旋转监控装置所发送的信号及探测装置2的探测数据来确定放射源装置1每次出束时探测装置2的转动位置信息。
在本发明中,为了方便探测装置2以N倍出束频率来获取探测数据,即为了使探测装置2获取探测数据的频率为放射源装置1出束频率的N倍,CT检查系统可以还包括倍频装置52,倍频装置52对放射源装置1的出束频率进行N倍倍频,探测装置2基于倍频装置52倍频后的频率获取探测数据。通过设置倍频装置52对出束频率进行倍频并将倍频后的出束频率传送至探测装置2,可以方便地使探测装置2在放射源装置1每次出束时获取N组探测数据,增多探测数据数量,提高探测装置2在放射源装置1每次出束时实际位置的确定精度;并且,无需对探测装置2的已有结构进行过多改变,相对于通过改变探测装置2自身结构来使探测装置2以N倍出束频率获取探测数据的情况,实现难度更低。
下面结合图1-2所示的实施例来对本发明进行进一步地说明。
如图1-2所示,在该实施例中,CT检查系统包括扫描装置、成像装置、旋转监控装置、倍频装置51和支架3。
其中,扫描装置用于对待检物a进行扫描,其包括放射源装置1和探测装置2。放射源装置1用于产生穿透待检物a的X射线。探测装置2用于接收穿过待检物的X射线,并将所接收到的X射线转换为可供记录的电信号(即探测数据),以供成像装置生成CT图像使用。
如图1所示,该实施例的扫描装置设置在支架3上,并包括放射源装置1和探测装置2。支架3呈圆环状。放射源装置1和探测装置2均设置在支架3上,且放射源装置1与探测装置2相对设置,以便于探测装置2能够充分接收对应的放射源装置1所发出的X射线。支架3的中部空间形成待检物a的通过通道。待检物a从圆环中间穿过,放射源装置1发射X射线穿透待检物a,且穿透待检物a的X射线射至与放射源装置1相对的探测装置2上。具体地,由图1可知,在该实施例中,待检物a为集装箱。每次扫描时,待检物a的一个切面置于通过通道中,以待扫描装置对待检物a的相应切面进行扫描。每完成一个切面的扫描,待检物a被CT检查系统的牵引装置牵引至下一个切面位置位于通过通道中,以便完成下一个切面的扫描。如此继续,直至完成整个待检物a的扫描。
放射源装置1可以采用X光机或者加速器。该实施例以加速器作为放射源装置1。探测装置2包括探测器阵列结构。另外,虽然图1中仅示出一组放射源装置1和探测装置2,但应当理解,扫描装置也可以包括两组以上放射源装置1和探测装置2。
在该实施例中,扫描装置往复摆动地对待检物a进行扫描。具体地,对待检物a进行扫描时,放射源装置1会从起始位置开始,顺时针旋转到终止位置。在该顺时针旋转过程中,放射源装置1一直出束,完成一个切面的断层扫描。之后,牵引装置(图中未示出)可以根据用户需求,拖动待检物a运动至下一个切面位置。此时,放射源装置1会再从终止位置开始,逆时针旋转回到起始位置。在该逆时针旋转过程中,放射源装置1也一直出束,从而完成下一个切面的断层扫描。
在放射源装置1往复摆动的过程中,探测装置2也同步地进行往复摆动,这样,放射源装置1产生的射线束流覆盖在对应探测装置2上的位置能够始终保持不变,有利于保证探测装置2接收到放射源装置1发出的射线束流,确保扫描装置扫描功能的顺利实现。
由于在上述往复摆动的过程中,放射源装置1和探测装置2均存在加速度,例如摆动开始阶段存在加速过程,摆动结束阶段又存在减速过程,因此,该实施例的扫描装置在每次扫描过程中均存在非匀速的转动过程。如果按照传统的图像采集方案,成像装置重构出的CT图像会存在形变。因此,为了使成像装置能够准确地重构CT图像,减少图像变形,该实施例在CT检查系统中增设了倍频装置51和旋转监控装置,并对成像装置进行了改进。在倍频装置51、旋转监控装置和成像装置的配合下,该实施例的CT检查系统能够较为准确地获知探测装置2在放射源装置1每次出束时的实际转动位置,并基于放射源装置1每次出束时探测装置2的探测数据及转动位置信息重构CT图像,减少图像变形。
下面重点对该实施例的倍频装置51、旋转监控装置和成像装置予以说明。
倍频装置51用于对放射源装置1的出束频率进行倍频,并将倍频后的出束频率发送给探测装置2,以便于探测装置2根据倍频后的出束频率获取探测数据,增加探测装置2在放射源装置1每次出束时所获取的探测数据数量,便于提高探测装置2在出束时实际位置的确定精度。具体地,在该实施例中,倍频装置51可以将放射源装置1的出束脉冲倍频100倍,即,在该实施例中,N为100,这样,每次放射源装置1出束时,探测装置2不再获取一组探测数据,而是获取100组探测数据,其中包括1组对应放射源装置1实际出束时的有用探测数据和99组对应放射源装置1未真正出束时的无用探测数据,探测数据数量为倍频前的100倍,探测数据数量有效增加。
在扫描过程中,无需考虑探测装置2当前的旋转位置和旋转速度,而是可以利用探测装置2直接按照倍频后的出束频率获取探测数据,并将每个倍频后的出束频率下获取到的探测数据全部发送至成像装置,再由成像装置从中确定放射源装置1每次出束时探测装置2的探测数据(即有用探测数据)及转动位置信息,这样无需对现有探测装置2进行过多改变,成本较低。
旋转监控装置用于检测探测装置2的旋转角度并在探测装置2每旋转预设角度时向成像装置发送信号,以便于成像装置确定探测装置2在放射源装置1每次出束时的实际角度位置。如图2所示,在该实施例中,旋转监控装置包括位置检测装置41和旋转控制装置42。其中,位置检测装置41检测探测装置2在扫描过程中的转动角度;而旋转控制装置42则基于位置检测装置41的检测结果在探测装置2每旋转预设角度时向成像装置发送信号。
虽然在其他实施例中,也可以不由旋转控制装置42在探测装置2每旋转预设角度时向成像装置发送信号,而直接由位置检测装置41在探测装置2每旋转预设角度时向成像装置发送信号,但该实施例利用旋转控制装置42在探测装置2每旋转预设角度时向成像装置发送信号的好处在于,可以简化位置检测装置41的结构,使位置检测装置41和旋转控制装置42的分工更明确,基于二者的配合更高效地确定探测装置2的实时角度位置信息。
具体地,在该实施例中,位置检测装置41可以采用旋转位移传感器,实时检测探测装置2的转动位移,并将检测结果反馈给旋转控制装置42。当然,位置检测装置41也可以采用其他传感器,甚至其他检测部件。旋转控制装置42则获取位置检测装置41所检测得到的探测装置2的旋转角度,通过计算,得到探测装置2的实时转动位置,并在探测装置2每旋转预设角度时向成像装置发送信号。其中,旋转控制装置42在探测装置2每旋转预设角度时所发送的信号可以为高电平信号,这样,成像装置只需判断高电平信号的数量,即可判断当前收到的探测装置2的旋转角度信息。另外,预设角度在该实施例中设定为0.0001°,但应当理解,预设角度具体可以根据实际需求进行调整。
而且,该实施例的旋转控制装置42还设置为能够对整个CT检查系统进行协调控制,例如其可以对放射源装置1进行出束控制,或者还可以对放射源装置1和探测装置2的旋转速度及图像采集时序等进行控制。
成像装置用于获取旋转监控装置所发送的信号、探测装置2的数据以及放射源装置1的出束信息,并对所获取的信息进行处理,确定放射状装置1每次出束时探测装置2的探测数据及转动位置信息,并重构生成CT图像。如图2所示,该实施例的成像装置包括信息处理装置52和图像处理装置53。其中,信息处理装置52获取旋转监控装置所发送的信号、探测装置2的全部探测数据以及放射源装置1的出束信息,并基于所获取的旋转监控装置所发送的信号、探测装置2的探测数据以及放射源装置1的出束信息确定放射源装置1每次出束时探测装置2的探测数据和转动位置信息,且将所确定的放射源装置1每次出束时探测装置2的探测数据及转动位置信息传递至图像处理装置53;图像处理装置53则基于信息处理装置52所传递的放射源装置1每次出束时探测装置2的探测数据及转动位置信息重构生成CT图像。
基于所获取的放射源装置1的出束信息,信息处理装置52能够判断放射源装置1是否出束,并能够进一步区别探测装置2所获取的探测数据中的有用探测数据及无用探测数据;而基于旋转监控装置所发送的信号以及探测装置2在旋转监控装置每发送的相邻两个信号之间所获取的探测数据数量,信息处理装置52可以确定相邻两个旋转监控装置电平信号之间的多组探测数据对每个预设旋转角度的细分程度,从而确定探测装置2旋转预设角度过程中每组探测数据各自对应的探测装置2的旋转角度;进而,结合信息处理装置52所确定的有用探测数据在相邻两个旋转监控装置电平信号之间的多组探测数据中所处的数据序列,即可确定探测装置2获取有用探测数据时的转动位置信息,方便高效,且准确度较高。
为了更清楚地示出信息处理装置52确定探测装置2获取有用探测数据时的转动位置信息的原理,此处以预设角度为0.0001°、相邻两个旋转监控装置电平信号间的探测数据数量为100组、且有用探测数据为其中第30组数据为例进行说明。由于预设角度为0.0001°,因此,旋转监控装装置每发送相邻两个电平信号的过程中,探测装置2对应旋转0.0001°,而由于该过程中探测装置2共获取100组探测数据,因此,可以认为这100组探测数据均分这0.0001°,即可以认为每组探测数据对应探测装置2旋转经过0.0001°/100,即0.000001°,那么作为第30组数据的有用探测数据则对应探测装置2旋转经过0.0001°/100*30,即0.00003°,进而由相邻两个电平信号中在先的那个电平信号对应的探测装置2的角度加上0.00003°,即可获得探测装置2获得有用探测数据时所转动到达的角度位置,精度较高,结果较为准确。
如图2所示,在CT检查系统工作过程中,放射源装置1按照出束频率发出射线,由倍频装置51进行倍频,且放射源装置1是否出束等信息实时传递至信息处理装置52;而探测装置2则基于倍频装置51倍频后的出束脉冲获取探测数据,并全部发送至信息处理装置52;同时,可以由位置检测装置41实时检测探测装置2的位置信息,并由旋转控制装置42基于位置检测装置41的检测结果,对整个CT检查系统进行协调控制,包括对反射源装置1和探测装置2的旋转控制、对放射源装置1的出束控制、以及对图像采集的时序控制等,且由旋转控制装置42在探测装置2每旋转预设角度0.0001°时向信息处理装置52发送电平信号;信息处理装置52接收到放射源装置1的出束信息、探测装置2的探测数据及旋转监控装置的电平信号之后,确定探测装置2的有效探测数据及探测装置2在获取有效探测数据时所处的转动位置,并将探测装置2的有效探测数据及探测装置2在获取有效探测数据时所处的转动位置一起发送给图像处理装置53;图像处理装置53基于探测装置2的有效探测数据及相应转动位置信息,重构生成CT图像。
由于在倍频装置51、旋转监控装置及信息处理装置52的配合作用下,信息处理装置52可以更高精度地确定探测装置2在获取有效探测数据时所处的转动位置,实现有效探测数据与探测装置2实际位置信息更准确地匹配,使得图像处理装置53无需再受非匀速转动扫描过程的影响,也无需再受旋转监控装置检测精度的制约,而能够生成变形较小、甚至没有变形的图像,有效解决现有技术中非匀速转动扫描时重构CT图像的变形问题。
并且,由于信息处理装置52只将确定后的探测装置2的有效探测数据及探测装置2在获取有效探测数据时所处位置信息发送给图像处理装置53,而不将所有探测数据传递给图像处理装置53,因此,可以有效减少图像处理装置53所处理的数据量,加快图像生成效率,提高图像生成可靠性。
综上可知,本发明的CT检查系统,可以有效解决现有技术中非匀速转动扫描时重构CT图像的变形问题,且结构较为简单,改进成本较低。
利用本发明的CT检查系统进行检测时,检测精度较高,检测结果的可识别性更好。因此,本发明另一方面还提供了一种CT成像方法,其包括以下步骤:
利用扫描装置的放射源装置1和探测装置2的配合对待检物a进行扫描,放射源装置1和探测装置2在扫描的至少部分过程中进行非匀速转动;
利用旋转监控装置检测探测装置2的旋转角度并在探测装置2每旋转预设角度时向成像装置发送信号;
利用成像装置根据旋转监控装置所发送的信号以及探测装置2的探测数据确定放射源装置1每次出束时探测装置2的转动位置信息,并利用成像装置基于放射源装置1每次出束时探测装置2的探测数据及转动位置信息生成CT图像。
本发明的CT成像方法,在扫描装置进行非匀速转动扫描过程中,能够基于旋转监控装置所检测到的旋转角度及出束频率倍频后探测装置2所获取的更多的探测数据,较为准确地确定放射源装置1每次出束时探测装置2的转动位置信息,使得放射源装置1每次出束时探测装置2的探测数据与转动位置可以更真实地对应,因此,能够有效减少图像变形,提高检测准确性。
以上所述仅为本发明的示例性实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种CT检查系统,其特征在于,包括放射源装置(1)和探测装置(2)、旋转监控装置和成像装置,其中:
所述放射源装置(1)和探测装置(2)在对待检物(a)进行扫描的至少部分过程中同步地进行非匀速转动,且所述探测装置(2)获取探测数据的频率为所述放射源装置(1)出束频率的N倍,N大于或等于2;
所述旋转监控装置检测所述探测装置(2)的旋转角度并在所述探测装置(2)每旋转预设角度时向所述成像装置发送信号;
所述成像装置根据所述旋转监控装置所发送的信号以及所述探测装置(2)的探测数据确定所述放射源装置(1)每次出束时所述探测装置(2)的转动位置信息,并基于所述放射源装置(1)每次出束时所述探测装置(2)的探测数据及转动位置信息生成CT图像。
2.根据权利要求1所述的CT检查系统,其特征在于,所述成像装置根据所述旋转监控装置所发送的信号、所述探测装置(2)的探测数据以及所述放射源装置(1)的出束信息确定所述放射源装置(1)每次出束时所述探测装置(2)的转动位置信息。
3.根据权利要求1所述的CT检查系统,其特征在于,所述成像装置包括信息处理装置(52)和图像处理装置(53),所述信息处理装置(52)接收所述旋转监控装置所发送的信号及所述探测装置(2)的探测数据并基于所述旋转监控装置所发送的信号及所述探测装置(2)的探测数据确定所述放射源装置(1)每次出束时所述探测装置(2)的转动位置信息,所述图像处理装置(53)则基于所述放射源装置(1)每次出束时所述探测装置(2)的探测数据及转动位置信息生成CT图像。
4.根据权利要求3所述的CT检查系统,其特征在于,所述信息处理装置(52)还获取所述放射源装置(1)的出束信息,且所述信息处理装置(52)基于所述旋转监控装置所发送的信号、所述探测装置(2)的探测数据以及所述放射源装置(1)的出束信息确定所述放射源装置(1)每次出束时所述探测装置(2)的转动位置信息。
5.根据权利要求1所述的CT检查系统,其特征在于,所述成像装置根据所述探测装置(2)在所述旋转监控装置每发送相邻两个信号之间的探测数据确定所述放射源装置(1)每次出束时所述探测装置(2)的转动位置信息。
6.根据权利要求1-5任一所述的CT检查系统,其特征在于,所述CT检查系统还包括倍频装置(52),所述倍频装置(52)对所述放射源装置(1)的出束频率进行N倍倍频,所述探测装置(2)基于所述倍频装置(52)倍频后的频率获取探测数据,以使所述探测装置(2)获取探测数据的频率为所述放射源装置(1)出束频率的N倍。
7.根据权利要求1-5任一所述的CT检查系统,其特征在于,所述旋转监控装置包括位置检测装置(41),所述位置检测装置(41)检测所述探测装置(2)在扫描过程中的转动角度,根据所述位置检测装置(41)的检测结果,所述旋转监控装置在所述探测装置(2)每旋转预设角度时向所述成像装置发送信号。
8.根据权利要求7所述的CT检查系统,其特征在于,所述旋转监控装置还包括旋转控制装置(42),根据所述位置检测装置(41)的检测结果,所述旋转控制装置(42)并在所述探测装置(2)每旋转预设角度时向所述成像装置发送信号。
9.根据权利要求8所述的CT检查系统,其特征在于,所述旋转控制装置(42)还控制所述放射源装置(1)和所述探测装置(2)的旋转速度和/或对所述放射源装置(1)进行出束控制。
10.一种CT成像方法,其特征在于,包括以下步骤:
利用扫描装置的放射源装置(1)和探测装置(2)的配合对待检物(a)进行扫描,所述放射源装置(1)和探测装置(2)在扫描的至少部分过程中进行非匀速转动;
利用旋转监控装置检测所述探测装置(2)的旋转角度并在所述探测装置(2)每旋转预设角度时向成像装置发送信号;
利用成像装置根据所述旋转监控装置所发送的信号以及所述探测装置(2)的探测数据确定所述放射源装置(1)每次出束时所述探测装置(2)的转动位置信息,并利用所述成像装置基于所述放射源装置(1)每次出束时所述探测装置(2)的探测数据及转动位置信息生成CT图像。
CN201711451912.0A 2017-12-28 2017-12-28 Ct检查系统和ct成像方法 Active CN108120729B (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201711451912.0A CN108120729B (zh) 2017-12-28 2017-12-28 Ct检查系统和ct成像方法
PCT/CN2018/120339 WO2019128704A1 (zh) 2017-12-28 2018-12-11 Ct检查系统和ct成像方法
US16/234,625 US10935691B2 (en) 2017-12-28 2018-12-28 CT inspection system and CT imaging method for obtaining detection data at a frequency that is N times a beam-emitting frequency of a radioactive source device
PL19150074.3T PL3505977T3 (pl) 2017-12-28 2019-01-02 Układ do kontroli CT oraz sposób obrazowania CT
EP19150074.3A EP3505977B1 (en) 2017-12-28 2019-01-02 Ct inspection system and ct imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711451912.0A CN108120729B (zh) 2017-12-28 2017-12-28 Ct检查系统和ct成像方法

Publications (2)

Publication Number Publication Date
CN108120729A true CN108120729A (zh) 2018-06-05
CN108120729B CN108120729B (zh) 2024-04-02

Family

ID=62231980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711451912.0A Active CN108120729B (zh) 2017-12-28 2017-12-28 Ct检查系统和ct成像方法

Country Status (5)

Country Link
US (1) US10935691B2 (zh)
EP (1) EP3505977B1 (zh)
CN (1) CN108120729B (zh)
PL (1) PL3505977T3 (zh)
WO (1) WO2019128704A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019128523A1 (zh) * 2017-12-28 2019-07-04 清华大学 Ct检查系统和ct成像方法
WO2019128704A1 (zh) * 2017-12-28 2019-07-04 清华大学 Ct检查系统和ct成像方法
CN116095932A (zh) * 2021-11-05 2023-05-09 同方威视技术股份有限公司 成像系统中光机出束控制方法、装置、ct成像系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010055362A1 (en) * 2000-06-22 2001-12-27 Tetsuyuki Takanashi X-ray CT apparatus
CN1738572A (zh) * 2003-01-17 2006-02-22 西门子公司 X射线断层仪及x射线断层仪持续操作方法
CN101683271A (zh) * 2008-09-28 2010-03-31 清华大学 X射线ct设备、图像重建方法和x射线成像方法
CN103472074A (zh) * 2013-06-19 2013-12-25 清华大学 Ct成像系统和方法
WO2014154188A1 (en) * 2013-03-26 2014-10-02 Institute Of Experimental And Applied Physics Method of phase gradient radiography and arrangement of an imaging system for application of the method
CN104198506A (zh) * 2014-08-27 2014-12-10 清华大学 小角度自摆式大型多层螺旋ct设备和检查方法
CN104749197A (zh) * 2013-12-26 2015-07-01 清华大学 Ct系统及其方法
CN105451655A (zh) * 2013-09-02 2016-03-30 株式会社日立医疗器械 X射线摄影装置和x射线透视图像显示方法
CN207816864U (zh) * 2017-12-28 2018-09-04 清华大学 Ct检查系统

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221338A (ja) 1986-03-24 1987-09-29 横河メディカルシステム株式会社 放射線断層撮像装置におけるスキャンデ−タ収集方法
JP3597918B2 (ja) * 1995-09-11 2004-12-08 株式会社日立メディコ X線ct装置
US6233308B1 (en) * 1999-03-19 2001-05-15 General Electric Company Methods and apparatus for artifact compensation with variable angular sampling
JP4164282B2 (ja) * 2002-04-16 2008-10-15 キヤノン株式会社 放射線撮影装置、放射線撮影方法及びコンピュータプログラム
US7813473B2 (en) * 2002-07-23 2010-10-12 General Electric Company Method and apparatus for generating temporally interpolated projections
US6882703B2 (en) * 2002-07-31 2005-04-19 Ge Medical Systems Global Technology Company, Llc Electron source and cable for x-ray tubes
DE10336278A1 (de) * 2003-08-07 2005-03-10 Siemens Ag Verfahren und Vorrichtung zur Abbildung eines Organs
DE102005049603B4 (de) * 2005-10-17 2010-09-16 Siemens Ag Verfahren und Vorrichtung zur Abbildung eines Organs
WO2007111669A2 (en) * 2005-12-22 2007-10-04 Visen Medical, Inc. Combined x-ray and optical tomographic imaging system
US7817773B2 (en) * 2007-01-05 2010-10-19 Dexela Limited Variable speed three-dimensional imaging system
US7724866B2 (en) * 2007-06-27 2010-05-25 Analogic Corporation Method of and system for variable pitch computed tomography scanning for baggage screening
JP5273957B2 (ja) * 2007-07-03 2013-08-28 キヤノン株式会社 放射線画像撮影装置
US7936858B2 (en) * 2007-09-28 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method for tomosynthesis
US8044681B2 (en) * 2007-10-08 2011-10-25 General Electric Company Apparatus and method for channel-specific configuration in a readout ASIC
US9420974B2 (en) * 2008-06-06 2016-08-23 Koninklijke Philips N.V. Method and apparatus for attenuation correction
CN102112054B (zh) * 2008-08-04 2014-07-02 皇家飞利浦电子股份有限公司 数据采集
US7881426B2 (en) * 2009-02-26 2011-02-01 Morpho Detection, Inc. Method and system for performing a scan of an object
DE102009031549A1 (de) * 2009-07-02 2011-01-05 Siemens Aktiengesellschaft Medizinisches Bildaufnahmeverfahren und zugehörige Vorrichtung
JP5458771B2 (ja) * 2009-09-24 2014-04-02 株式会社島津製作所 放射線断層像撮影装置
US8451972B2 (en) * 2009-10-23 2013-05-28 Arineta Ltd. Methods, circuits, devices, apparatus, assemblies and systems for computer tomography
FI123899B (fi) * 2009-11-25 2013-12-13 Planmeca Oy Hammaslääketieteellinen tietokonetomografialaitteisto
FI125450B (fi) * 2009-11-25 2015-10-15 Planmeca Oy Hammaslääketieteellinen tietokonetomografialaitteisto
US9848835B2 (en) * 2010-08-16 2017-12-26 Varian Medical Systems International Ag Variable-speed computed tomography scanning
JP5758155B2 (ja) * 2011-03-10 2015-08-05 株式会社東芝 X線ct装置
US9538976B2 (en) * 2011-07-28 2017-01-10 The Board Of Trustees Of The Leland Stanford Junior University Modulating gantry rotation speed and image acquisition in respiratory correlated (4D) cone beam CT images
DE102012212124B4 (de) * 2012-07-11 2018-06-14 Siemens Healthcare Gmbh Zählender digitaler Röntgendetektor und Verfahren zur Aufnahme einer Serie von Röntgenbildern
DE102012217555A1 (de) * 2012-09-27 2014-03-27 Siemens Aktiengesellschaft Verfahren und Computertomographie-System zur Ermittlung von Knochenmineraldichtewerten
WO2014184714A1 (en) * 2013-05-16 2014-11-20 Koninklijke Philips N.V. Imaging detector
JP5937552B2 (ja) * 2013-09-09 2016-06-22 富士フイルム株式会社 放射線撮影システムおよびその作動方法
JP6050206B2 (ja) * 2013-09-17 2016-12-21 富士フイルム株式会社 放射線撮影システム及び通信環境制御装置
CN104510486B (zh) * 2013-09-30 2021-04-20 Ge医疗系统环球技术有限公司 计算机化断层扫描设备及其机架旋转控制装置和方法
KR102201407B1 (ko) * 2013-11-18 2021-01-12 삼성전자주식회사 엑스선 영상장치 및 그 제어방법
JP6071853B2 (ja) * 2013-11-26 2017-02-01 富士フイルム株式会社 放射線画像処理装置、方法およびプログラム
CN103767725B (zh) * 2013-12-31 2016-06-29 沈阳东软医疗系统有限公司 一种用于平衡ct机架的方法和装置
JP6215449B2 (ja) * 2014-03-14 2017-10-18 株式会社日立製作所 X線ct装置、及び処理装置
JP6178272B2 (ja) * 2014-03-24 2017-08-09 株式会社東芝 放射線計測装置、および放射線計測プログラム
JP6280851B2 (ja) * 2014-09-30 2018-02-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線断層撮影装置及びプログラム
JP6490974B2 (ja) * 2015-01-30 2019-03-27 キヤノンメディカルシステムズ株式会社 医用画像診断装置、医用画像診断方法および医用画像診断プログラム
WO2017013896A1 (ja) * 2015-07-17 2017-01-26 コニカミノルタ株式会社 放射線画像撮影装置および放射線画像撮影システム
DE102015217617A1 (de) * 2015-09-15 2017-03-16 Siemens Healthcare Gmbh Verfahren zum Korrigieren von Röntgenbilddaten umfassend Information bezüglich eines Zerfallsprozesses eines radioaktiven Materials
JP6668717B2 (ja) * 2015-12-04 2020-03-18 コニカミノルタ株式会社 放射線撮影装置及び放射線撮影システム
JP6780291B2 (ja) * 2016-05-16 2020-11-04 コニカミノルタ株式会社 X線画像撮影装置
US10561391B2 (en) * 2016-08-18 2020-02-18 General Electric Company Methods and systems for computed tomography
JP2018175700A (ja) * 2017-04-20 2018-11-15 キヤノンメディカルシステムズ株式会社 医用画像診断装置、医用画像処理装置、及び医用画像処理プログラム
CN108120729B (zh) * 2017-12-28 2024-04-02 清华大学 Ct检查系统和ct成像方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010055362A1 (en) * 2000-06-22 2001-12-27 Tetsuyuki Takanashi X-ray CT apparatus
CN1738572A (zh) * 2003-01-17 2006-02-22 西门子公司 X射线断层仪及x射线断层仪持续操作方法
CN101683271A (zh) * 2008-09-28 2010-03-31 清华大学 X射线ct设备、图像重建方法和x射线成像方法
WO2014154188A1 (en) * 2013-03-26 2014-10-02 Institute Of Experimental And Applied Physics Method of phase gradient radiography and arrangement of an imaging system for application of the method
CN103472074A (zh) * 2013-06-19 2013-12-25 清华大学 Ct成像系统和方法
CN105451655A (zh) * 2013-09-02 2016-03-30 株式会社日立医疗器械 X射线摄影装置和x射线透视图像显示方法
CN104749197A (zh) * 2013-12-26 2015-07-01 清华大学 Ct系统及其方法
CN104198506A (zh) * 2014-08-27 2014-12-10 清华大学 小角度自摆式大型多层螺旋ct设备和检查方法
CN207816864U (zh) * 2017-12-28 2018-09-04 清华大学 Ct检查系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019128523A1 (zh) * 2017-12-28 2019-07-04 清华大学 Ct检查系统和ct成像方法
WO2019128704A1 (zh) * 2017-12-28 2019-07-04 清华大学 Ct检查系统和ct成像方法
US11327198B2 (en) 2017-12-28 2022-05-10 Tsinghua University CT inspection system and CT imaging method for a reciprocating swinging process of a radioactive source device and a detection device around an object at non-uniform speed to collect effective detection data
CN116095932A (zh) * 2021-11-05 2023-05-09 同方威视技术股份有限公司 成像系统中光机出束控制方法、装置、ct成像系统
CN116095932B (zh) * 2021-11-05 2024-05-24 同方威视技术股份有限公司 成像系统中光机出束控制方法、装置、ct成像系统

Also Published As

Publication number Publication date
EP3505977A1 (en) 2019-07-03
EP3505977B1 (en) 2023-11-29
US10935691B2 (en) 2021-03-02
PL3505977T3 (pl) 2024-04-22
US20190204243A1 (en) 2019-07-04
CN108120729B (zh) 2024-04-02
WO2019128704A1 (zh) 2019-07-04

Similar Documents

Publication Publication Date Title
US4580054A (en) Method and apparatus for locating a point in a three-dimensional body using images of the body from a plurality of angular positions
CN100333692C (zh) X射线计算机断层造影系统、信息处理方法和存储媒体
CN101248458B (zh) 高约束图像重构方法
CN105828719B (zh) X射线成像装置
EP2273257A1 (en) Imaging system using a straight-line trajectory scan and method thereof
CN108120729A (zh) Ct检查系统和ct成像方法
CN100536777C (zh) 用于计算机断层摄影的动态剂量控制
JP2011053210A (ja) 断層写真法画像における運動補正
CN104224233B (zh) 影像引导型弹性检测系统及其检测方法
US4176279A (en) Tomograph for producing transverse layer images
CN106466188A (zh) 用于发射断层显像定量的系统和方法
CN110167447A (zh) 用于快速和自动超声探头校准的系统和方法
CN103501700B (zh) 计算机断层摄影(ct)数据采集
US20070073148A1 (en) Ultrasound diagnostic system and method for rotating ultrasound image
CN207816864U (zh) Ct检查系统
CN110536639A (zh) 用于确定射线照相系统中的sid与患者厚度的方法和系统
CN110133014A (zh) 一种芯片内部缺陷检测方法及系统
EP2029021A2 (en) Systems and methods for determining object position
CN207816865U (zh) Ct检查系统
CN206573504U (zh) 多视角背散射检查系统
CN108226195A (zh) Ct检查系统和ct成像方法
US9311707B2 (en) System and method for attenuation correction of phantom images
CN109975802A (zh) 基于毫米波的反射变换成像系统及缺陷检测方法
CN106094005A (zh) 一种辐射探测测量和成像方法及变结构pet设备
CN101304688B (zh) 用于产生图像的信号处理单元

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant