CN108083508B - 不锈钢酸洗废液处理回收方法 - Google Patents

不锈钢酸洗废液处理回收方法 Download PDF

Info

Publication number
CN108083508B
CN108083508B CN201711499853.4A CN201711499853A CN108083508B CN 108083508 B CN108083508 B CN 108083508B CN 201711499853 A CN201711499853 A CN 201711499853A CN 108083508 B CN108083508 B CN 108083508B
Authority
CN
China
Prior art keywords
adsorption tank
adsorption
recovering
ceramic particles
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711499853.4A
Other languages
English (en)
Other versions
CN108083508A (zh
Inventor
李彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lan Quanbu
Shanghai Youni Chemical Co ltd
Original Assignee
Huzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huzhou University filed Critical Huzhou University
Priority to CN201711499853.4A priority Critical patent/CN108083508B/zh
Publication of CN108083508A publication Critical patent/CN108083508A/zh
Application granted granted Critical
Publication of CN108083508B publication Critical patent/CN108083508B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/048Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing phosphorus, e.g. phosphates, apatites, hydroxyapatites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/203Iron or iron compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明涉及一种不锈钢酸洗废液处理回收方法,依次包括如下步骤,(1)吸附铬:将酸洗废液通过吸附罐A,吸附罐A内装填有陶瓷颗粒A,陶瓷颗粒A由竹粉和膨润土烧制而成;酸洗废液流出吸附罐A后对吸附罐A进行碱洗脱附,脱附液回收铬;(2)沉淀铁:从吸附罐A流出的液体进入过滤罐,用碱水调节pH值生成氢氧化铁,液体过滤后回收过滤罐内的氢氧化铁;(3)吸附镍:从过滤罐流出的液体进入吸附罐B,吸附罐B内装填有陶瓷颗粒B,陶瓷颗粒B由磷矿粉、膨润土、竹粉烧制而成;酸洗废液流出吸附罐B后对吸附罐B进行碱洗脱附,脱附液回收镍。本发明建立了一种处理成本低廉,又能高效回收铁、铬、镍离子的酸洗废液处理回收方法。

Description

不锈钢酸洗废液处理回收方法
技术领域
本发明涉及重金属废水处理技术领域,主要指适应于不锈钢生产产生的废酸中重金属的处理、废酸废水回用和金属回收工艺技术。
背景技术
废水含有很多污染环境的物质,若不经处理排放会带来很大环境污染,尤其一些工业污水含有重金属离子如铅(II)离子、铜(II)离子、镉(II)离子、砷(III)离子、钴(II)离子、镍(II)离子、锌(II)离子、铬(VI)离子、汞(II)离子,这些重金属是有毒物质,是不可生物降解的,微量就会中毒。金属毒性会造成许多人类疾病,如癌症、神经障碍、器官衰竭、生长下降和腹痛。在生活环境中,像许多制革厂、纺织厂、造纸厂、氯碱厂、电镀厂、不钢厂、肥料厂、火化场、电池制造业和采矿业等行业的废水都含有金属毒性物质。不锈钢酸洗废液主要含铬(VI)离子,镍(II)离子和铁(III)离子,前两种都有毒性,铁(III)离子虽然毒性小,但是含量大,一方面污染环境,另一方面造成资源浪费,同时废水含有大量酸性物质不宜直接排放。
现有技术对不锈钢酸洗废液的处理作了各种尝试。文献CN 102603098B公开了一种不锈钢酸洗废液循环处理方法,其通过调节pH值,并添加各种辅助药剂的的方式将各种金属离子沉淀过滤。文献CN 104787928B公开了一种含铁、铬、镍不锈钢酸洗废液的回收处理方法,其也采用了相同的方式,只是金属离子的沉淀顺序和添加的辅助药剂有所区别。而文献CN 106746036A公开的不锈钢酸洗废水处理系统则综合了pH调节池、浓缩膜装置、收集池、除氟反应池、树脂吸附净化系统,工艺比较复杂。
由于不锈钢废水含铁离子和镍离子的量比较大,采用工艺决定了其成本和效率,目前小型企业处理方法为石灰中和法居多,但是污泥量大,后期处理困难,而且资源浪费。其次,在工厂实际的处理工艺中,pH值很不容易调到准确的数值,导致金属离子的去除率不高。其他方法处理效果好,但成本很高,工艺复杂难于控制,实际应用困难。寻找一种成本低,工艺简单,处理效果好的工艺是目前急需解决的问题。
近年来,膨润土与其他废弃农林材料制备的复合吸附材料取得较大进展,如膨润土、壳聚糖和Fe3O4为原料制得的复合吸附剂对废水中Cu2+的吸附率达98.5%;膨润土-钢渣复合颗粒吸附剂处理含重金属离子酸性矿山废水取得了优良效果。赤泥、粉煤灰和膨润土复合陶粒是酸性废水的良好处理剂。
发明内容
本发明的目的是克服现有技术的不足,提供一种不锈钢酸洗废液处理回收方法,在保证低成本的同时,实现高效回收铁、铬、镍离子的目的。
本发明解决所述技术问题的方案为:
不锈钢酸洗废液处理回收方法,其特征在于:依次包括如下步骤,
(1)吸附铬:将酸洗废液通过吸附罐A,吸附罐A内装填有陶瓷颗粒A,陶瓷颗粒A由竹粉和膨润土烧制而成,根据酸洗废液中铬离子的含量调整陶瓷颗粒A的用量,每100mg/l铬离子装填陶瓷颗粒A 10-15g;酸洗废液流出吸附罐A后对吸附罐A进行碱洗脱附,脱附液回收铬;
(2)沉淀铁:从吸附罐A流出的液体进入过滤罐,将进入过滤罐中的液体用碱水将pH值调节到4-6,生成氢氧化铁,液体过滤后回收过滤罐内的氢氧化铁;
(3)吸附镍:从过滤罐流出的液体进入吸附罐B,吸附罐B内装填有陶瓷颗粒B,陶瓷颗粒B由磷矿粉、膨润土、竹粉烧制而成,根据酸洗废液中镍离子的含量调整陶瓷颗粒B的用量,每100mg/l镍离子装填陶瓷颗粒B 40-45g;酸洗废液流出吸附罐B后对吸附罐B进行碱洗脱附,脱附液回收镍;经过吸附罐B后的液体为去除铬、铁、镍离子的酸液。
作为改进,所述陶瓷颗粒A中竹粉与膨润土的质量比为50-70∶50-30。
作为改进,所述陶瓷颗粒A的粒径为4-6mm。
作为进一步改进,所述吸附罐A采用振荡搅拌工艺,振荡频率为80-100r/min,酸洗废液在吸附罐A中的停留时间为6-8小时。
作为改进,所述陶瓷颗粒B中磷矿粉、膨润土、竹粉的质量比为50-70∶40-20∶10。
作为改进,所述陶瓷颗粒B的粒径为4-6mm。
作为进一步改进,所述吸附罐B采用振荡搅拌工艺,振荡频率为80-100r/min,酸洗废液在吸附罐B中的停留时间为4-6小时。
作为改进,所述经过吸附罐B后的酸液通过补充步骤(2)中减少的酸量后,作为酸洗用酸回用到原生产中。
作为进一步改进,所述步骤(1)和(3)中,碱洗脱附后的碱性水作为步骤(2)中调节pH的碱性用水使用。
作为再进一步改进,所述吸附罐A数量为2个,2个吸附罐A交替作业,其中1个吸附罐A进行吸附作业时,另一个吸附罐A进行碱洗脱附;所述吸附罐B数量为2个,2个吸附罐B交替作业,其中1个吸附罐B进行吸附作业时,另一个吸附罐B进行碱洗脱附。
本发明陶瓷颗粒的制造成本较低,但对铬和镍具有非常强的吸附能力。该方法不仅试剂用量少,而且实现了铁、铬和镍金属氧化物资源的高效回收,并实现原酸洗硝酸和氢氟酸混合酸的回用,洗脱附废水再回用,经济效益显著。更重要的是,采用该方法后,废水排放较少,几乎能做到零排放,社会效益显著。
附图说明
图1为本发明的工艺运行图,其中,实线表示的是铬、镍离子的吸附和铁离子的沉淀以及酸液的循环路线,虚线表示的是铬、镍离子的脱附以及碱液的流向路线。
具体实施方式
以下通过具体工艺和实例进一步说明本发明。
如图1所示,本发明的运行工艺流程为:采用2套吸附罐,吸附罐A和吸附罐B数量均为2个,2套吸附罐可交替作业,其中1个吸附罐A进行吸附作业时,另一个吸附罐A可进行碱洗脱附;其中1个吸附罐B进行吸附作业时,另一个吸附罐B可进行碱洗脱附。该运行工艺的特点是结构简单,吸附率高,单独分立回收效果好,运行成本低,无废液排放,生产效率高。
实施例1
取100ml酸洗废液(含铬,铁和镍分别为439.6mg/l、79010.8mg/l、18486.8mg/l),依次经过如下步骤的处理:
(1)吸附铬:将酸洗废液通过吸附罐A,吸附罐A内装填有陶瓷颗粒A。
陶瓷颗粒A的特征为:a.陶瓷颗粒A由竹粉和膨润土烧制而成,竹粉与膨润土的质量比为50-70∶50-30;b.陶瓷颗粒A的粒径为4-6mm;c.陶瓷颗粒A的制备工艺可参照申请号为201610922374.8的发明创造。
根据酸洗废液中铬离子的含量调整陶瓷颗粒A的用量,每100mg/l铬离子装填陶瓷颗粒A 10-15g,本实施例中陶瓷颗粒A的用量标准为每100mg/l铬离子装填15g陶瓷颗粒A;吸附罐A采用振荡搅拌工艺,振荡频率为80-100r/min,酸洗废液在吸附罐A中的停留时间为6-8小时,本实施例中振荡搅拌8小时。
酸洗废液流出吸附罐A后对吸附罐A进行碱洗脱附,脱附液回收铬。
(2)沉淀铁:从吸附罐A流出的液体进入过滤罐,将进入过滤罐中的液体用碱水将pH值调节到4-6,本实施例中pH值调节到5-6,生成氢氧化铁,液体过滤后回收过滤罐内的氢氧化铁。
(3)吸附镍:从过滤罐流出的液体进入吸附罐B,吸附罐B内装填有陶瓷颗粒B。
陶瓷颗粒B的特征为:a.陶瓷颗粒B由磷矿粉、膨润土、竹粉烧制而成,陶瓷颗粒B中磷矿粉、膨润土、竹粉的质量比为50-70∶40-20∶10;b.陶瓷颗粒B的粒径为4-6mm;c.陶瓷颗粒B的制备工艺可参照申请号为201610922374.8的发明创造,也可以按下述方法制备得到:将磷矿粉(含P2O5重量30-50%)、膨润土、竹粉按比例混合制成球,干燥后,采用石英砂覆盖球的埋烧方式,以5℃/min的速度升温,当温度升到1000℃,保温1小时,随炉冷却到室温。
根据酸洗废液中镍离子的含量调整陶瓷颗粒B的用量,每100mg/l镍离子装填陶瓷颗粒B 40-45g,本实施例中陶瓷颗粒B的用量标准为每100mg/l镍离子装填45g陶瓷颗粒B;吸附罐B采用振荡搅拌工艺,振荡频率为80-100r/min,酸洗废液在吸附罐B中的停留时间为4-6小时,本实施例中振荡搅拌6小时。
酸洗废液流出吸附罐B后对吸附罐B进行碱洗脱附,脱附液回收镍。
经过吸附罐B后的液体为去除铬、铁、镍离子的酸液。经过吸附罐B后的酸液通过补充步骤(2)中减少的酸量后,作为酸洗用酸回用到原生产中。步骤(1)和(3)中,碱洗脱附后的碱性水作为步骤(2)中调节pH的碱性用水使用。
经过上述步骤处理后,清液原子吸收测定结果是:含铬,铁和镍分别为0.035mg/l,0.016mg/l,0.034mg/l,吸附率均为99.99%。得到清液为去除重金属离子的硝酸和氢氟酸混合酸,根据实际生产所需混合酸要求,通过补充由于上述处理过程调节pH时减少的酸量(补充硝酸和氢氟酸混合酸),调pH=0.5左右回用到酸洗工艺用酸。
铬和镍的脱附试剂使用0.1mol/l的NaOH,振荡频率依然为80-100r/min,振荡5-7h,脱附液pH=13左右,含铬罐脱附后过滤液还原回收氢氧化铬,含镍罐脱附后液体过滤滤液回收氢氧化镍。清液回用,用于调过滤罐的pH值。上述实例的比例按实际生产进行调节,废酸全部回用,废水回用和排放根据实际处理量决定。通过上述实例处理的特点是速度快,吸附率高,三种金属直接回收,工艺简单和循环利用好。
实施例2
实施例2与实施例1相比,只是部分参数不同,具体为:步骤(1)中陶瓷颗粒A的用量为10g,振荡时间6小时;步骤(2)中pH值调节到4-5;步骤(3)中装陶瓷颗粒B的用量40g,振荡时间4小时。经过处理后,清液原子吸收测定结果是:含铬,铁和镍分别为2.85mg/l,0.078mg/l,13.88mg/l,吸附率分别为99.35%,99.99%,99.92%。

Claims (10)

1.不锈钢酸洗废液处理回收方法,其特征在于:依次包括如下步骤,
(1)吸附铬:将酸洗废液通过吸附罐A,吸附罐A内装填有陶瓷颗粒A,陶瓷颗粒A由竹粉和膨润土烧制而成,根据酸洗废液中铬离子的含量调整陶瓷颗粒A的用量,每100mg/l铬离子装填陶瓷颗粒A 10-15g;酸洗废液流出吸附罐A后对吸附罐A进行碱洗脱附,脱附液回收铬;
(2)沉淀铁:从吸附罐A流出的液体进入过滤罐,将进入过滤罐中的液体用碱水将pH值调节到4-6,生成氢氧化铁,液体过滤后回收过滤罐内的氢氧化铁;
(3)吸附镍:从过滤罐流出的液体进入吸附罐B,吸附罐B内装填有陶瓷颗粒B,陶瓷颗粒B由磷矿粉、膨润土、竹粉烧制而成,根据酸洗废液中镍离子的含量调整陶瓷颗粒B的用量,每100mg/l镍离子装填陶瓷颗粒B 40-45g;酸洗废液流出吸附罐B后对吸附罐B进行碱洗脱附,脱附液回收镍;经过吸附罐B后的液体为去除铬、铁、镍离子的酸液。
2.如权利要求1所述的不锈钢酸洗废液处理回收方法,其特征在于:所述陶瓷颗粒A中竹粉与膨润土的质量比为50-70∶50-30。
3.如权利要求1所述的不锈钢酸洗废液处理回收方法,其特征在于:所述陶瓷颗粒A的粒径为4-6mm。
4.如权利要求1所述的不锈钢酸洗废液处理回收方法,其特征在于:所述吸附罐A采用振荡搅拌工艺,振荡频率为80-100r/min,酸洗废液在吸附罐A中的停留时间为6-8小时。
5.如权利要求1所述的不锈钢酸洗废液处理回收方法,其特征在于:所述陶瓷颗粒B中磷矿粉、膨润土、竹粉的质量比为50-70∶40-20∶10。
6.如权利要求1所述的不锈钢酸洗废液处理回收方法,其特征在于:所述陶瓷颗粒B的粒径为4-6mm。
7.如权利要求1所述的不锈钢酸洗废液处理回收方法,其特征在于:所述吸附罐B采用振荡搅拌工艺,振荡频率为80-100r/min,酸洗废液在吸附罐B中的停留时间为4-6小时。
8.如权利要求1所述的不锈钢酸洗废液处理回收方法,其特征在于:所述经过吸附罐B后的酸液通过补充步骤(2)中减少的酸量后,作为酸洗用酸回用到原生产中。
9.如权利要求1所述的不锈钢酸洗废液处理回收方法,其特征在于:所述步骤(1)和(3)中,碱洗脱附后的碱性水作为步骤(2)中调节pH的碱性用水使用。
10.如权利要求1所述的不锈钢酸洗废液处理回收方法,其特征在于:所述吸附罐A数量为2个,2个吸附罐A交替作业,其中1个吸附罐A进行吸附作业时,另一个吸附罐A进行碱洗脱附;所述吸附罐B数量为2个,2个吸附罐B交替作业,其中1个吸附罐B进行吸附作业时,另一个吸附罐B进行碱洗脱附。
CN201711499853.4A 2017-12-28 2017-12-28 不锈钢酸洗废液处理回收方法 Active CN108083508B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711499853.4A CN108083508B (zh) 2017-12-28 2017-12-28 不锈钢酸洗废液处理回收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711499853.4A CN108083508B (zh) 2017-12-28 2017-12-28 不锈钢酸洗废液处理回收方法

Publications (2)

Publication Number Publication Date
CN108083508A CN108083508A (zh) 2018-05-29
CN108083508B true CN108083508B (zh) 2020-08-28

Family

ID=62181477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711499853.4A Active CN108083508B (zh) 2017-12-28 2017-12-28 不锈钢酸洗废液处理回收方法

Country Status (1)

Country Link
CN (1) CN108083508B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565359A (zh) * 2019-09-09 2019-12-13 珠海市安能环保科技有限公司 一种废弃铜、镍废水过滤介质的回收再利用方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09271759A (ja) * 1996-04-05 1997-10-21 Shigemi Ishida 竹炭セラミック
CN1778705A (zh) * 2005-10-14 2006-05-31 上海陆博新材料科技有限公司 具有重金属离子脱除功能的复合材料
CN101612498B (zh) * 2009-08-04 2011-10-05 湖北三新磷酸有限公司 一种多孔陶瓷滤料的生产方法
CN101982433B (zh) * 2010-11-09 2012-08-01 南京大学 一种不锈钢酸洗废水中和污泥无害化和资源化处置的方法
CN102659274B (zh) * 2012-05-09 2013-10-09 南京大学 一种不锈钢酸洗废水资源化无害化处理方法
CN106478069A (zh) * 2016-10-14 2017-03-08 湖州师范学院 竹炭膨润土复合陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN108083508A (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
CN107188330B (zh) 一种吸附净化酸性废水的方法
CN103073166B (zh) 一种对城市污泥同时实现重金属稳定化和深度脱水的方法
CN103212364B (zh) 一种铁锰复合氧化物及其制备方法和水体除砷的应用
CN111085537B (zh) 一种有机磷和无机磷材料修复重金属污染土壤的方法
CN104478060A (zh) 一种处理含铊及重金属废水的药剂和工艺
CN103951114B (zh) 一种重金属废水三级处理与深度净化回用工艺
CN103304059A (zh) 一种冶炼烟气制酸工艺中酸性废水的处理系统及方法
CN104084221B (zh) 一种生物吸附溶液中重金属离子制备光催化材料的方法
CN105016532A (zh) 一种低浓度的含络合铜废水的处理方法
CN102910760A (zh) 一种含重金属污酸的处理工艺
CN202542982U (zh) 一种五氧化二钒废水处理及资源循环利用装置
CN104891710A (zh) 一种有色金属矿山酸性废水快速有效处理方法
CN102826642A (zh) 一种利用胶状黄铁矿回收废水中铜的方法
CN106746391A (zh) 一种磷化污泥资源化处置方法
CN108083508B (zh) 不锈钢酸洗废液处理回收方法
CN111252875A (zh) 一种含重金属废水的处理工艺
CN102531094B (zh) 含重金属离子或含磷的废水的处理方法
CN102816933B (zh) 一种铬渣的处理工艺方法
CN114774130A (zh) 一种用于砷铅锑复合污染土壤修复的改性黏土矿物及其制备方法和应用
CN112517620B (zh) 一种铵根离子淋洗剂及其应用
CN103466770B (zh) 一种铜氨络合废水处理方法
CN111617732B (zh) 基于高铁锰酸性矿坑废水原位制备重金属吸附剂的方法和应用
CN105254075A (zh) 一种重金属捕集剂及用于烧结脱硫废水的除铊方法
WO2016183947A1 (zh) 一种含铊等重金属污染废水的深度处理方法
CN105256135A (zh) 一种球磨酸浸-生物吸附回收高磷铁矿中磷资源的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180529

Assignee: Zhejiang Guanying Auto Parts Co.,Ltd.

Assignor: HUZHOU TEACHERS College

Contract record no.: X2023990000126

Denomination of invention: Treatment and recovery method of stainless steel pickling waste liquid

Granted publication date: 20200828

License type: Exclusive License

Record date: 20230112

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230406

Address after: 325500 Shenshan, Xiaqiao village, Sixi Town, Taishun County, Wenzhou City, Zhejiang Province

Patentee after: Lan Quanbu

Address before: No.759, East 2nd Ring Road, Wuxing District, Huzhou City, Zhejiang Province

Patentee before: HUZHOU TEACHERS College

Effective date of registration: 20230406

Address after: 201900 second floor, building 2, No. 1068, Chunhe Road, Baoshan District, Shanghai

Patentee after: Shanghai Youni Chemical Co.,Ltd.

Address before: 325500 Shenshan, Xiaqiao village, Sixi Town, Taishun County, Wenzhou City, Zhejiang Province

Patentee before: Lan Quanbu