WO2019128523A1 - Ct检查系统和ct成像方法 - Google Patents

Ct检查系统和ct成像方法 Download PDF

Info

Publication number
WO2019128523A1
WO2019128523A1 PCT/CN2018/115845 CN2018115845W WO2019128523A1 WO 2019128523 A1 WO2019128523 A1 WO 2019128523A1 CN 2018115845 W CN2018115845 W CN 2018115845W WO 2019128523 A1 WO2019128523 A1 WO 2019128523A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
scanning
detection
inspection system
image
Prior art date
Application number
PCT/CN2018/115845
Other languages
English (en)
French (fr)
Inventor
倪秀琳
李荐民
谭海田
李玉兰
喻卫丰
李元景
周合军
陈志强
宗春光
张丽
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Publication of WO2019128523A1 publication Critical patent/WO2019128523A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/226Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays using tomography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • A61B6/035Mechanical aspects of CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4447Tiltable gantries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/401Imaging image processing

Definitions

  • the present disclosure relates to the field of CT detection technologies, and in particular, to a CT inspection system and a CT imaging method.
  • CT inspection systems are widely used in technical fields such as article inspection, and can detect not only small items such as bags and air boxes, but also large items such as containers and vehicles.
  • the CT inspection system uses the radiation source that generates high-energy X-rays and the detection device that can receive the X-rays passing through the object to be inspected to scan the object, and reflects the change in the density distribution of the object to be detected according to the change in the intensity of the X-rays, and The ray intensity change is converted into an image gradation to obtain a fluoroscopic image of the object to be inspected.
  • the radiation source and the detecting device usually perform rotational scanning of the object to be inspected, and during the rotation, there is usually an acceleration, that is, a non-uniform rotational scanning is usually performed.
  • the CT image at the reconstruction has deformation, which affects the accuracy of the detection results.
  • the existing CT image reconstructed by the CT inspection system for non-uniform rotational scanning of the specimen has deformation, and the accuracy of the detection result is poor.
  • a first aspect of the present disclosure provides a CT inspection system including a scanning device and an imaging device, wherein: the scanning device has a radiation source device and a detection device and scans at least a portion of the object to be inspected The non-uniform rotation is performed in the process; the imaging device generates a CT image based on the detected data, and the detected data is data acquired by the detecting device every time the preset angle is rotated.
  • the CT inspection system further includes a rotation monitoring device that detects a rotation angle of the scanning device and transmits a signal to the imaging device every time the detecting device rotates by a predetermined angle, and the imaging device determines the detection according to the signal sent by the rotation monitoring device. data.
  • a rotation monitoring device that detects a rotation angle of the scanning device and transmits a signal to the imaging device every time the detecting device rotates by a predetermined angle, and the imaging device determines the detection according to the signal sent by the rotation monitoring device. data.
  • the rotation monitoring device comprises a position detecting device and a rotation control device, wherein the position detecting device detects a position of the scanning device during the scanning of the object to be inspected, and based on the detection result of the position detecting device, the rotation control device determines the rotation angle of the scanning device And sending a signal to the imaging device each time the scanning device rotates by a predetermined angle.
  • the imaging device comprises a data selection device and an image processing device
  • the data acquisition device acquires the detection data and transmits the detection data to the image processing device
  • the image processing device reconstructs and generates the CT based on the detection data transmitted by the data selection device. image.
  • the rotation monitoring device of the CT inspection system sends a signal to the data selection device every time the detection device rotates the preset angle, and the data selection device transmits the data of the detection device corresponding to the signal of the rotation monitoring device as the detection data to the detection data.
  • Image processing device the rotation monitoring device of the CT inspection system sends a signal to the data selection device every time the detection device rotates the preset angle, and the data selection device transmits the data of the detection device corresponding to the signal of the rotation monitoring device as the detection data to the detection data.
  • the data selection device includes a data acquisition device and an image acquisition device.
  • the data acquisition device acquires all data of the detection device
  • the image collection device selects the detection data from all the data of the detection device acquired by the data acquisition device to the image processing. Device.
  • the rotation monitoring device of the CT inspection system sends a signal to the data acquisition device every time the detection device rotates by a preset angle, and the data acquisition device transmits the signal of the received rotation monitoring device to the image acquisition device, and the image acquisition device The data of the detecting device corresponding to the signal of the rotation monitoring device is transmitted as probe data to the image processing device.
  • the data selection device comprises a data acquisition device and an image acquisition device, and the data acquisition device acquires the detection data and transmits the detection data to the image processing device via the image acquisition device.
  • the rotation monitoring device of the CT inspection system sends a signal to the data acquisition device every time the detection device rotates by a preset angle, and the data acquisition device acquires the data of the detection device as the detection data and detects the signal when receiving the signal of the rotation monitoring device.
  • the data is passed to the image processing device via the image capture device.
  • a second aspect of the present disclosure also provides a CT imaging method, comprising the steps of:
  • the CT image is generated by the imaging device based on the data of the detecting device at each rotation of the preset angle.
  • the CT inspection system provided by the present disclosure has an imaging apparatus that generates a CT image based on data of the detection apparatus every time a predetermined angle is rotated. Compared with the conventional image acquisition scheme, the image deformation can be reduced, and the accuracy of the detection result can be improved.
  • Fig. 1 is a schematic block diagram showing the structure of a CT inspection system according to an embodiment of the present disclosure.
  • Fig. 2 is a diagram showing the image generation principle of the CT inspection system shown in Fig. 1.
  • Radioactive source device 2. Detection device; 3. Bracket; 41, position detecting device; 42, rotation control device; 51, data acquisition device; 52, image acquisition device; 53, image processing device; .
  • the imaging device of the existing CT inspection system can only judge the position of the data of each detection device according to the rotation speed and the starting position when the scanning device rotates at a constant speed, but cannot detect the scanning process with non-uniform rotation.
  • the correspondence between the acquired probe device data and the actual position is determined, so that the CT reconstructed image is deformed, the recognition difficulty is increased, and even the graph cannot be determined.
  • Figures 1-2 illustrate one embodiment of a CT inspection system of the present disclosure.
  • the CT inspection system includes a scanning device and an imaging device, wherein the scanning device has the radiation source device 1 and the detecting device 2 and performs non-uniform speed during at least part of scanning the object to be inspected a. Rotating; the imaging device generates a CT image based on the detected data, the detected data being data acquired by the detecting device 2 every time the preset angle is rotated.
  • the imaging device of the CT inspection system no longer adopts the conventional image acquisition scheme, but generates a CT image based on the data (ie, the probe data) of the detection device 2 every time the preset angle is rotated, which causes the imaging device to be reconstructed.
  • the detection data based on the CT image is the data of the detecting device capable of accurately knowing the actual position, so that the imaging device can be reconstructed without the influence of the non-uniform rotating scanning process, and the CT image without deformation is generated, thereby reducing the recognition difficulty and improving the recognition. The accuracy of the test results.
  • the image forming apparatus may include a data picking apparatus and an image processing apparatus 53, the data picking apparatus acquires the sounding data and delivers the sounding data to the image processing apparatus 53, and the image processing apparatus 53 is based on the data.
  • the detection data transmitted by the selection device is reconstructed to generate a CT image.
  • the imaging device can conveniently generate a CT image based on the detected data.
  • the CT inspection system may further include a rotation monitoring device that detects a rotation angle of the scanning device and transmits a signal to the imaging device every time the detection device 2 rotates by a predetermined angle The imaging device determines the probe data based on the signal transmitted by the rotation monitoring device.
  • the imaging device can identify whether the data of the corresponding detecting device 2 is based on whether the data of the detecting device 2 is bound with the signal of the rotation monitoring device.
  • the detection data is simple and convenient, and the detection accuracy of the detection data is high.
  • the rotation monitoring device can transmit a signal to the data acquisition device every time the detection device 2 rotates the preset angle, and the data selection device will The data of the detecting device 2 corresponding to the signal of the rotation monitoring device is transmitted as probe data to the image processing device 53. Based on this, the data selection device can determine the data of the detecting device 2 bound with the signal transmitted by the rotation monitoring device as the probe data, and provide the image processing device 53 with the CT image for reconstruction, which is convenient and efficient.
  • the CT inspection system includes a scanning device, an imaging device, a rotation monitoring device, and a stand 3.
  • the scanning device is used for scanning the object to be inspected, which includes the radiation source device 1 and the detecting device 2.
  • the radiation source device 1 is for generating X-rays that penetrate the object to be inspected a.
  • the detecting device 2 is configured to receive X-rays passing through the object to be inspected and convert the received X-rays into electrical signals that can be recorded for use by the imaging device to generate CT images.
  • the scanning device of this embodiment is disposed on a stand 3 and includes a source device 1 and a detecting device 2.
  • the bracket 3 has an annular shape.
  • the radiation source device 1 and the detecting device 2 are both disposed on the holder 3, and the radiation source device 1 is disposed opposite to the detecting device 2, so that the detecting device 2 can sufficiently receive the X-rays emitted by the corresponding source device 1.
  • the middle space of the holder 3 forms a passage passage of the object to be inspected a.
  • the object to be detected a passes through the middle of the ring, the radiation source device 1 emits X-rays to penetrate the object to be detected a, and the X-rays penetrating the object to be detected a are incident on the detecting device 2 opposite to the source device 1.
  • the object to be inspected a is a container.
  • a cut surface of the object to be inspected is placed in the passage through the passage, and the corresponding section of the object to be inspected a to be scanned is scanned.
  • the test object a is pulled by the traction device of the CT inspection system to the next cut surface position in the passage passage to complete the scan of the next cut surface. This continues until the entire scan of the object a is completed.
  • the radiation source device 1 can employ an X-ray machine or an accelerator. This embodiment uses an accelerator as the radiation source device 1.
  • the detecting device 2 employs a detector array structure. In addition, although only one set of the radiation source device 1 and the detecting device 2 is shown in FIG. 1, it should be understood that the scanning device may also include two or more sets of the radiation source device 1 and the detecting device 2.
  • the scanning device scans the object to be inspected abruptly. Specifically, when the object to be inspected is scanned, the source device 1 starts from the start position and rotates clockwise to the end position. During this clockwise rotation, the source device 1 is always out of the beam, completing a tomographic scan of the slice. Thereafter, the traction device (not shown) can drag the object to be inspected to the next slice position according to the user's needs. At this time, the source device 1 starts again from the end position and rotates counterclockwise back to the home position. During this counterclockwise rotation, the source device 1 is also always out of the bundle, thereby completing the tomographic scan of the next slice.
  • the detecting device 2 also synchronously oscillates back and forth, so that the position of the beam generated by the source device 1 covering the corresponding detecting device 2 can be kept constant at all times, which is advantageous for ensuring
  • the detecting device 2 receives the beam of light emitted by the source device 1 to ensure the smooth realization of the scanning function of the scanning device.
  • both the radiation source device 1 and the detecting device 2 have an acceleration during the above-described reciprocating oscillation, for example, there is an acceleration process at the start of the swing, and there is a deceleration process at the end of the swing, therefore, the scanning device of this embodiment is in each scanning process. There is a non-uniform rotation process in both.
  • the CT image reconstructed by the imaging device may be deformed. Therefore, in order to enable the imaging apparatus to accurately reconstruct the CT image and reduce image distortion, this embodiment improves the imaging apparatus and adds a rotation monitoring apparatus. With the cooperation of the rotation monitoring device, the imaging device of this embodiment can reconstruct the CT image based on the detection data (i.e., the data of the detecting device 2 every time the preset angle is rotated).
  • the imaging device and the rotation monitoring device of the embodiment will be mainly described below.
  • the rotation monitoring device is for detecting a rotation angle of the scanning device and transmitting a signal to the imaging device every time the detection device 2 rotates by a predetermined angle, so that the imaging device recognizes the detection data and generates a CT image based on the detection data.
  • the rotation monitoring device includes a position detecting device 41 and a rotation control device 42.
  • the position detecting device 41 detects the position of the scanning device during the scanning of the object to be inspected a; and the rotation controlling device 42 determines the rotation angle of the scanning device based on the detection result of the position detecting device 41 and rotates the preset angle for each rotation of the scanning device.
  • the signal is sent to the imaging device.
  • the position detecting device 41 may employ a rotational displacement sensor to detect in real time how much displacement the scanning device has rotated relative to the starting position, and feed back the detection result to the rotation control device 42.
  • the position detecting device 41 can also employ other sensors, even other detecting components.
  • the rotation control device 42 acquires the position information of the scanning device detected by the position detecting device 41, and obtains the current rotation angle corresponding to the scanning device by calculation.
  • the rotation control device 42 can control the rotation of the scanning device, and send a signal to the imaging device every time the scanning device rotates the preset angle, so that the imaging device distinguishes the data of the detecting device 2 at each preset rotation angle (ie, the detection data) ) with other data.
  • the signal sent by the rotation control device 42 when the detection device 2 rotates by a preset angle may be a high level signal, so that the imaging device only needs to determine whether the data of the detection device 2 is bound to the high level signal, Determine whether the corresponding data is probe data.
  • the preset angle is set to 0.0001° in this embodiment, but it should be understood that the preset angle may be specifically adjusted according to actual requirements.
  • the imaging device is configured to acquire and acquire data of the detecting device 2, process the acquired acquired data, and reconstruct and generate a CT image.
  • the image forming apparatus of this embodiment includes a data picking device and an image processing device 53, and the data picking device includes a data acquiring device 51 and an image capturing device 52.
  • the data acquisition device 51 acquires all the data of the detection device 2; the image acquisition device 52 selects the detection data from all the data of the detection device 2 acquired by the data acquisition device 51 to the image processing device 53; the image processing device 53 is based on the image
  • the probe data transmitted by the acquisition device 52 is reconstructed to generate a CT image.
  • the data acquisition device 51 since the probe data is recognized by the image capture device 52 and the acquisition device 51 does not recognize the probe data, the data acquisition device 51 does not need to know the current rotational position and speed of the probe device 2, but only needs to follow the trigger pulse given by the accelerator. The data of the detecting device 2 acquired under each pulse is all recorded and transmitted to the image collecting device 52. Therefore, the structure of the data acquiring device 51 is relatively simple, the control is convenient, and the existing data acquiring device is not needed. 51 too much change, the cost is lower.
  • the image acquisition device 52 of this embodiment recognizes the detection data based on the signal of the rotation monitoring device when the detection device 2 rotates by a predetermined angle, that is, in this embodiment, the image acquisition device 52 selects the probe data from all the data of the probe device 2 acquired by the data acquisition device 51 according to the signal when the rotation detecting device rotates the preset angle every time the detecting device 2 rotates.
  • the rotation monitoring device transmits a signal to the data acquisition device 51 every time the detection device 2 rotates by a predetermined angle, and the data acquisition device 51 transmits the signal of the received rotation monitoring device.
  • the image pickup device 52 transmits the data of the probe device 2 corresponding to the signal of the rotation monitoring device to the image processing device 53 as probe data.
  • the rotation control device 42 sends a level signal to the data acquisition device 51, and the data acquisition device 51 will receive the received rotation control device 42.
  • the level signal is sent to the image acquisition device 52 together with the acquired data of the corresponding time detection device 2, and the image acquisition device 52 performs the tradeoff of the data of the detection device 2 according to the level signal, wherein the image acquisition device 52 only The data of the detecting device 2 to which the high level signal is bound is determined as the probe data.
  • the image capture device 52 can package all of the probe data and provide them to the image processing device 53 together.
  • the image processing device 53 then performs CT image reconstruction based on the probe data provided by the image capture device 52.
  • the imaging device reconstructs the CT image based on the data, which can reduce the deformation of the CT image and improve the accuracy of the detection result. Sex.
  • the detection data can also be no longer recognized by the image acquisition device 52, but directly acquired by the data acquisition device 51, ie, the data acquisition device 51 no longer acquires all the data of the detection device 2, but The probe data is directly acquired, and the probe data is transmitted to the image processing device 53 via the image capture device 52.
  • the image capture device 52 has the function of transmitting the probe data to the image processing device 53, and no longer has the function of identifying the probe data.
  • the data acquiring device 51 can identify the probe data according to the signal sent by the rotation monitoring device when the detecting device 2 rotates the preset angle.
  • the rotation monitoring device may send a signal to the data acquisition device 51 every time the detection device 2 rotates the preset angle, and the data acquisition device 51 acquires the data of the detection device 2 as the probe data when receiving the signal of the rotation monitoring device and
  • the probe data is transmitted to the image processing device 53 via the image capture device 52.
  • the level signal can be transmitted from the rotation control device 42 to the data acquisition device 51, and the data acquisition device 51 acquires the data of the probe device 2 after receiving the level signal, and via the acquired data as the probe data via The image capture device 52 transmits to the image processing device 53.
  • the CT inspection system of the present disclosure can solve the deformation problem of reconstructing a CT image during non-uniform rotational scanning in the prior art.
  • CT imaging method which includes the following steps:
  • the CT image is generated based on the data of the detecting device 2 every time the preset angle is rotated by the imaging device.
  • the CT image in the non-uniform rotational scanning process of the scanning device, the CT image is no longer generated based on the entire data reconstruction of the detecting device 2, but the CT is generated based on the data of the detecting device 2 every time the preset angle is rotated.
  • Image can reduce image distortion and improve detection accuracy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种CT检查系统和CT成像方法,CT检查系统包括扫描装置和成像装置,其中,扫描装置具有放射源装置(1)和探测装置(2)并在对待检物进行扫描的至少部分过程中进行非匀速转动;成像装置基于探测数据生成CT图像,探测数据为探测装置(2)在每转动预设角度时所获取的数据。

Description

CT检查系统和CT成像方法
本申请是以中国申请号为201711451934.7,申请日为2017年12月28日的申请为基础,并主张其优先权,该中国申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及CT检测技术领域,特别涉及一种CT检查系统和CT成像方法。
背景技术
除了被应用于医疗领域,CT检查系统还被广泛应用于物品检测等技术领域,且不仅能够检测行包及航空箱等较小物品,还能够检测集装箱和车辆等较大物品。工作时,CT检查系统利用其产生高能X射线的辐射源和能接收穿过待检物X射线的探测装置对待检物进行扫描,根据X射线强度变化,来反映待检物密度分布变化,并将射线强度变化转换成图像灰度,获得待检物的透视图像。
现有的CT检查系统,其放射源和探测装置通常对待检物进行转动扫描,并且,在转动过程中,通常存在加速度,即,通常进行非匀速转动扫描。基于目前的常规图像采集方案,重构处的CT图像存在形变,影响检测结果的准确性。现有的对待检物进行非匀速转动扫描的CT检查系统所重构的CT图像存在形变,检测结果准确性较差。
发明内容
为了改善现有技术的缺陷,本公开第一方面提供了一种CT检查系统,其包括扫描装置和成像装置,其中:扫描装置具有放射源装置和探测装置并在对待检物进行扫描的至少部分过程中进行非匀速转动;成像装置基于探测数据生成CT图像,探测数据为探测装置在每转动预设角度时所获取的数据。
可选地,CT检查系统还包括旋转监控装置,旋转监控装置检测扫描装置的旋转角度并在探测装置每旋转预设角度时向成像装置发送信号,成像装置根据旋转监控装置所发送的信号确定探测数据。
可选地,旋转监控装置包括位置检测装置和旋转控制装置,位置检测装置检测扫描装置在对待检物进行扫描过程中的位置,基于位置检测装置的检测结果,旋转控制装置确定扫描装置的旋转角度并在扫描装置每旋转预设角度时向成像装置发送信号。
可选地,成像装置包括数据采选装置和图像处理装置,数据采选装置获取探测数据并将探测数据传递至图像处理装置,图像处理装置基于数据采选装置所传递的探测数据重构生成CT图像。
可选地,CT检查系统的旋转监控装置在探测装置每旋转预设角度时向数据采选装置发送信号,数据采选装置将与旋转监控装置的信号对应的探测装置的数据作为探测数据传递至图像处理装置。
可选地,数据采选装置包括数据获取装置和图像采集装置,数据获取装置获取探测装置的全部数据,图像采集装置从数据获取装置所获取的探测装置的全部数据中选取探测数据传递至图像处理装置。
可选地,CT检查系统的旋转监控装置在探测装置每旋转预设角度时向数据获取装置发送信号,数据获取装置将接收到的旋转监控装置的信号传递至图像采集装置,图像采集装置将与旋转监控装置的信号对应的探测装置的数据作为探测数据传递至图像处理装置。
可选地,数据采选装置包括数据获取装置和图像采集装置,数据获取装置获取探测数据并将探测数据经由图像采集装置传递至图像处理装置。
可选地,CT检查系统的旋转监控装置在探测装置每旋转预设角度时向数据获取装置发送信号,数据获取装置在接收到旋转监控装置的信号时获取探测装置的数据作为探测数据并将探测数据经由图像采集装置传递至图像处理装置。
本公开第二方面还提供了一种CT成像方法,其包括以下步骤:
利用扫描装置的放射源装置和探测装置的配合对待检物进行扫描,扫描装置在扫描的至少部分过程中进行非匀速转动;
利用成像装置基于探测装置在每转动预设角度时的数据生成CT图像。
本公开所提供的CT检查系统,其成像装置基于探测装置在每转动预设角度时的数据生成CT图像,相对于传统的图像采集方案,可以减少图像形变,提高检测结果的准确性。
通过以下参照附图对本公开的示例性实施例进行详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1示出本公开一实施例的CT检查系统的结构示意简图。
图2示出图1所示CT检查系统的图像生成原理图。
图中:
1、放射源装置;2、探测装置;3、支架;41、位置检测装置;42、旋转控制装置;51、数据获取装置;52、图像采集装置;53、图像处理装置;a、待检物。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。基于本公开中的实施例,本领域普通技术人员在没有开展创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
成像装置对图像进行重构时,需要知道所获取到的探测装置的数据是在哪个位置上获得的。现有CT检查系统的成像装置,只能在扫描装置匀速转动时,根据旋转速度及起始位置,判断出每一次的探测装置数据的位置,而对于存在非匀速转动的扫描过程,却无法再确定所获取到的探测装置数据与实际位置的对应关系,以致于会造成CT重构图像出现形变,增加识别难度,甚至可能导致无法判图。
为了解决上述技术问题,本公开提供了一种CT检查系统。图1-2示出了本公开CT检查系统的一个实施例。
参照图1-2,本公开所提供的CT检查系统包括扫描装置和成像装置,其中:扫描装置具有放射源装置1和探测装置2并在对待检物a进行扫描的至少部分过程中进行非匀速转动;成像装置基于探测数据生成CT图像,探测数据为探测装置2在每转动预设角度时所获取的数据。
在本公开中,CT检查系统的成像装置不再采用传统的图像采集方案,而是基于探测装置2在每转动预设角度时的数据(即探测数据)生成CT图像,这使得成像装置重构CT图像时所基于的探测数据都是能够准确获知实际位置的探测装置的数据,从而成 像装置可以不受非匀速转动扫描过程的影响,重构生成没有形变的CT图像,进而降低识别难度,提高检测结果准确性。
作为本公开成像装置的一种实施方式,成像装置可以包括数据采选装置和图像处理装置53,数据采选装置获取探测数据并将探测数据传递至图像处理装置53,图像处理装置53则基于数据采选装置所传递的探测数据重构生成CT图像。这样,在数据采选装置和图像处理装置53的配合作用下,成像装置可以方便地基于探测数据生成CT图像。
在本公开中,为了方便成像装置识别探测数据,CT检查系统可以还进一步包括旋转监控装置,该旋转监控装置检测扫描装置的旋转角度并在探测装置2每旋转预设角度时向成像装置发送信号,成像装置根据旋转监控装置所发送的信号确定探测数据。
由于旋转监控装置在探测装置2每旋转预设角度时向成像装置发送信号,因此,成像装置可以依据探测装置2的数据是否绑定有旋转监控装置的信号来识别相应探测装置2的数据是否为探测数据,简单方便,且探测数据的识别准确性较高。
其中,当成像装置如前所述包括数据采选装置和图像处理装置53时,旋转监控装置可以在探测装置2每旋转预设角度时向数据采选装置发送信号,数据采选装置则将与旋转监控装置的信号对应的探测装置2的数据作为探测数据传递至图像处理装置53。基于此,数据采选装置可以将绑定有旋转监控装置所发送信号的探测装置2的数据确定为探测数据,并提供给图像处理装置53重构CT图像,方便高效。
下面结合图1-2所示的实施例来对本公开进行进一步地说明。
如图1-2所示,在该实施例中,CT检查系统包括扫描装置、成像装置、旋转监控装置和支架3。
其中,扫描装置用于对待检物a进行扫描,其包括放射源装置1和探测装置2。放射源装置1用于产生穿透待检物a的X射线。探测装置2用于接收穿过待检物的X射线,并将所接收到的X射线转换为可供记录的电信号,以供成像装置生成CT图像使用。
如图1所示,该实施例的扫描装置设置在支架3上,并包括放射源装置1和探测装置2。支架3呈圆环状。放射源装置1和探测装置2均设置在支架3上,且放射源装置1与探测装置2相对设置,以便于探测装置2能够充分接收对应的放射源装置1所发出的X射线。支架3的中部空间形成待检物a的通过通道。待检物a从圆环中 间穿过,放射源装置1发射X射线穿透待检物a,且穿透待检物a的X射线射至与放射源装置1相对的探测装置2上。具体地,由图1可知,在该实施例中,待检物a为集装箱。每次扫描时,待检物a的一个切面置于通过通道中,以待扫描装置对待检物a的相应切面进行扫描。每完成一个切面的扫描,待检物a被CT检查系统的牵引装置牵引至下一个切面位置位于通过通道中,以便完成下一个切面的扫描。如此继续,直至完成整个待检物a的扫描。
放射源装置1可以采用X光机或者加速器。该实施例以加速器作为放射源装置1。探测装置2采用探测器阵列结构。另外,虽然图1中仅示出一组放射源装置1和探测装置2,但应当理解,扫描装置也可以包括两组以上放射源装置1和探测装置2。
在该实施例中,扫描装置往复摆动地对待检物a进行扫描。具体地,对待检物a进行扫描时,放射源装置1会从起始位置开始,顺时针旋转到终止位置。在该顺时针旋转过程中,放射源装置1一直出束,完成一个切面的断层扫描。之后,牵引装置(图中未示出)可以根据用户需求,拖动待检物a运动至下一个切面位置。此时,放射源装置1会再从终止位置开始,逆时针旋转回到起始位置。在该逆时针旋转过程中,放射源装置1也一直出束,从而完成下一个切面的断层扫描。
在放射源装置1往复摆动的过程中,探测装置2也同步地进行往复摆动,这样,放射源装置1产生的射线束流覆盖在对应探测装置2上的位置能够始终保持不变,有利于保证探测装置2接收到放射源装置1发出的射线束流,确保扫描装置扫描功能的顺利实现。
由于在上述往复摆动的过程中,放射源装置1和探测装置2均存在加速度,例如摆动开始阶段存在加速过程,摆动结束阶段又存在减速过程,因此,该实施例的扫描装置在每次扫描过程中均存在非匀速的转动过程。如果按照传统的图像采集方案,成像装置重构出的CT图像会存在形变。因此,为了使成像装置能够准确地重构CT图像,减少图像变形,该实施例对成像装置进行了改进,并增设了旋转监控装置。在旋转监控装置的配合下,该实施例的成像装置能够基于探测数据(即探测装置2在每转动预设角度时的数据)重构CT图像。
下面重点对该实施例的成像装置和旋转监控装置进行说明。
旋转监控装置用于检测扫描装置的旋转角度并在探测装置2每旋转预设角度时向成像装置发送信号,以便于成像装置识别探测数据并基于探测数据生成CT图像。如图2所示,在该实施例中,旋转监控装置包括位置检测装置41和旋转控制装置42。 其中,位置检测装置41检测扫描装置在对待检物a进行扫描过程中的位置;而旋转控制装置42则基于位置检测装置41的检测结果确定扫描装置的旋转角度并在扫描装置每旋转预设角度时向成像装置发送信号。
具体地,位置检测装置41可以采用旋转位移传感器,实时检测扫描装置相对于起始位置已经旋转了多少位移,并将检测结果反馈给旋转控制装置42。当然,位置检测装置41也可以采用其他传感器,甚至其他检测部件。旋转控制装置42则获取位置检测装置41所检测得到的扫描装置的位置信息,通过计算,得到扫描装置对应的当前旋转角度。并且,旋转控制装置42能够控制扫描装置旋转,并在扫描装置每旋转预设角度时向成像装置发送一个信号,以便于成像装置区别探测装置2在每旋转预设角度时的数据(即探测数据)与其他数据。其中,旋转控制装置42在探测装置2每旋转预设角度时所发送的信号可以为高电平信号,这样,成像装置只需判断探测装置2的数据是否与高电平信号绑定,则可以判断相应数据是否为探测数据。另外,预设角度在该实施例中设定为0.0001°,但应当理解,预设角度具体可以根据实际要求进行调整。
成像装置用于采集获取探测装置2的数据,并对所采集获取的数据进行处理,重构生成CT图像。如图2所示,该实施例的成像装置包括数据采选装置和图像处理装置53,数据采选装置包括数据获取装置51和图像采集装置52。其中,数据获取装置51获取探测装置2的全部数据;图像采集装置52从数据获取装置51所获取的探测装置2的全部数据中选取探测数据传递至图像处理装置53;图像处理装置53则基于图像采集装置52所传递的探测数据重构生成CT图像。
基于上述设置,由于探测数据由图像采集装置52识别,而获取装置51并不识别探测数据,数据获取装置51无需了解探测装置2当前的旋转位置和速度,而只需按照加速器给出的触发脉冲,把各个脉冲下获取到的探测装置2的数据,全部记录下来,并向图像采集装置52进行发送,因此,数据获取装置51的结构较为简单,控制较为方便,且无需对现有数据获取装置51进行过多改变,成本较低。
具体地,如图2所示,该实施例的图像采集装置52识别探测数据的依据是旋转监控装置在探测装置2每旋转预设角度时的信号,即,在该实施例中,图像采集装置52根据旋转监控装置在探测装置2每旋转预设角度时的信号来从数据获取装置51所获取的探测装置2的全部数据中选取探测数据。
更具体地,由图2可知,在该实施例中,旋转监控装置在探测装置2每旋转预设 角度时向数据获取装置51发送信号,数据获取装置51将接收到的旋转监控装置的信号传递至图像采集装置52,图像采集装置52将与旋转监控装置的信号对应的探测装置2的数据作为探测数据传递至图像处理装置53。这样,在CT检查系统工作过程中,探测装置2每旋转预设角度时,旋转控制装置42会向数据获取装置51发送一个电平信号,数据获取装置51会将所接收到的旋转控制装置42的电平信号与所获取的对应时刻探测装置2的数据一起发送至图像采集装置52,图像采集装置52则会依据电平信号来进行探测装置2的数据的取舍,其中,图像采集装置52只将绑定有高电平信号的探测装置2的数据确定为探测数据。扫描完成之后,图像采集装置52可以将所有的探测数据打包,一起提供给图像处理装置53。图像处理装置53则基于图像采集装置52所提供的探测数据完成CT图像重构。
由于探测数据与实际位置的对应关系不受非匀速转动扫描过程的影响,探测数据的实际位置始终可知,因此,成像装置基于数据重构CT图像,可以减少CT图像的形变,提高检测结果的准确性。
作为上述实施例的一个替代实施例,探测数据也可以不再由图像采集装置52识别,而直接由数据获取装置51获取,即,数据获取装置51不再获取探测装置2的全部数据,而是直接获取探测数据,再将探测数据经由图像采集装置52传递至图像处理装置53。这种情况下,图像采集装置52除了具有向图像处理装置53传递探测数据的作用,不再具有识别探测数据的作用。
其中,数据获取装置51可以依据旋转监控装置在探测装置2每旋转预设角度时所发送的信号来识别探测数据。具体地,旋转监控装置可以在探测装置2每旋转预设角度时向数据获取装置51发送信号,数据获取装置51则在接收到旋转监控装置的信号时获取探测装置2的数据作为探测数据并将探测数据经由图像采集装置52传递至图像处理装置53。更具体地,可以由旋转控制装置42向数据获取装置51发送电平信号,数据获取装置51在接收到该电平信号之后才获取探测装置2的数据,并将所获取的数据作为探测数据经由图像采集装置52发送至图像处理装置53。
综上可知,本公开的CT检查系统,可以解决现有技术中非匀速转动扫描时重构CT图像的变形问题。
基于此,本公开另一方面还提供了一种CT成像方法,其包括以下步骤:
利用扫描装置的放射源装置1和探测装置2的配合对待检物a进行扫描,扫描装置在扫描的至少部分过程中进行非匀速运动;
利用成像装置基于探测装置2在每转动预设角度时的数据生成CT图像。
本公开的CT成像方法,在扫描装置进行非匀速转动扫描过程中,不再基于探测装置2的全部数据重构生成CT图像,而是基于探测装置2在每转动预设角度时的数据生成CT图像,可以减少图像变形,提高检测准确性。
以上所述仅为本公开的示例性实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种CT检查系统,其特征在于,包括扫描装置和成像装置,其中:所述扫描装置具有放射源装置(1)和探测装置(2)并在对待检物(a)进行扫描的至少部分过程中进行非匀速转动;所述成像装置基于探测数据生成CT图像,所述探测数据为所述探测装置(2)在每转动预设角度时所获取的数据。
  2. 根据权利要求1所述的CT检查系统,其特征在于,所述CT检查系统还包括旋转监控装置,所述旋转监控装置检测所述扫描装置的旋转角度并在所述探测装置(2)每旋转预设角度时向所述成像装置发送信号,所述成像装置根据所述旋转监控装置所发送的信号确定所述探测数据。
  3. 根据权利要求2所述的CT检查系统,其特征在于,所述旋转监控装置包括位置检测装置(41)和旋转控制装置(42),所述位置检测装置(41)检测所述扫描装置在对待检物(a)进行扫描过程中的位置,基于所述位置检测装置(41)的检测结果,所述旋转控制装置(42)确定所述扫描装置的旋转角度并在所述扫描装置每旋转预设角度时向所述成像装置发送信号。
  4. 根据权利要求1-3任一所述的CT检查系统,其特征在于,所述成像装置包括数据采选装置和图像处理装置(53),所述数据采选装置获取所述探测数据并将所述探测数据传递至所述图像处理装置(53),所述图像处理装置(53)基于所述数据采选装置所传递的探测数据重构生成CT图像。
  5. 根据权利要求4所述的CT检查系统,其特征在于,所述CT检查系统的旋转监控装置在所述探测装置(2)每旋转预设角度时向所述数据采选装置发送信号,所述数据采选装置将与所述旋转监控装置的信号对应的所述探测装置(2)的数据作为所述探测数据传递至所述图像处理装置(53)。
  6. 根据权利要求4所述的CT检查系统,其特征在于,所述数据采选装置包括数据获取装置(51)和图像采集装置(52),所述数据获取装置(51)获取所述探测装置(2)的全部数据,所述图像采集装置(52)从所述数据获取装置(51)所获取的所述探测装置(2)的全部数据中选取所述探测数据传递至所述图像处理装置(53)。
  7. 根据权利要求6所述的CT检查系统,其特征在于,所述CT检查系统的旋转监控装置在所述探测装置(2)每旋转预设角度时向所述数据获取装置(51)发送信号,所述数据获取装置(51)将接收到的所述旋转监控装置的信号传递至所述图像采 集装置(52),所述图像采集装置(52)将与所述旋转监控装置的信号对应的所述探测装置(2)的数据作为所述探测数据传递至所述图像处理装置(53)。
  8. 根据权利要求4所述的CT检查系统,其特征在于,所述数据采选装置包括数据获取装置(51)和图像采集装置(52),所述数据获取装置(51)获取所述探测数据并将所述探测数据经由所述图像采集装置(52)传递至所述图像处理装置(53)。
  9. 根据权利要求8所述的CT检查系统,其特征在于,所述CT检查系统的旋转监控装置在所述探测装置(2)每旋转预设角度时向所述数据获取装置(51)发送信号,所述数据获取装置(51)在接收到所述旋转监控装置的信号时获取所述探测装置(2)的数据作为所述探测数据并将所述探测数据经由所述图像采集装置(52)传递至所述图像处理装置(53)。
  10. 一种CT成像方法,其特征在于,包括以下步骤:
    利用扫描装置的放射源装置(1)和探测装置(2)的配合对待检物(a)进行扫描,所述扫描装置在扫描的至少部分过程中进行非匀速转动;
    利用成像装置基于所述探测装置(2)在每转动预设角度时的数据生成CT图像。
PCT/CN2018/115845 2017-12-28 2018-11-16 Ct检查系统和ct成像方法 WO2019128523A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711451934.7A CN108226195B (zh) 2017-12-28 2017-12-28 Ct检查系统和ct成像方法
CN201711451934.7 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019128523A1 true WO2019128523A1 (zh) 2019-07-04

Family

ID=62649286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115845 WO2019128523A1 (zh) 2017-12-28 2018-11-16 Ct检查系统和ct成像方法

Country Status (3)

Country Link
US (1) US11327198B2 (zh)
CN (1) CN108226195B (zh)
WO (1) WO2019128523A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108226195B (zh) 2017-12-28 2023-10-13 清华大学 Ct检查系统和ct成像方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11295243A (ja) * 1998-04-14 1999-10-29 Hitachi Ltd X線ctスキャナ装置
CN1238669A (zh) * 1996-11-27 1999-12-15 模拟技术公司 带有不对称检测器系统的螺旋计算的x线断层术
CN201253215Y (zh) * 2008-09-28 2009-06-10 清华大学 X射线ct设备
CN101683271A (zh) * 2008-09-28 2010-03-31 清华大学 X射线ct设备、图像重建方法和x射线成像方法
CN102359971A (zh) * 2011-09-14 2012-02-22 上海英迈吉东影图像设备有限公司 一种实现单源多视角安全检查的方法及系统
CN104799878A (zh) * 2014-01-24 2015-07-29 Ge医疗系统环球技术有限公司 一种设定心脏ct扫描时的机架旋转速率的方法和装置
CN105806858A (zh) * 2014-12-31 2016-07-27 北京固鸿科技有限公司 Ct检测方法和ct设备
US20170045464A1 (en) * 2013-03-07 2017-02-16 Triple Ring Technologies, Inc. Method for controlling x-ray exposure
CN108120729A (zh) * 2017-12-28 2018-06-05 清华大学 Ct检查系统和ct成像方法
CN108226195A (zh) * 2017-12-28 2018-06-29 清华大学 Ct检查系统和ct成像方法
CN207816865U (zh) * 2017-12-28 2018-09-04 清华大学 Ct检查系统
CN207816864U (zh) * 2017-12-28 2018-09-04 清华大学 Ct检查系统

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3597918B2 (ja) * 1995-09-11 2004-12-08 株式会社日立メディコ X線ct装置
US5932874A (en) 1997-10-10 1999-08-03 Analogic Corporation Measurement and control system for controlling system functions as a function of rotational parameters of a rotating device
US6233308B1 (en) * 1999-03-19 2001-05-15 General Electric Company Methods and apparatus for artifact compensation with variable angular sampling
JP2005040582A (ja) * 2003-07-07 2005-02-17 Ge Medical Systems Global Technology Co Llc X線ct撮像方法およびx線ct装置
DE10336278A1 (de) * 2003-08-07 2005-03-10 Siemens Ag Verfahren und Vorrichtung zur Abbildung eines Organs
DE102005049603B4 (de) * 2005-10-17 2010-09-16 Siemens Ag Verfahren und Vorrichtung zur Abbildung eines Organs
JP2007236662A (ja) * 2006-03-09 2007-09-20 Ge Medical Systems Global Technology Co Llc X線ct装置およびそのx線ct画像再構成方法、x線ct画像撮影方法。
JP4733580B2 (ja) * 2006-07-19 2011-07-27 日立アロカメディカル株式会社 X線ct装置
US7817773B2 (en) * 2007-01-05 2010-10-19 Dexela Limited Variable speed three-dimensional imaging system
US7724866B2 (en) 2007-06-27 2010-05-25 Analogic Corporation Method of and system for variable pitch computed tomography scanning for baggage screening
JP5389345B2 (ja) * 2007-10-04 2014-01-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置
JP5142664B2 (ja) * 2007-10-25 2013-02-13 株式会社東芝 X線コンピュータ断層撮影装置
EP2224853A1 (en) * 2007-12-21 2010-09-08 Koninklijke Philips Electronics N.V. Dynamic collimation in cone beam computed tomography to reduce patient exposure
US8693621B2 (en) * 2008-05-01 2014-04-08 Koninklijke Philips N. V. Source and/or detector positioning system
US9420974B2 (en) * 2008-06-06 2016-08-23 Koninklijke Philips N.V. Method and apparatus for attenuation correction
JP2010082428A (ja) * 2008-09-04 2010-04-15 Toshiba Corp X線コンピュータ断層撮影装置
JP5546850B2 (ja) * 2008-12-25 2014-07-09 株式会社東芝 X線診断装置
JP5438984B2 (ja) * 2009-02-06 2014-03-12 株式会社東芝 X線画像診断装置及びx線画像処理方法
US7881426B2 (en) 2009-02-26 2011-02-01 Morpho Detection, Inc. Method and system for performing a scan of an object
JP5512392B2 (ja) * 2009-05-26 2014-06-04 株式会社東芝 X線ct装置及びその磁極位置検出方法
CN201540263U (zh) * 2009-06-30 2010-08-04 同方威视技术股份有限公司 物品检查系统、dr成像装置和ct成像装置
DE102009037478B4 (de) * 2009-08-13 2017-02-02 Siemens Healthcare Gmbh Verfahren zur 3-D-Datenerfassung mit einem Biplan-C-Bogen-System mit Biplan-Akquisitions-Multiplexing
US8451972B2 (en) * 2009-10-23 2013-05-28 Arineta Ltd. Methods, circuits, devices, apparatus, assemblies and systems for computer tomography
JP2012008109A (ja) * 2010-06-24 2012-01-12 Toshiba It & Control Systems Corp Ct装置およびct装置の撮影方法
US9848835B2 (en) * 2010-08-16 2017-12-26 Varian Medical Systems International Ag Variable-speed computed tomography scanning
WO2012046813A1 (ja) * 2010-10-08 2012-04-12 株式会社 日立メディコ X線ct装置
KR101149000B1 (ko) * 2010-12-02 2012-05-23 한국원자력연구원 제한각 이동형 산업용 감마선 단층촬영장치
US8842804B2 (en) * 2011-01-12 2014-09-23 Kabushiki Kaisha Toshiba X-ray computed tomography apparatus
US9025723B2 (en) * 2011-04-04 2015-05-05 Koninklijke Philips N.V. Pre-scan imaging with rotating gantry
US9538976B2 (en) * 2011-07-28 2017-01-10 The Board Of Trustees Of The Leland Stanford Junior University Modulating gantry rotation speed and image acquisition in respiratory correlated (4D) cone beam CT images
CN103889332A (zh) * 2011-09-26 2014-06-25 皇家飞利浦有限公司 对成像系统旋转机架和受试者支撑体的运动控制
JP2013081527A (ja) * 2011-10-06 2013-05-09 Toshiba Corp X線診断装置
FR2982759B1 (fr) * 2011-11-17 2013-11-29 Trophy Appareil de radiologie dentaire panoramique
JP5981129B2 (ja) * 2011-12-01 2016-08-31 東芝メディカルシステムズ株式会社 X線コンピュータ断層撮影装置
JP5940356B2 (ja) * 2012-04-23 2016-06-29 株式会社リガク 3次元x線ct装置、3次元ct画像再構成方法、及びプログラム
JP5815626B2 (ja) * 2013-09-27 2015-11-17 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線断層撮影装置の制御方法及び放射線断層撮影装置並びにプログラム
CN104510486B (zh) * 2013-09-30 2021-04-20 Ge医疗系统环球技术有限公司 计算机化断层扫描设备及其机架旋转控制装置和方法
CN103892863B (zh) * 2013-12-18 2016-01-27 沈阳东软医疗系统有限公司 一种扫描准备控制方法及装置
CN103767725B (zh) * 2013-12-31 2016-06-29 沈阳东软医疗系统有限公司 一种用于平衡ct机架的方法和装置
CN104198506B (zh) * 2014-08-27 2017-11-07 清华大学 小角度自摆式大型多层螺旋ct设备和检查方法
JP6280851B2 (ja) * 2014-09-30 2018-02-14 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー 放射線断層撮影装置及びプログラム
CN104374784B (zh) * 2014-11-05 2017-05-17 同方威视技术股份有限公司 同步定位放射性物质的检查系统和方法
US10016171B2 (en) * 2014-11-12 2018-07-10 Epica International, Inc. Radiological imaging device with improved functionality
US10357222B2 (en) * 2014-12-26 2019-07-23 Hitachi, Ltd. X-ray diagnostic imaging apparatus, monitoring server and anomaly detection method
JP6490974B2 (ja) * 2015-01-30 2019-03-27 キヤノンメディカルシステムズ株式会社 医用画像診断装置、医用画像診断方法および医用画像診断プログラム
US10349909B2 (en) * 2015-06-30 2019-07-16 General Electric Company Systems and methods for flow rate compensated acquisition parameters for medical imaging
CN104921746A (zh) * 2015-07-14 2015-09-23 天津福斯特科技股份有限公司 骨科x射线扫描仪
CN105030267A (zh) * 2015-07-14 2015-11-11 天津福斯特科技股份有限公司 X射线断层扫描仪
KR101892144B1 (ko) * 2015-10-26 2018-08-28 주식회사 바텍 엑스선 영상 촬영장치
US10143427B2 (en) * 2016-01-27 2018-12-04 General Electric Company Segmented direct drive motor for use in a computed tomography system
CN105784737B (zh) * 2016-03-29 2021-06-22 清华大学 集装箱ct检查系统
CN105806658A (zh) 2016-05-13 2016-07-27 国投新疆罗布泊钾盐有限责任公司 卤水下固液两相保真采样装置及方法
US10677943B2 (en) * 2016-12-16 2020-06-09 Smiths Detection, Llc System and method for monitoring a computed tomography imaging system
CN107072022B (zh) * 2016-12-16 2019-07-02 中国科学院深圳先进技术研究院 X射线断层扫描方法及系统
US10722188B2 (en) * 2017-05-18 2020-07-28 Canon Medical Systems Corporation X-ray CT apparatus

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238669A (zh) * 1996-11-27 1999-12-15 模拟技术公司 带有不对称检测器系统的螺旋计算的x线断层术
JPH11295243A (ja) * 1998-04-14 1999-10-29 Hitachi Ltd X線ctスキャナ装置
CN201253215Y (zh) * 2008-09-28 2009-06-10 清华大学 X射线ct设备
CN101683271A (zh) * 2008-09-28 2010-03-31 清华大学 X射线ct设备、图像重建方法和x射线成像方法
CN102359971A (zh) * 2011-09-14 2012-02-22 上海英迈吉东影图像设备有限公司 一种实现单源多视角安全检查的方法及系统
US20170045464A1 (en) * 2013-03-07 2017-02-16 Triple Ring Technologies, Inc. Method for controlling x-ray exposure
CN104799878A (zh) * 2014-01-24 2015-07-29 Ge医疗系统环球技术有限公司 一种设定心脏ct扫描时的机架旋转速率的方法和装置
CN105806858A (zh) * 2014-12-31 2016-07-27 北京固鸿科技有限公司 Ct检测方法和ct设备
CN108120729A (zh) * 2017-12-28 2018-06-05 清华大学 Ct检查系统和ct成像方法
CN108226195A (zh) * 2017-12-28 2018-06-29 清华大学 Ct检查系统和ct成像方法
CN207816865U (zh) * 2017-12-28 2018-09-04 清华大学 Ct检查系统
CN207816864U (zh) * 2017-12-28 2018-09-04 清华大学 Ct检查系统

Also Published As

Publication number Publication date
CN108226195A (zh) 2018-06-29
CN108226195B (zh) 2023-10-13
EP3505978A1 (en) 2019-07-03
US11327198B2 (en) 2022-05-10
US20190204242A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP3014453B2 (ja) 生体部位の画像生成表示装置
US20120330154A1 (en) Medical examination and/or treatment device
WO2019128704A1 (zh) Ct检查系统和ct成像方法
JP2009142300A (ja) X線ct装置、及びスキャン計画作成方法
US20110150175A1 (en) Apparatus and method for spectral projection imaging with fast kv switching
JPH062131B2 (ja) X線ctスキヤナ
JP2017225484A (ja) 医用画像診断装置
JP2010500553A (ja) 画像データを取得するシステム及び方法
CN107505340A (zh) 一种陶瓷艺术品鉴定方法
WO2019128523A1 (zh) Ct检查系统和ct成像方法
CN102626318A (zh) X射线成像方法
US8600000B2 (en) Device and method for a mammography apparatus
CN105030267A (zh) X射线断层扫描仪
US20130030288A1 (en) Image diagnosis apparatus including x-ray image tomosynthesis device and photoacoustic image device and image diagnosis method using the same
CN212415753U (zh) 一种dr融合成像系统
CN212658644U (zh) 一种微剂量x光足部探测仪
US8824627B2 (en) X-ray CT scanner and image processing apparatus
CN207816864U (zh) Ct检查系统
CN111537530A (zh) 一种微剂量x光足部探测仪
CN207816865U (zh) Ct检查系统
EP3505978B1 (en) Ct inspection system and ct imaging method
KR101367812B1 (ko) 엑스-선 영상 합성 장치와 광음향 영상 장치를 포함하는 영상 검사 장치 및 그것의 영상 검사 방법
CN205844223U (zh) 一种平移式计算机断层扫描成像系统
JPH09248300A (ja) 高速x線ctスキャナ装置
KR20190127339A (ko) 다중 에너지 엑스선 촬영 장치 및 상기 다중 에너지 엑스선 촬영 장치의 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893893

Country of ref document: EP

Kind code of ref document: A1