CN108026314B - 制造用硅石和炭黑增强的弹性体复合物的方法以及包含其的制品 - Google Patents

制造用硅石和炭黑增强的弹性体复合物的方法以及包含其的制品 Download PDF

Info

Publication number
CN108026314B
CN108026314B CN201680053373.2A CN201680053373A CN108026314B CN 108026314 B CN108026314 B CN 108026314B CN 201680053373 A CN201680053373 A CN 201680053373A CN 108026314 B CN108026314 B CN 108026314B
Authority
CN
China
Prior art keywords
silica
fluid
latex
dispersion
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680053373.2A
Other languages
English (en)
Other versions
CN108026314A (zh
Inventor
J.熊
M.C.格林
W.R.威廉斯
D.福米切夫
G.D.阿德勒
D.G.麦克唐纳
R.格罗希
M.D.莫里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cabot Corp
Original Assignee
Cabot Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Corp filed Critical Cabot Corp
Publication of CN108026314A publication Critical patent/CN108026314A/zh
Application granted granted Critical
Publication of CN108026314B publication Critical patent/CN108026314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/05Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from solid polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/215Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase at least one additive being also premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • C08L21/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • C08L7/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/10Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • C08J2307/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/28Non-macromolecular organic substances
    • C08L2666/44Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances
    • C08L2666/55Carbon

Abstract

描述了用包括硅石的去稳定化的分散体制备硅石和炭黑的弹性体复合物的方法、以及由该方法制备的经颗粒增强的弹性体复合物。进一步描述了用所述方法实现的优点。

Description

制造用硅石和炭黑增强的弹性体复合物的方法以及包含其的 制品
本发明涉及经颗粒增强的弹性体复合物的制造方法。更具体地说,本发明涉及通过湿法母料法形成的经颗粒增强的弹性体复合物。
许多具有商业意义的制品由弹性体组合物形成,其中粒状增强材料分散于各种合成弹性体、天然橡胶或弹性体共混物中,举例来说,炭黑和硅石在天然橡胶及其它弹性体中广泛地用作增强试剂。通常生产母料,即,增强材料、弹性体和各种任选的添加剂(如增量油)的预混合物。许多具有商业意义的制品由这样的弹性体组合物形成。这样的制品包括例如车辆轮胎,其中,不同的弹性体组合物可用于胎面部分、侧壁,衬线包层和胎体。其它制品包括,例如,发动机支架衬套、传送带、挡风玻璃刮水器、密封物、衬垫、车轮、缓冲器等。
一段时间以来,粒子增强试剂在橡胶配混料中的良好分散体已被认为是用于实现良好的品质和一致的产品性能的最重要的对象之一,并且,相当大的努力已致力于开发用于改善分散体品质的方法。母料和其它混合操作对混合效率和分散体品质有直接影响。一般来说,例如,当炭黑用于增强橡胶时,经常可以在干混合母料中实现可接受的炭黑宏观分散体。然而,经由干混工艺的硅石的高品质均匀分散体带来了困难,并且,工业上已提出了各种解决方案来解决该问题,例如,具有″能够高度分散的硅石″或″HDS″的可流动颗粒形式的沉淀硅石。更强烈的混合可以改善硅石分散体,但也可以使其中分散有填料的弹性体发生降解。在对于机械/热降解高度敏感的天然橡胶的情况中,这是特别成问题的。
除了干混技术之外,已知将弹性体胶乳或聚合物溶液以及炭黑或硅石浆料加入搅拌罐中。这样的″湿法母料″技术可与天然橡胶胶乳以及经乳化的合成弹性体例如苯乙烯丁二烯橡胶(SBR)一起使用。然而,虽然该湿法技术在填料为炭黑时已显示出了希望,但是,在填料为硅石时,该湿法技术对于获得可接受的弹性体复合物带来了挑战。用于生产湿法母料的具体技术(例如美国专利No.6,048,923(其内容通过引用并入本文)中所公开的技术)并未有效地用于采用硅石颗粒作为唯一或主要增强试剂来生产弹性体复合物。
因此,需要改善以湿法母料工艺将硅石和炭黑结合到弹性体复合物中的方法,例如,利用在连续的高能量冲击条件下将两种流体组合在一起以实现含有硅石颗粒作为唯一或主要增强试剂的可接受的弹性体复合物的方法。
发明内容
本发明的一个特征是提供使用允许利用硅石和炭黑的湿法母料工艺生产弹性体复合物的方法,并且还获得了所需的经颗粒增强的弹性体复合物。
为了实现这些和其它优点,并且根据本发明的目的,如在此体现和广泛描述的,本发明涉及在形成经颗粒增强的弹性体复合物的湿法母料工艺中控制和选择性放置或引入硅石和炭黑。
本发明还涉及以湿法母料工艺制造弹性体复合物的方法,所述方法包括但不限于使用包含弹性体胶乳的流体、以及使用包括粒子状硅石和炭黑的去稳定化的分散体的额外的流体。该″额外的流体″作为如下提供:i)包括包含炭黑的分散体和包含硅石的去稳定化的分散体的两个物流;或ii)包括包含炭黑的分散体和包含硅石的去稳定化的分散体的单一物流;或iii)包含硅石和炭黑的去稳定化的分散体。两种流体在连续流条件和选定的速度下组合在一起。该组合使得硅石和炭黑分散在弹性体胶乳内,并且,并行的(或几乎并行的),使弹性体胶乳从液体转化成固态或半固态的弹性体复合物,例如转化成含硅石的固态或半固态连续橡胶相。例如,这可以在约2秒或更短的时间(例如几分之一秒)内发生,这是因为,一个流体以足够的能量冲击另一个流体,从而导致硅石和炭黑颗粒在弹性体中的均匀且紧密的分布。在该母料工艺中使用硅石的去稳定化的分散体能够形成具有所需特性的弹性体复合物。
本发明进一步涉及由本发明的任何一种或多种方法形成的弹性体复合物。本发明还涉及由本发明的弹性体复合物制成或包含本发明的弹性体复合物的制品。
理解,前面的一般描述和下面的详细描述均仅仅是示例性和解释性的,并且旨在提供对所要求保护的本发明的进一步解释。
结合到本申请中并构成本申请的一部分的附图示出了本发明的各种特征,并且与说明书一起用于解释本发明的原理。
附图说明
图1(a)、1(b)和1(c)是说明可用于本发明并在一些实施例中使用的示例性混合装置的图。
图2是在形成根据本发明实施方案的弹性体复合物和使用这样的弹性体复合物制造橡胶配混料时可能发生的各种步骤的框图。
图3-7是在形成用于本发明中所用的混合装置中的包含硅石和炭黑的分散体时可能发生的各种步骤的框图。
具体实施方式
本发明涉及以连续的快速湿法母料工艺将硅石以及炭黑选择地和战略性地引入到弹性体胶乳中。该过程可以在半封闭反应区(例如,适用于在受控的体积流量和速度参数下实施这样的过程的装置的管状混合腔室或其它混合腔室)中进行,导致如果没有特别是硅石的该选择和战略性使用则无法实现的有益性能。如本文进一步详细解释的,通过″选择″,本发明使用硅石的去稳定化的分散体。并且,通过″战略性地″引入,本发明使用至少两种分开的流体,一种流体包括弹性体胶乳,且另一种流体包括硅石和炭黑的去稳定化的分散体。可以将两种流体泵入或转移到反应区(例如半封闭反应区)中。两种流体可以在连续流条件下、以及在选定的体积流量和速度条件下组合。采用选定的差速度条件的在压力下的组合具有足够的能量,使得硅石和炭黑可以在两秒或更少的时间内(例如在几毫秒内)分布在弹性体胶乳内,并且弹性体胶乳从液态转变成固相,例如,转变成具有含硅石和炭黑的固态或半固态连续橡胶相的形式的经颗粒增强的弹性体复合物。
本发明部分地涉及硅石弹性体复合物的生产方法,所述方法包含以下步骤、基本上由以下步骤组成、由以下步骤组成、或者包括以下步骤:
(a)提供包含颗粒(例如硅石和炭黑)的去稳定化的分散体的至少第一流体的在压力下的连续流并且提供包含弹性体胶乳的第二流体的连续流;
(b)调节第一流体和第二流体的体积流量以产生具有约15phr~约180phr硅石含量的弹性体复合物;和
(c)使用足够的冲击,将第一流体流和第二流体流组合起来(例如在半封闭反应区中),从而,将硅石和炭黑分布在弹性体胶乳内,以获得含硅石和炭黑的固态连续橡胶相或含硅石的半固态连续橡胶相的流。该方法将弹性体胶乳从液态转变成含硅石和炭黑的固态或半固态连续橡胶相的流。含硅石和炭黑的连续橡胶相可作为含硅石和炭黑的固态或半固态连续橡胶相的基本上连续的流进行收取。关于(a)的第一流体,该第一流体可作为如下提供:i)包括包含炭黑的分散体和包含硅石的去稳定化的分散体的两个物流;或ii)包括包含炭黑的分散体和包含硅石的去稳定化的分散体的单一物流;或iii)包含硅石和炭黑的去稳定化的分散体。下面描述本发明方法的更多细节和/或选项。而且,i)、ii)和iii)的进一步变化也在下面详细提供。
如本文中所用的,″硅石″是指粒子状二氧化硅或包覆有二氧化硅的颗粒,且包括任何形式的沉淀硅石,例如,高分散性(HDS)颗粒、非HDS颗粒、硅石聚集体和硅石颗粒;胶体硅石;热解硅石;以及它们的任意组合。这样的二氧化硅或包覆有二氧化硅的颗粒可能已被化学处理以包括与硅石表面结合(连接(例如化学连接)或粘附(例如吸附))的官能团。因此,″硅石″包括具有基本由硅石或带有结合或连接于其上的官能团的硅石构成的表面的任何颗粒。
如本文中所用的,“分散体”是指固体颗粒在水性流体中的稳定悬浮液,其中,在颗粒表面处的电荷阻止颗粒聚集,并且,分散体的特征在于ζ电势量值大于或等于30mV。
ζ电势用于测量分散在流体中的带电颗粒(例如硅石颗粒)的稳定性。ζ电势的测量可以具有例如+/-2mV的变化,并且,如本文中所用的,ζ电势量值指的是数值的绝对值,例如,与-10mV的ζ电势值相比,-30mV的ζ电势值具有更大的量值。
如本文中所用的,″去稳定化的分散体″是指固体颗粒在水性流体中的悬浮液,其中,在颗粒表面处的电荷已由于试剂的存在或通过固体颗粒的处理而减少,并且其特征在于小于30mV的ζ电势量值、或更优选小于28mV或小于25mV的ζ电势。水性流体可以是水、可与水混溶的流体(例如醇或醚)、可部分地与水混溶的流体、或者至少含有可与水混溶或可部分地与水混溶的流体的流体混合物。
如本文中所用的,术语″硅石浆料″和″分散体″是指硅石(其还可包括炭黑)在水性流体中的分散体,其中,在硅石表面处的电荷防止颗粒聚集,并且,分散体的特征在于量值为至少30mV的ζ电势值。硅石浆料或分散体可通过用足够的试剂处理或通过处理硅石而去稳定化,从而减少硅石表面上的电荷,并且,所得的去稳定化的硅石浆料(或去稳定化的硅石分散体)的特征是小于30mV的ζ电势量值。
如本文中所用的,常规地,对于本领域技术人员来说,术语″均匀的″和″均匀地″旨在表示具有任意给定的体积分数或百分数(例如5%)的组分(例如粒子填料)的浓度与该组分在所研究的材料(例如弹性体复合物或分散体)的总体积中的浓度相同(例如偏差不超过2%)。如果需要的话,本领域技术人员将能够通过使用从不同位置(例如在表面附近或本体的较深处)取得的若干样品的组分浓度测量结果来验证材料的统计均匀性。
如本文中所用的,″硅石弹性体复合物″是指含有增强量(例如,约15phr~约180phr)的分散硅石的连贯橡胶(coherent rubber)的母料(增强材料(其可包括炭黑)、弹性体、以及各种任选的添加剂(如增量油)的预混合物)。硅石弹性体复合物可以含有任选的进一步的组分,例如,酸、盐、抗氧化剂、抗降解剂、偶联剂、较少量(例如,全部粒子的10wt%或更低)的其它粒子、加工助剂、和/或增量油、或者其任意组合。
如本文中所用的,″含硅石和炭黑的固态连续橡胶相″或″含颗粒的连续橡胶相″是指具有连续橡胶相和增强颗粒(例如,硅石和炭黑)的均匀分散相以及例如高达90wt%的水性流体的复合物。含硅石和炭黑的固态连续橡胶相可具有连续的绳索或蠕虫的形式。当压缩时,这些物品释放出水。含硅石和炭黑的固态连续橡胶相可以含有任选的进一步的组分,例如,酸、盐、抗氧化剂、偶联剂、较少量(例如,全部粒子的10wt%或更低)的其它粒子、和/或加工油、或者其任意组合。
如本文中所用的,″含硅石和炭黑的半固态连续橡胶相″是指具有含硅石和炭黑的连续橡胶相的带有糊状稠度的复合物。该半固态产物具有橡胶的连续相,带有均匀分布在整个橡胶相中的被捕集的硅石和炭黑。当以一次或多次后续操作(其被选择以用于将糊状或凝胶状的材料发展成含硅石和炭黑的固态连续橡胶相)来作进一步的处理时,含硅石和炭黑的半固态连续橡胶相保持连贯并排斥出水,同时保持固体物含量。
如本文中所用的,″连贯″材料是以基本上单一的形式存在的材料,其通过许多较小部分的粘着而产生,例如,通过许多小橡胶颗粒彼此粘附而产生的橡胶的弹性固体块。
如本文中所用的,″连续流″是连续不断地来自供应源(例如罐)的流体的稳定或恒定的流。但是,应当理解,流的暂时中断(例如,一秒或几分钟)仍被认为是连续流(例如,当切换来自诸如罐等的各种供应保持区域的供应、或者中断流以适应下游单元的工艺或设备的维护时)。
图3-7提供了可用于制备包含硅石和炭黑的去稳定化的分散体的工艺的各种实例。这些示例性工艺并不是穷举可以使用本发明的方法实现的各种工艺。在图3中,炭黑300(例如,颗粒或粒子形式)与水或水性流体302结合以形成炭黑浆料306。接着可以使炭黑浆料经受一个或多个搅拌和/或研磨和/或碾碎和/或其它机械处理步骤、其他非机械处理步骤,如方框310所示的。图中由虚线指定的框是可以使用的任选的步骤或过程。通常,利用一个或多个处理步骤310,获得作为基本上不含较大团聚颗粒的均匀分散的炭黑浆料的炭黑浆料314。与这些步骤平行地,来自与炭黑相同来源或不同来源的水或水性流体302与硅石304结合以形成硅石浆料308。可以对硅石浆料进行各种处理步骤,例如研磨、和/或搅拌、和/或碾碎、和/或其他机械和/或非机械处理步骤以及本文描述的其他步骤,从而导致包含或包括硅石的去稳定化的分散体。如本文所公开的,附加步骤312可以包括添加至少一种酸和/或盐以形成去稳定化的硅石分散体316。然后,为了本发明的目的,炭黑浆料和去稳定化的硅石浆料可以被认为是″第一流体″,但是如图3所示,浆料作为两个单独的物流被添加到反应区103:一个物流含有包含炭黑的分散体和另一个物流包含含有硅石的去稳定化的分散体。两个物流被引入反应区103的方式可以具有相同的体积流动速率或不同的体积流动速率,和/或具有相同或不同的参数和/或相同或不同的压力。如图3所示并且如本申请所述,包含弹性体胶乳的第二流体105也被引入到反应区103中。
作为另一种选择,如图4所示,可以使用图3的过程的变型。为了所述图的目的,除非另有说明,否则相同的附图标记表示与图3相同的描述。如图4所示,炭黑300与水或水性流体302结合形成炭黑浆料306。此外,来自相同或不同来源的水或水性流体302与硅石304结合以形成硅石浆料308。炭黑的进一步加工步骤可以如方框310所示出现,并且可以发生用于产生去稳定化的硅石浆料的硅石浆料的进一步加工,如方框312所示。与图3不同,不是用两个单独的物流将炭黑浆料和硅石浆料引入反应区103,在一个选项中,如图4所示,炭黑浆料和包含硅石的去稳定化的分散体在反应区103之前被组合,以便形成被识别为混合浆料(例如,去稳定化的颗粒分散体)的单一物流318,然后将其引入到反应区103中。
在图5中显示了一个选项,其中炭黑300和水或水性流体302与硅石304一起结合在一起,全部在单个罐320中以形成包含炭黑和硅石的浆料。然后,混合的浆料320可以任选地进行进一步的处理,其可以包括研磨、碾碎、流化、搅拌和/或其他处理步骤,以引起具有硅石存在的浆料的去稳定化,例如添加至少一种酸和/或盐。值得注意的是,由于混合的浆料包括炭黑,对于含有等量硅石而不含炭黑的分散体来说,去稳定化的量可能会小于预期。然后可以将混合的浆料324(例如,去稳定化的颗粒分散体)引入到反应区103中。
在图6中,将炭黑300和硅石304结合以形成两种组分的干燥混合物326然后将该干燥混合物326与水或水性流体350结合以形成湿混合物328,然后可以对其进行进一步的处理步骤330,其将与图5中针对处理步骤322的步骤相同。然后,这形成混合良好的分散浆料332(例如,去稳定化的颗粒分散体),然后可以将其引入反应区103中。
在图7中,硅石304与水或水性流体302结合形成硅石浆料308,然后如图3所述进行进一步的处理步骤312。然后可将该包含硅石的分散体316(例如,去稳定化的硅石分散体)引入到反应区103中。然后,可以将粒子形式的干燥炭黑在其引入反应区103之前注入或以其它方式引入到包含硅石的分散体316中,或者可以单独引入338例如在空气流中流化的炭黑进入到反应区103中,而包含硅石的去稳定化的分散体316被引入反应区103中或炭黑可被引入胶乳流340中。
用于本发明的任何方法的硅石与碳的重量比(或基于总的填料重量基准)可以为约45∶55、或50∶50(硅石∶炭黑)至小于90∶10、或89.9∶10、或50∶50~89∶11、或60∶40~85∶15、或70∶30~80∶20。
弹性体复合物可以涉及弹性体胶乳与硅石(其可包括炭黑)的去稳定化的分散体的液体混合物的连续流工艺生产。任何设备、或者装置或系统都可使用,条件是,该设备、装置或系统可被操作以使弹性体胶乳与硅石的去稳定化的分散体(其可包括炭黑)的液体混合物可以在连续流条件以及受控的体积流量、压力和速度条件下进行组合,包括,但不限于,图1(a)、(b)或(c)中所示的装置、或者任何类型的喷射器或排出器、或者设置以用于在受控的体积流量、压力和速度条件下使至少两种液体流的连续流在反应区中组合并穿过反应区的任何其它设备。在US20110021664、US6048923、WO2011034589、WO2011034587、US20140316058和WO2014110499(各自以引用方式整体并入本文)中描述的装置也可以用于或改用于本文的方法。而且,可以使用排出器和喷射器或虹吸管(例如喷水式喷射器或蒸汽喷射式虹吸管)(例如,从Schutte&Koerting,Trevose,PA商购获得的那些)。
该装置可以包括各种供应罐、管道、阀门、仪表和泵来控制体积流量、压力和速度。进一步地,如在图1(a)、(b)和(c)中的入口(3)处所示的,可采用各种类型和尺寸的喷嘴或其它孔口尺寸控制元件(3a)来控制硅石浆料的速度。反应区(13)的体积尺寸可被选择以提供弹性体复合物和流体的所需体积流量。向反应区供应弹性体胶乳的入口(11)可以是渐缩的,以便提供不同的体积流动速率或速度。设备可包括直径均匀的入口(11),在通往反应区的孔口处无任何锥形。
在该方法中,将包括弹性体胶乳的流体和包含作为一个物流或分开的物流例如作为在压力下的射流供给的硅石和炭黑的去稳定化的分散体的额外流体在连续流条件下和在选定的体积流速率、压力和速度下组合在一起,从而使两个流体快速且紧密地混合。该组合(例如在压力下在半封闭空间中)使得硅石和炭黑分布在整个弹性体胶乳中,并且,平行地,弹性体胶乳从液体转变成固态或半固态的相,即,胶乳发生液体到固体的反转或凝聚,从而在橡胶中捕获分布的硅石和炭黑和水,并在反应区外以连续或半连续流的形式形成含硅石和炭黑的固态或半固态连续橡胶相(例如,来自图1(a)-(c)中的底部(7)处的开口)。此时,该产品可被认为是含硅石颗粒的连续橡胶相的弹性体复合物、含硅石的连贯橡胶、或经颗粒增强的弹性体复合物。据信,硅石和炭黑颗粒首先必须分布在弹性体胶乳中以获得期望的产物,并且,在硅石和炭黑分布时,立即伴随着液体到固相的反转。然而,以连续且极其迅速的速率组合流体(即,小于2秒、小于1秒、小于0.5秒、小于0.25秒、小于0.1秒、或约几毫秒),并且,在反应区中有力且紧密地混合相对小体积的流体(例如,约10~500cc的流体体积),硅石和炭黑颗粒的分布和弹性体胶乳的液体至固相转变的平行步骤可以几乎同时发生。如本文中所用的,″反应区″是其中伴随着混合物的凝聚而发生紧密混合的区域。混合物移动通过反应区并通向出口(7)。
用于制备弹性体复合物的示例性方法涉及将包含硅石和炭黑(作为一个物流或作为两个分开的物流供给)的去稳定化的分散体的第一流体和包含弹性体胶乳(例如天然橡胶胶乳)流体的第二流体同时供给至反应区。包含硅石和炭黑的去稳定化的分散体的第一流体可以以基于其体积的流动速率供给,并且包含弹性体胶乳的第二流体可以以基于其体积(即体积流动速率)的流动速率供给。第一流体、第二流体、或者第一流体和第二流体两者的体积流量可被调整或提供,以便所产生的弹性体复合物的硅石含量为每100重量橡胶15~180份(phr)(例如35~180phr、20phr~150phr、25phr~125phr、25phr~100phr、35~115phr、或40phr~115phr、或40phr~90phr等)。在本文中,在一些实施方案中,包含颗粒(例如硅石和炭黑)的去稳定化的分散体的流体可被称为第一流体。该流体是相对于包含弹性体胶乳的流体的单独的流体。任一流体可以通过一个入口或注入点或通过多于一个的入口或注入点引入。
可以调节第一流体(至少包含去稳定化的硅石分散体和炭黑的流体)与第二流体(胶乳流体)的体积流量比,从而允许形成期望的弹性体复合物。这样的体积流量比的例子包括,但不限于,0.4∶1(第一流体对第二流体)~3.2∶1、0.2∶1~2∶1等的体积比。第一流体与第二流体之间的体积流量比可以通过任何手段或技术进行调整。例如,第一或第二流体或这两者的体积流动速率可通过以下方式进行调整:a)提高体积流动速率;b)降低体积流动速率;和/或c)调整流体相对于彼此的流动速率。通过物理约束施加到第一流体的流上而产生的压力导致形成高速射流,其使得去稳定化的硅石分散体与弹性体胶乳的组合能够快速发生,例如,在几分之一秒内。作为实例,在两个流体混合并发生液体到固相反转的过程中的时间可以是约几毫秒(例如,约50ms~约1500ms、或者约100ms~约1000ms)。对于流体的给定的选择,如果第一流体的速度太慢以致于不能充分混合流体,或者,停留时间太短,则固态橡胶相和固态产物流可能不会产生。如果工艺的持续时间过长,则可能在反应区中产生背压且材料的连续流停止。同样,如果第一流体速度过快且工艺的持续时间过短,则固态橡胶相和固态产物流可能不会产生。
如前所述,可以调整第一流体(作为组合的物流或作为两个独立的物流的去稳定化的硅石和炭黑浆料)和第二流体(胶乳)的相对体积流量,并且,当使用至少一种盐作为去稳定剂时,优选调整去稳定化的颗粒浆料与弹性体胶乳的体积流量比率,使得其为0.4∶1~3.2∶1。可以使用其它流量比。
当使用至少一种酸作为去稳定剂时,优选调整去稳定化的硅石浆料(或去稳定化的颗粒浆料)与弹性体胶乳的体积流量比率,使得其为0.2∶1~2∶1。可以使用其它流量比。
弹性体胶乳可以含有至少一种碱(例如氨),并且,可以随着添加至少一种酸来实现硅石(或去稳定化的颗粒分散体)的去稳定化的分散体,其中,第一流体(硅石)中的酸与第二流体(胶乳)中的碱(例如氨)的摩尔比为至少1.0、或者至少1.1、或者至少1.2,例如,1~2或者1.5~4.5。碱可以以各种量存在于弹性体胶乳中,例如,但不限于,0.3wt%~约0.7wt%(基于弹性体胶乳的总重量),或者,低于或高于该范围的其它量。
可将作为一个物流或作为两个单独的物流的去稳定化的颗粒分散体供给至反应区,优选地,作为注入流体的连续的高速度(例如,约6m/s~约250m/s、或约30m/s~约200m/s、或约10m/s~约150m/s、或约6m/s~约200m/s)的射流,而且,可将含弹性体胶乳的流体以相对较低的速度(例如,约0.4m/s~约11m/s、或约0.4m/s~约5m/s、或约1.9m/s~约11m/s、或约1m/s~约10m/s、或约1m/s~约5m/s)进行供给。选择流体的速度以用于对流体之间的混合以及弹性体胶乳的快速凝聚进行优化。供给至反应区的弹性体胶乳的速度应当优选地高到足以产生湍流以便与去稳定化的颗粒浆料更好地混合。然而,弹性体胶乳的速度应该保持足够低,以使胶乳在与去稳定化的颗粒浆料充分混合前不会由于剪切而发生凝聚。另外,在进入反应区之前,弹性体胶乳的速度应保持足够低,以防止由于高剪切引起的胶乳凝聚堵塞胶乳供应管线。同样地,去稳定化的颗粒分散体的速度也存在一个优化的范围。据推测,如果去稳定化的颗粒浆料的速度太高,则由硅石颗粒的剪切诱导的聚集的速率可能太高,以致于不允许硅石颗粒(和炭黑)与弹性体胶乳颗粒之间的充分均匀混合。
尽管在本发明中,硅石和炭黑与胶乳混合,但是,从获得所需的固态或半固态连续橡胶相的角度来看,硅石通常是在该过程中需要去稳定化的颗粒。因此,这里的一些讨论集中在硅石及其去稳定化上,同时,认识到,这同样适用于不仅包括硅石还包括炭黑的颗粒分散体。
由于硅石颗粒的聚集和网络化导致的剪切增稠还可以降低去稳定化的硅石浆料的湍流并且不利地影响硅石和胶乳之间的混合。另一方面,如果去稳定化的硅石浆料的速度太低,则硅石颗粒与弹性体胶乳颗粒之间的混合可能不充分。优选地,进入反应区的流体中的至少之一具有湍流。通常,由于典型的去稳定化的硅石分散体相对于典型的弹性体胶乳的高得多的粘度,所以需要去稳定化的硅石分散体的高得多的速度来产生用于与弹性体胶乳混合及胶乳的快速凝聚的良好的流体动力学。去稳定化的硅石分散体的这样的高速流动可能在反应区中引起空穴,从而增强流体的快速混合及硅石颗粒在弹性体胶乳中的分布。去稳定化的硅石分散体的速度可通过使用不同的体积流动速率或位于入口(3a)处的供给包含去稳定化的硅石分散体的第一流体的不同的喷嘴或尖端(直径更宽或更窄)来进行改变。使用喷嘴来提高去稳定化的硅石分散体的速度,其可以在以下压力下提供:约30psi~约3,000psi、或约30psi~约200psi、或约200psi~约3,000psi、或约500psi~约2,000psi,或者,施加至含弹性体胶乳的流体的压力的至少2倍或2-100倍的相对压力。作为实例,可以在约20psi~约30psi的压力下提供弹性体胶乳的第二流体。第一流体供给系统中的压力可以高达约500psi。
基于本文所述的生产变量(例如,去稳定化的颗粒浆料流体的速度、胶乳流体的速度、去稳定化的颗粒浆料和胶乳流体的相对流动速率、去稳定剂(例如盐和/或酸)的浓度、去稳定化的浆料中的硅石浓度、胶乳中的橡胶重量百分数、胶乳中的氨浓度、和/或酸(如果存在的话)与氨的比例),可以控制、获得和/或预测含硅石的固态或半固态连续橡胶相在所期望的硅石含量范围内的形成。因此,该过程可以在优化的变量范围内运行。因此,a)一种或两种流体的速度、b)流体的体积流量比率、c)硅石的去稳定化性质、d)去稳定化的硅石分散体的粒子状硅石浓度(例如6~35wt%)、和e)胶乳的干橡胶含量(例如10~70wt%)可允许在高冲击条件下的混合,以便导致弹性体胶乳的液态向固态的反转并且以选定的硅石对橡胶的比率将硅石均匀分散在胶乳中,从而形成含硅石的固态或半固态连续橡胶相的流。含硅石的固态或半固态连续橡胶相的流的收取可以用任何用于收取固态或半固态物质流的常规技术来实现。该收取可以允许固态或半固态的流进入容器或罐或其它存储设备。这样的容器或存储罐可能含有盐或酸或这两者的溶液,以使产品进一步凝聚成更具弹性的状态。例如,收取可以将固体流输送或泵送到其它处理区域或设备以用于进一步处理,在本文中描述了其中的一些选择。收取可以是连续的、半连续的或分批的。反应区的流出端优选是半封闭的并且对大气开放,并且,固态或半固态的弹性体复合物的流优选在环境压力下进行收取以允许该工艺的连续操作。
含硅石和炭黑的固态连续橡胶相的流可以是或多或少弹性的绳状″蠕虫″或小球的形式。含硅石和炭黑的固态连续橡胶相可以被拉伸至其原始长度的130-150%而不破裂。在其他情况下,含硅石和炭黑的半固态连续橡胶相可以呈非弹性、粘滞的糊状物或凝胶状材料的形式,其可以产生弹性。在每一种情况下,输出是连贯的流动固体,其一致性(consistency)可以是高度弹性的或稍微弹性和粘滞的。来自反应区的输出可以是基本恒定的流,与进入反应区中的弹性体胶乳和硅石流体的去稳定化的分散体的正在进行的进料同时进行。该工艺中的步骤(例如流体的制备)可以作为连续、半连续或分批的操作来完成。所得的含硅石和炭黑的固态或半固态连续橡胶相可以经受随后的进一步加工步骤,包括,连续、半连续或分批的操作。
该工艺中产生的含硅石和炭黑的固态或半固态连续橡胶相包含水或其它水性流体、以及来自原始流体的溶质,而且,例如,可包含约40wt%~约95wt%的水、或40wt%~约90wt%的水、或约45wt%~约90wt%的水、或约50~约85wt%的水内容物、或约60~约80wt%的水,基于经颗粒增强的弹性体复合物的流的总重量。作为选择,在形成包含这样的水含量的含硅石和炭黑的固态或半固态橡胶相之后,可以对该产物进行适当的脱水和塑炼步骤以及配混步骤以产生所需的橡胶性能并制造橡胶配混料。该过程和其它后处理步骤的进一步细节在下面阐述并且可以在本发明的任何实施方案中使用。
含硅石和炭黑的半固态连续橡胶相可被转化为含硅石和炭黑的固态连续橡胶相。这例如可以通过如下完成:使含硅石和炭黑的半固态连续橡胶相经历从复合物中除去水的机械步骤和/或使半固态材料静置例如10分钟至24小时或更长的时间(例如,在从位于离线位置中的反应区收取后);和/或,加热含硅石和炭黑的半固态连续橡胶相以除去水内容物(例如,约50℃~约200℃的温度);和/或,使半固态材料经历酸或额外的酸(例如在酸浴中)、或者经历盐或额外的盐或盐浴、或者经历酸和盐的组合;等等。可以使用这些步骤中的一个或多个或全部。实际上,即使在最初或随后收取含硅石和炭黑的固态连续橡胶相时,一个或多个或全部步骤仍可被用作进一步的处理步骤。
硅石浆料的去稳定化程度至少部分地决定针对硅石浆料中的给定的硅石浓度和胶乳的给定的干橡胶含量的可存在于硅石弹性体复合物中(例如,捕获并均匀分布在复合物中)的硅石的量。在选定的目标硅石与橡胶的比率较低(例如,15phr~45phr)时,去稳定剂的浓度可能在硅石浆料中不是足够高,并且,最终地,不足以使硅石/胶乳混合物快速凝聚并形成含硅石的固态或半固态连续橡胶相。此外,如本文所述地选择合适的硅石和橡胶浓度和适当的相对流体流动速率是形成固态或半固态产物的考虑因素。例如,在去稳定化的浆料/胶乳的体积流量比率相对低时,去稳定化的硅石浆料中的去稳定剂的量可能不足以促进弹性体胶乳在反应区的快速凝聚。一般而言,对于给定的弹性体胶乳,可通过提高硅石浆料的去稳定化和/或降低去稳定化的浆料中硅石的重量百分比来实现较低的硅石加载量。
当硅石的分散体去稳定化时,硅石颗粒趋向于絮凝。当硅石的分散体太过于高度去稳定化时,硅石可从溶液中″落下″并变得不适合用于优选实施方案中。
当发生去稳定化时,硅石上的表面电荷典型地不会被完全去除。然而,有时,当硅石颗粒或硅石分散体被处理为去稳定化时,等电点(IEP)可能从负的ζ电势跨越到正的ζ电势值。通常,对于硅石而言,硅石颗粒的表面上的净电荷减少,并且,在去稳定化的期间,ζ电势的量值减小。
为了硅石弹性体复合物中的较高的硅石与橡胶的比率,可以选择去稳定化的浆料中的较高的硅石浓度和/或较高的硅石流体与胶乳流体的体积流量比率。一旦硅石浆料去稳定化并且开始与胶乳流体组合,如果混合物不凝结,则可以调节第一流体和第二流体的体积流量比,例如通过降低胶乳的体积流量,这有效地提供了弹性体复合物中的较高的硅石/橡胶比率。在调节胶乳存在量的这个步骤中,胶乳的量是或变成不会使去稳定剂在整个混合物中的浓度过度稀释的量,使得可以在反应区中在停留时间内形成所需的产物。为了在弹性体复合物中获得所需的硅石与橡胶的比率,可以有各种选择。作为一个选择,可以增加硅石浆料的去稳定化水平,例如通过减少去稳定化的硅石浆料的ζ电势的量值(例如通过加入更多的盐和/或酸)。或者,作为一种选择,可以调节去稳定化的硅石浆料中的硅石浓度,例如通过降低或增加去稳定化的硅石浆料中的硅石浓度。或者,作为一种选择,可以使用具有较高橡胶含量的胶乳,或者,可以将胶乳稀释到较低的橡胶含量,或者,可以提高胶乳的相对流动速率。或者,作为一种选择,可以改变流动速率和孔口尺寸(其中各自可以控制或影响流体的速度)或两个流体流的相对方向,以缩短或延长组合流体在反应区内的停留时间和/或改变第一流体与第二流体的冲击点处的湍流的量和类型。可以使用这些选择中的任何一个或两个或更多个来调整工艺参数并获得弹性体复合物中的目标或所需的硅石与橡胶的比率。
硅石浆料的去稳定化的量或程度是决定硅石弹性体复合物中的硅石与橡胶的比率的主要因素。当去稳定化的硅石浆料与弹性体胶乳在反应区中混合时,用于使浆料中的硅石去稳定化的去稳定剂可能对促进弹性体胶乳颗粒的凝聚起作用。据推测,反应区中的胶乳凝聚的速率可能取决于组合流体中的去稳定剂的浓度。已经观察到,通过在各种条件下运行该用于生产硅石弹性体复合物的方法,可以确定在混合时在流体的经组合的混合物中所存在的去稳定剂的阈值浓度,其有效地产生含硅石的固态或半固态连续橡胶相。在下面的实施例中描述了选择和调节工艺条件以实现阈值浓度从而产生含硅石的固态或半固态连续橡胶相的实例。如果阈值浓度相对于给定的选择和流体组成、体积流量及速度不匹配或超过,则通常不会产生含硅石的固态或半固态连续橡胶相。
硅石浆料的去稳定化(或颗粒浆料的去稳定化)的最小量由小于30mV的ζ电势量值(例如以诸如-29.9mV~约29.9mV、约-28mV~约20mV、约-27mV~约10mV、约-27mV~约0mV、约-25mV~约0mV、约-20mV~约0mV、约-15mV~约0mV、约-10mV~约0mV等的ζ电势)指示。如果颗粒浆料已经被去稳定化到该ζ电势范围内,则当去稳定化的浆料中的硅石与弹性体胶乳组合时可以将去稳定化的浆料中的硅石结合到含硅石的固态或半固态连续橡胶相中。
尽管可能希望在胶乳与包含硅石的浆料组合之前使胶乳去稳定化,但在剪切条件下(例如在将胶乳连续泵入反应区中时所存在的那些剪切条件下),难以预先使胶乳流体去稳定化而不引起胶乳的过早凝聚。然而,去稳定化的硅石浆料中使用的去稳定剂可能以过剩量存在以增强胶乳的去稳定化,和/或,当去稳定化的硅石浆料和胶乳流体组合时减轻该试剂的稀释。作为进一步的选择,在特别高的硅石浓度(例如,在硅石浆料中>25wt%硅石)时,可以将一些所添加的去稳定剂单独地加入到反应区中的去稳定化的硅石浆料和弹性体胶乳的混合物中以增强胶乳的凝聚。
不希望受限于任何理论,据信,该用于生产硅石弹性体复合物的方法以约两秒或更短的时间(例如几分之一秒)形成橡胶颗粒和硅石聚集体的连贯的互穿网络,由于发生两个流体的组合和相反转,导致包含这些具有封装水的网络的固态或半固态的材料。这样的快速网络形成允许含硅石的固态或半固态连续橡胶相的连续产生。据推测,随着去稳定化的硅石浆料通过入口喷嘴从而与弹性体胶乳组合,硅石颗粒的剪切诱导聚集可以用于在橡胶母料中产生独特且均匀的颗粒排列并且通过硅石和橡胶颗粒之间的杂凝聚捕获橡胶内的硅石颗粒。进一步推测,在没有这样的互穿网络的情况下,可能不存在如下的固态或半固态的连续橡胶相复合物:其包含呈蠕虫或固体片形状的分散的硅石颗粒,例如,其封装有40-95wt%的水并且在随后的脱水过程(包括挤压和高能机械加工)中保持所有或大部分的硅石。
据推测,随着去稳定化的硅石浆料以高速经由第一入口(3)通过加压喷嘴(3a)进入反应区(13)(如图1所示),硅石网络的形成至少部分来自于剪切诱导的硅石颗粒聚集。当硅石浆料已经(例如,通过用盐或酸或这两者处理硅石浆料)变得去稳定化时,该过程由于去稳定化的浆料中的硅石的稳定性降低而变得容易。
据推测,胶乳的液态向固相的反转可能由多种因素引起,包括由与去稳定化的硅石浆料的高速射流的混合引起的剪切诱导凝聚、硅石表面与胶乳组分的相互作用、来自与含有去稳定剂的硅石浆料的接触的离子或化学凝聚、以及这些因素的组合。为了形成包含互穿硅石网络和橡胶网络的复合材料,应当平衡每种网络形成的速率以及混合的速率。例如,对于浆料中的处于高盐浓度下的高度去稳定化的硅石浆料,硅石颗粒的聚集和网络的形成在剪切条件下迅速发生。在该情况下,体积流量和速度被设定为使得胶乳具有快速的凝聚速率以形成互穿的硅石/橡胶网络。采用越轻微去稳定化的硅石浆料,则形成的速率越慢。
制造经颗粒增强的弹性体复合物的一个示例性方法包括通过入口11(图1(a)、(b)、和/或(c))以约20L/hr~约1900L/hr的体积流动速率将含有至少弹性体胶乳的流体(有时称为第二流体)的连续流供给至反应区13。该方法进一步包括在能够通过喷嘴尖端(在图1中,位于3a处)达到的压力下以30L/hr~1700L/hr的体积流动速率通过入口3供给包含去稳定化的颗粒分散体的另一流体(有时称为第一流体)的连续流。颗粒分散体的去稳定化状态以及处于通过引入作为高速射流(例如,约6m/s~约250m/s)的第一流体而产生的高能量条件下的(在入口3和11处引入的)两个流体流的碰撞有效地使颗粒(例如硅石和炭黑)与胶乳流紧密混合,促进了在来自反应区出口处的含硅石和炭黑的固态连续橡胶相的流中的颗粒的均匀分布,其中,该第一流体的高速射流与以与其大致垂直的角度进入反应区的较低速度的胶乳流(例如,0.4-11m/s)发生碰撞。
作为选择,通过例如入口11引入的弹性体胶乳可以是两种或更多种胶乳的共混物,例如两种或更多种合成胶乳的共混物。作为选择,图1(a)、(b)和/或(c)中的设备可被改变以具有一个或多个额外的入口,以便向反应区引入其它组分,例如一种或多种额外的胶乳。例如,在图1(c)中,除了使用入口11外,还可使用入口14来引入进一步的胶乳。一个或多个额外的入口可以是彼此相继的、也可以彼此相邻的或以任何方向设置,只要通过入口引入的材料(例如胶乳)具有足够的时间进行分散或被结合到所得的流中。在WO2011/034587(其在此全文引入作为参考)中,图1、2A和2B提供了额外的入口及其方向的示例,这些可以在此采用以用于本发明的实施方案。作为具体的实例,一个入口可以引入包含天然橡胶胶乳的流,并且,另外的入口可以引入合成的弹性体胶乳,并且这些胶乳流与硅石的去稳定化的分散体的流组合以导致含硅石的固态或半固态连续橡胶相的流。当超过一个的入口被用于弹性体胶乳的引入时,流动速率可以彼此相同或不同。
图2使用弹性体复合物形成过程中可能发生的各种步骤的框图来说明一个实例。如图2中所示的,将颗粒(其包括硅石)的去稳定化的分散体(第一流体)100引入反应区103,并将包含弹性体胶乳的流体(第二流体)105也引入反应区103。作为选择,含硅石和炭黑的固态或半固态连续橡胶相的流离开反应区103并且可以任选地进入存储区116(例如,存储罐,加或不加盐或酸溶液以进一步增强橡胶的凝聚及硅石/橡胶网络的形成);而且,可以任选地直接或在转移到存储区116之后进入脱水区105;可以任选地进入连续混合机/配混机107;可以任选地进入磨机(例如,开炼机,也称为辊磨机)109;可以经受额外的附加研磨111(与磨机109相同或不同的条件)(例如相同或不同的能量输入);可以通过混合机115进行任选的混合;和/或可以使用造粒机117进行造粒并然后可任选地使用打包机119进行打包,并且可以任选地通过使用额外的混合机121进行破解。
关于硅石,可以在本发明的任何实施方案中使用一种或多种类型的硅石或硅石的任何组合。适用于增强弹性体复合物的硅石的特征可为如下的表面积(BET)约20m2/g~约450m2/g约30m2/g~约450m2/g约30m2/g~约400m2/g;或者,约60m2/g~约250m2/g;而且,对于重型车辆轮胎胎面而言,BET表面积为约60m2/g~约250m2/g,或者,例如,约80m2/g~约200m2/g。能够高度分散的沉淀硅石可用作本发明方法中的填料。能够高度分散的沉淀硅石(″HDS″)应理解为是指具有解团聚和分散在弹性体基质中的基本能力的任何硅石。这种判定可以通过电子或光学显微镜以已知的方式在弹性体复合物的薄切片上观察到。商业等级的HDS的实例包括:来自WR Grace&Co的
Figure GDA0002380113230000171
GT 3000GRAN硅石、来自EvonikIndustries的
Figure GDA0002380113230000172
7000硅石、来自Solvay S.A.的
Figure GDA0002380113230000173
1165MP和1115MP硅石、来自PPG Industries,Inc.的
Figure GDA0002380113230000174
EZ 160G硅石、以及来自JM Huber Corporation的
Figure GDA0002380113230000175
8741或8745硅石。也可使用常规的非HDS沉淀硅石。商业等级的常规沉淀硅石的实例包括来自WR Grace&Co的
Figure GDA0002380113230000176
KS 408硅石、来自Solvay S.A.的
Figure GDA0002380113230000177
175GR硅石、来自Evonik Industries的
Figure GDA0002380113230000178
VN3硅石、来自PPG Industries,Inc.的
Figure GDA0002380113230000179
243硅石、以及来自JM Huber Corporation的
Figure GDA00023801132300001710
161硅石。也可以使用表面连接有硅烷偶联剂的疏水性沉淀硅石。商业等级的疏水性沉淀硅石的实例包括:来自PPGIndustries,Inc.的
Figure GDA00023801132300001711
400、454或458硅石以及来自Evonik Industries的Coupsil硅石,例如Coupsil 6109硅石。
典型地,硅石(例如硅石颗粒)的硅石含量为至少20wt%、至少25wt%、至少30wt%、至少35wt%、至少40wt%、至少50wt%、至少60wt%、至少70wt%、至少80wt%、至少90wt%、或者几乎100wt%或100wt%、或者约20wt%~约100wt%,全部基于颗粒的总重量。任何硅石都可以被化学官能化,例如具有连接或吸附的化学基团(如连接或吸附的有机基团)。可以使用硅石的任何组合。形成硅石浆料和/或去稳定化的硅石浆料的硅石可以部分或完全是具有疏水性表面的硅石,其可以是疏水性的硅石或通过处理(例如化学处理)使硅石表面疏水而变得具有疏水性的硅石。疏水性表面可以通过用不含离子基团的疏水性硅烷(例如,双-三乙氧基甲硅烷基丙基四硫化物)对硅石颗粒进行化学改性来获得。这样的在硅石上的表面反应可以在分散之前以单独的工艺步骤中进行,或者,在硅石分散体中原位进行。表面反应降低硅石表面上的硅烷醇密度,从而降低浆料中的硅石颗粒的离子电荷密度。用于分散体的适宜的经疏水性表面处理的硅石颗粒可由商业来源获得,例如,来自PPGIndustries的
Figure GDA00023801132300001712
454硅石和
Figure GDA00023801132300001713
400硅石。硅石分散体和去稳定化的硅石分散体可以使用具有低表面硅烷醇密度的硅石颗粒制成。这样的硅石可以经由例如煅烧工艺在超过150℃的温度下通过脱羟基化而获得。
可以选择任何增强或非增强等级的炭黑以在最终的橡胶组合物中产生所需的性能。增强等级的实例为N110、N121、N220、N231、N234、N299、N326、N330、N339、N347、N351、N358和N375。半增强等级的实例为N539、N550、N650、N660、N683、N762、N765、N774、N787、和/或N990。
炭黑可具有任意STSA,例如,10m2/g~250m2/g、11m2/g~250m2/g、20m2/g~250m2/g或更高,例如,至少70m2/g,诸如70m2/g~250m2/g、或80m2/g~200m2/g、或90m2/g~200m2/g、或100m2/g~180m2/g、110m2/g~150m2/g、120m2/g~150m2/g等。作为选择,炭黑可具有约5~约35mg I2/g炭黑的碘值(I2No)(按照ASTM D1510)。炭黑可以是炉黑或含有含硅物质和/或含金属物质等的碳产物。为了本发明的目的,炭黑可以为包含至少一个碳相和至少一个含金属物质相或含硅物质相的多相聚集体(也称为经硅处理的炭黑,例如来自CabotCorporation的ECOBLACKTM材料)。如上所述,炭黑可以是橡胶用炭黑,且特别是增强等级的炭黑或半增强等级的炭黑。碘值(I2No.)根据ASTM测试程序D1510确定。基于ASTM测试程序D-5816(通过氮吸附测量)确定STSA(统计厚度表面积)。基于ASTM D1765-10确定OAN。以下也可被用来与各种实施一起使用:购自Cabot Corporation的以商标
Figure GDA0002380113230000181
Black
Figure GDA0002380113230000182
ShoblackTM
Figure GDA0002380113230000183
销售的炭黑,购自Columbian Chemicals的CD和HV系列以及商标
Figure GDA0002380113230000184
Figure GDA0002380113230000185
Figure GDA0002380113230000186
以及购自Evonik(Degussa)Industries的CK系列和商标
Figure GDA0002380113230000187
Figure GDA0002380113230000188
以及适用于橡胶或轮胎应用的其它填料。合适的经化学官能化的炭黑包括在WO96/18688和US2013/0165560中公开的那些,其公开内容通过引用结合到本文中。可采用任何这些炭黑的混合物。
炭黑可以是经氧化的炭黑,例如使用氧化试剂预氧化的。氧化试剂包括,但不限于,空气,氧气,臭氧,NO2(包括NO2和空气的混合物),过氧化物例如过氧化氢,过硫酸盐包括过硫酸钠、过硫酸钾或过硫酸铵,次卤酸盐例如次氯酸钠,岩盐,卤酸盐或高卤酸盐(例如亚氯酸钠、氯酸钠或高氯酸钠),氧化性酸如硝酸、以及含过渡金属的氧化剂(如高锰酸盐、四氧化锇、铬氧化物或硝酸铈铵)。可使用氧化剂的混合物,特别是气态氧化剂(例如氧气和臭氧)的混合物。另外,也可以使用采用其它表面改性方法向颜料表面上引入离子基团或可离子化的基团(例如氯化和磺化)而制得的炭黑。可用于产生预氧化炭黑的方法在本领域中是已知的,并且几种类型的氧化炭黑是可商购获得的。
此外,作为选择,硅石浆料和/或去稳定化的硅石浆料可含有较少量(基于粒子材料总重量的10wt%或更少)的任何非硅石和非炭黑的颗粒,例如,氧化锌、或者碳酸钙、或用于橡胶组合物的其它粒子材料。
根据本领域技术人员已知的任何技术,硅石可以分散在水性流体中。粒子状硅石的分散体可以经受机械处理以例如降低粒度。这可以在分散体去稳定化之前或期间或之后完成,并且,可以以次要的方式或主要的方式对分散体的去稳定化作出贡献。该机械处理可包含或包括碾碎、研磨、粉碎、冲击、或高剪切流体加工、或者其任意组合。
例如,硅石浆料可以通过用碾碎工艺在流体中分散硅石来制造。这样的碾碎工艺将流体中的大部分硅石团聚体(例如超过80体积%)的尺寸减小到低于10微米、且优选低于1微米(胶体颗粒的典型尺寸范围)。流体可为水、水性流体、或非水性的极性流体。例如,浆料可包含约6wt%~约35wt%的含硅石的颗粒(基于浆料的重量)。硅石颗粒的尺寸可以使用光散射技术来测定。当在pH为6-8的情况下使用具有低残留盐含量的硅石颗粒在水中制备时,这样的浆料典型地具有高于或等于30mV的ζ电势量值并且在缓慢搅拌(例如搅拌速度低于60RPM)下在储存罐中显示出良好的抗聚集、胶凝和沉降的稳定性。由于经良好研磨的硅石颗粒通常因为硅石上的高的负电荷而在约7的pH下在水中稳定,因此,通常需要非常高的剪切以克服颗粒之间的排斥能垒以引起颗粒聚集。
在使用硅石(例如HDS颗粒)的示例性方法中,硅石可以与水组合,并且使所得到的混合物通过胶体磨、管道磨床等以形成分散体流体。然后,将该流体送入均化器,所述均化器将填料更精细地分散在载液中以形成浆料。示例性的均化器包括,但不限于,从Microfluidics International Corporation(Newton,Mass.,USA)商购获得的
Figure GDA0002380113230000191
系统。外外,诸如MS18、MS45和MC120型的均化器以及从APV HomogenizerDivision of APV Gaulin,Inc.(Wilmington,Mass.,USA)商购获得的系列均化器也是合适的。其它合适的均化器可商购获得,并且对于本领域技术人员而言在给定本公开的益处的情况下将是明晰的。均化器的最佳操作压力可取决于实际的装置、硅石的类型和/或硅石的含量。作为实例,均化器可在如下的压力下操作:约10psi~约5000psi或更高,例如,约10psi~约1000psi、约1000psi~约1700psi、约1700psi~约2200psi、约2200psi~约2700psi、约2700psi~约3300psi、约3300psi~约3800psi、约3800psi~约4300psi、或约4300psi~约5000psi。如前所述,在进行母料工艺之前,粒子状硅石的分散体被去稳定化,并且在任何碾碎或类似的机械过程之前、期间或之后,通过遵循本文提到的技术之一,可以使分散体被去稳定化。
取决于所采用的湿法母料方法,浆料中的高硅石浓度可用于减少去除多余的水或其它载体的任务。对于硅石颗粒的去稳定化的分散体而言,所用的液体可为水或其它水性流体或其它流体。对于该去稳定化的分散体而言,可使用约6wt%~约35wt%的填料,例如,约6wt%~约9wt%、约9wt%~约12wt%、约12wt%~约16wt%、约10wt%~约28wt%、约16wt%~约20wt%、约20wt%~约24wt%、约24wt%~约28wt%、或约28wt%~约30wt%,基于去稳定化的分散体的重量。对于该去稳定化的分散体而言,较高的硅石浓度可具有益处。例如,去稳定化的浆料中的硅石浓度可为至少10wt%或至少15wt%(基于浆料的重量)(例如约12wt%~约35wt%、或约15.1wt%~约35wt%、或约20wt%~约35wt%),这可以提供益处,例如,但不限于,减少的废水、提高的生产率、和/或工艺所需设备尺寸的降低。鉴于本公开的益处,本领域技术人员将认识到,硅石浆料(以及在去稳定化的硅石浆料中)的硅石浓度(单位为wt%)应当与湿法工艺期间的其它工艺变量协调,从而,在最终产物中达到期望的硅石与橡胶的比率(单位为phr)。
下面进一步描述包含硅石的分散体的细节。通常,分散体可以是包含超过一个相的材料,其中,至少一个相包含精细分开的相畴、或包括精细分开的相畴、或由精细分开的相畴构成,任选地在胶体尺寸范围内,分散在整个连续相中。包含硅石的分散体或浆料或者硅石分散体可被制备作为粒子状硅石在水性流体中的稳定悬浮液,其中,颗粒表面处的电荷防止颗粒聚集,并且分散体的特征在于大于或等于30mV的ζ电势量值。在这样的分散体中,硅石颗粒相对于聚集和聚结在稳定的分散体和/或悬浮液中保持例如至少8小时。稳定的分散体可以是保持恒定粒度的分散体,并且其中在缓慢或周期性搅拌的存在下,颗粒不沉降或凝胶化、或需要非常长的时间才看得出沉降,例如,在8小时、或12小时、或24小时、或48小时后无看得出的沉降。例如,为了使胶体硅石颗粒良好地分散在水性流体中,通常可以从8至10的pH观察到稳定性。进一步地,随着分散体的缓慢搅拌,硅石颗粒借助于颗粒表面电荷、颗粒表面极性、pH、所选择的颗粒浓度、颗粒表面处理及其组合而保持悬浮在流体中。流体可以是或包括水、水性混合物、或可与水混溶或部分混溶的流体,例如各种醇、醚和其它低分子量的可与水混溶的溶剂,优选具有C1-C5有机基团(例如,乙醇、甲醇、丙醇、乙醚、丙酮等)。如前所述分散体例如可包含约6wt%~约35wt%、约10wt%~约28wt%、约12wt%~约25wt%、或约15wt%~约30wt%的含硅石的颗粒,基于分散体的重量。
稳定的分散体可为胶体分散体。通常,胶体分散体或胶体可以是其中分散颗粒悬浮在整个另一物质中的物质。分散相颗粒具有大致约1纳米~约1000纳米、且典型地约100纳米~约500纳米的直径。在稳定的胶体分散体中,粒度、密度和浓度使得重力不导致颗粒容易地从分散体中沉淀下来。ζ电势的量值为30mV或以上的胶体通常被认为是稳定的胶体体系。胶体或分散体中的归因于电荷稳定性的颗粒稳定性(例如硅石)的降低可以通过ζ电势量值的降低来测定。粒度可以通过光散射法来测定。
去稳定化的硅石分散体或去稳定化的颗粒分散体可以理解为硅石在流体中的分散体,其中,减弱的颗粒-颗粒排斥力允许颗粒的簇集和硅石的颗粒-颗粒网络的形成或胶凝(一旦去稳定化的分散体受到有效量的剪切)。在某些情况中,机械剪切可导致硅石分散体的去稳定化和硅石颗粒的簇集。硅石浆料的去稳定化程度越高,颗粒聚集所需的剪切力越小,且颗粒聚集的速率越高。对于去稳定化的分散体而言,分散体可包含约6wt%~约35wt%的粒子状硅石(基于分散体的重量),例如,约8wt%~约35wt%、约10wt%~约28wt%、约12wt%~约25wt%、约15wt%~约30wt%。硅石颗粒的去稳定化的分散体中的水性流体可以是或包括水、水性混合物、或可与水混溶或部分混溶的流体,例如各种醇、醚和其它低分子量的可与水混溶的溶剂,优选具有C1-C5有机基团(例如,乙醇、甲醇、丙醇、乙醚、丙酮等)。为了形成硅石弹性体复合物,通过在浆料与胶乳混合之前使用有效量的去稳定剂如酸或盐或这两者来降低颗粒之间的静电能垒,浆料或分散体中的硅石颗粒的稳定性发生降低(即,去稳定化)。去稳定剂可被选择以使其能够降低防止颗粒在流体中发生聚集的颗粒表面之间的排斥电荷相互作用。
通过降低硅石分散体的pH使其接近硅石的等电点(对于典型的亲水性硅石为约pH2),可以获得硅石的去稳定化的分散体或者包含硅石的去稳定化的分散体。例如,能够通过添加酸以将粒子状硅石的分散体的pH降低至2~4由此将分散体的ζ电势的量值降至小于30mV例如低于约28mV(例如,对于甲酸作为去稳定剂而言,ζ电势量值为约18mV~约6mV)来获得去稳定化的硅石。在硅石浆料中加入酸和/或盐可以有效降低分散在水中的硅石颗粒的稳定性。酸或盐的摩尔浓度通常是决定去稳定化的硅石浆料的ζ电势的主要因素。通常,可以使用足够量的酸或盐或这两者来将硅石浆料的ζ电势的量值降低至小于30mV(例如28mV或更小,优选25mV或更小),以便产生含硅石的半固态或固态连续橡胶相。
用于使硅石分散体去稳定化的酸的量可以是用于获得小于30mV(例如28mV或更小、或25mV或更小)的在去稳定化的分散体中的ζ电势量值的量。酸可以是至少一种有机酸或无机酸。酸可以为或包括乙酸、甲酸、柠檬酸、磷酸、或硫酸、或者其任意组合。酸可以为或包括包含C1-C4烷基的酸。酸可以为或包括分子量或重均分子量低于200(例如低于100MW、或低于75MW、或约25Mw~约100MW)的酸。酸的量可以变化并取决于正在去稳定化的硅石分散体。酸的量可以为,例如,约0.8wt%~约7.5wt%,诸如约1.5wt%~约7.5wt%或更高(基于包含硅石分散体的流体的总重量)。如果酸是唯一使用的去稳定剂,则酸的量可以是这样的量,其使硅石分散体的pH降低至少2个pH单位、或降至至少5或更低的pH、或所使用的一种或多种酸的pKa范围,以便降低颗粒之间的电荷相互作用。
通过用包含一种或多种盐的去稳定剂处理硅石分散体来将浆料的ζ电势改变至上述范围,可获得去稳定化的分散体。所述盐可以为或包括至少一种金属盐(例如,来自第1、2或13族的金属)。所述盐可以为或包括钙盐、镁盐、或铝盐。示例性的抗衡离子包括硝酸根、乙酸根、硫酸根、卤素离子,例如氯根、溴根、碘根等。盐的量可为,例如,约0.2wt%~约2wt%或更高,例如,约0.5或1wt%~约1.6wt%(基于包含硅石的去稳定化的分散体的流体的重量)。
至少一种盐和/或至少一种酸的组合可用于使包括硅石的分散体去稳定化。
当通过添加至少一种盐来获得包括硅石的去稳定化的分散体时,去稳定化的分散体中的盐浓度可以为约10mM~约160mM、或者高于或低于该范围的其它量。
当通过添加至少一种酸来获得包括硅石的去稳定化的分散体时,该去稳定化的分散体中的酸浓度可以为约200mM~约1000mM(例如,约340mM~约1000mM)、或者高于或低于该范围的其它量。
去稳定化的分散体可以用硅石颗粒制成,该硅石颗粒被处理以包含适量的携带正电荷的表面官能团,从而使硅石表面上的净电荷被充分减少以降低分散体的ζ电势的量值至低于30mV。由于这样的表面处理,硅石表面上的净电荷可以是正的,而不是负的。带正电荷的官能团可通过化学连接或物理吸附而引入至硅石表面。例如,硅石表面可以在制备硅石分散体之前或之后用N-三甲氧基甲硅烷基丙基-N,N,N-三甲基氯化铵处理。也可以在硅石表面上吸附阳离子型涂布剂,例如,含胺的分子和碱性氨基酸。据推测,硅石颗粒表面上的净正电荷可以通过杂凝聚来增强包含带负电荷的橡胶颗粒的胶乳的凝聚。
关于含有至少一种弹性体胶乳的″第二流体″,该流体可含有一种或多种弹性体胶乳。弹性体胶乳可以被认为是橡胶的稳定的胶体分散体,并且可以含有,例如,基于胶乳的总重量的约10wt%~约70wt%的橡胶。例如,橡胶可以分散在流体(例如水或其它水性流体)中。该流体的水性物含量(或水含量)可以为40wt%或更高,例如,50wt%或更高、或60wt%或更高、或70wt%或更高,例如约40wt%~90wt%,基于该包含至少一种弹性体胶乳的流体的重量。合适的弹性体胶乳包括天然和合成弹性体胶乳和胶乳共混物。例如,弹性体胶乳可以通过聚合已经用表面活性剂乳化的单体如苯乙烯来合成制备。胶乳应适合所选的湿法母料工艺和最终橡胶制品的预期目的或应用。以下将在本领域技术人员的能力范围内:考虑到本公开的益处,选择适合的弹性体胶乳或适合的弹性体胶乳共混物以用于本文公开的方法和装置中。
弹性体胶乳可以为或包括天然橡胶,例如天然橡胶的乳液。示例性的天然橡胶胶乳包括,但不限于,新鲜胶乳、胶乳浓缩物(例如,通过蒸发、离心或乳化产生)、胶清(例如,通过离心在产生胶乳浓缩物后剩余的上清液)以及这些中的任何两种或更多种以任何比例的共混物。天然橡胶胶乳典型地用氨处理以对其进行保护,并且,经处理的胶乳的pH典型地在9~11的范围内。天然橡胶胶乳的氨含量可以调节,并且可以降低,例如,通过使氮气鼓泡穿过或通过胶乳。典型地,胶乳供应商通过添加磷酸二铵来使胶乳去除淤渣。它们也可以通过添加月桂酸铵来使胶乳稳定。天然橡胶胶乳可被稀释至所需的干橡胶含量(DRC)。因此,本文可以使用的胶乳可以是经除渣的胶乳。也可以包括辅助防腐剂,二硫化四甲基秋兰姆和氧化锌的混合物(TZ溶液)。胶乳应适合所选的湿法母料工艺和最终橡胶制品的预期目的或应用。胶乳典型地被提供在水性载液(例如水)中。含水载液的量可以变化,例如约30wt%~约90wt%,基于流体的重量。水性载液的量可变化,且例如为约30wt%~约90wt%(基于流体的重量)。换句话说,这样的天然橡胶胶乳可包含或者可被调整为包含,例如,约10wt%~约70wt%的橡胶。鉴于本公开的益处以及行业中普遍公认的选择标准的知识,选择合适的胶乳或胶乳的共混物将完全在本领域技术人员的能力范围内。
天然橡胶胶乳也可能以一些方式进行化学改性。例如,它可被处理,从而,以化学或酶的方式来改性或还原各种非橡胶组分,或者,橡胶分子本身可用各种单体或其它化学基团例如氯进行改性。经环氧化的天然橡胶胶乳可为特别有益的,因为经环氧化的橡胶被认为与硅石表面相互作用(Martin等,Rubber Chemistry and Technology,2015年5月,doi:10.5254/rct15.85940)。对天然橡胶胶乳进行化学改性的示例性方法描述在如下中:欧洲专利公开No.1489102、1816144和1834980;日本专利公开No.2006152211、2006152212、2006169483、2006183036、2006213878、2006213879、2007154089和2007154095;英国专利No.GB2113692;美国专利No.6,841,606和7,312,271;以及美国专利公开No.2005-0148723。也可以使用本领域技术人员已知的其它方法。
其它示例性弹性体包括,但不限于:橡胶;1,3-丁二烯、苯乙烯、异戊二烯、异丁烯、2,3-二烷基-1,3-丁二烯(其中,烷基可以是甲基、乙基、丙基等)、丙烯腈、乙烯、丙烯等的聚合物(例如均聚物、共聚物和/或三元共聚物)。通过差示扫描量热法(DSC)测量,弹性体可具有约-120℃~约0℃的玻璃化转变温度(Tg)。实例包括,但不限于,苯乙烯-丁二烯橡胶(SBR),天然橡胶及其衍生物如氯化橡胶,聚丁二烯,聚异戊二烯,聚(苯乙烯-共-丁二烯)以及它们中任一者的经油增量的衍生物。也可使用前述物质的任何共混物。胶乳可以在水性载液中。特别合适的合成橡胶包括:苯乙烯和丁二烯的共聚物,其包含约10wt%~约70wt%的苯乙烯和约90~约30wt%的丁二烯,例如,19份苯乙烯和81份丁二烯的共聚物、30份苯乙烯和70份丁二烯的共聚物、43份苯乙烯和57份丁二烯的共聚物、及50份苯乙烯和50份丁二烯的共聚物;共轭二烯如聚丁二烯、聚异戊二烯、聚氯丁二烯等的聚合物和共聚物,以及这样的共轭二烯与能够与之共聚的含烯属基团的单体(如苯乙烯、甲基苯乙烯、氯苯乙烯、丙烯腈、2-乙烯基-吡啶、5-甲基-2-乙烯基吡啶、5-乙基-2-乙烯基吡啶、2-甲基-5-乙烯基吡啶、经烯丙基取代的丙烯酸酯、乙烯基酮、甲基异丙烯基酮、甲基乙烯基醚、α-亚甲基羧酸以及其酯和酰胺如丙烯酸和二烷基丙烯酸酰胺)的共聚物。乙烯和其它高α烯烃如丙烯、1-丁烯和1-戊烯的共聚物也在此适用。也可以使用两种或更多种弹性体胶乳的共混物,包括合成和天然橡胶胶乳的共混物或者具有两种或更多种合成或天然橡胶。
除了弹性体和填料以及偶联剂之外,橡胶组合物还可含有各种加工助剂、增量油、抗降解剂、抗氧化剂和/或其它添加剂。
弹性体复合物中所存在的硅石的量(单位为份/100橡胶、或phr)可为约15phr~约180phr、约20phr~约150phr、约25phr~约80phr、约35phr~约115phr、约35phr~约100phr、约40phr~约100phr、约40phr~约90phr、约40phr~约80phr、约29phr~约175phr、约40phr~约110phr、约50phr~约175phr、约60phr~约175phr等。
弹性体复合物可任选地包括用于颜色、导电性和/或UV稳定性和/或用于其它目的的炭黑的量。
如所述的,弹性体复合物中所含的(增强等级和非增强等级的)炭黑的范围可为,例如,从大于10wt%至约55wt%、或者从大于10wt%至约50wt%、或者从大于15wt%至约40wt%,基于弹性体复合物中所存在的全部颗粒的重量。可以使用任何等级或类型的炭黑,例如,增强或半增强轮胎级炉法炭黑等。
在生产弹性体复合物的任何方法中,在形成含硅石和炭黑的固态或半固态连续橡胶相之后,所述方法还可以包括一个或多个以下步骤:
-一个或多个存储步骤或进一步的凝固或凝聚步骤以便产生进一步的弹性;
-一个或多个脱水步骤可用于使复合物脱水以获得经脱水的复合物;
-一个或多个挤出步骤;
-一个或多个压延步骤;
-一个或多个研磨步骤以获得经研磨的复合物;
-一个或多个造粒步骤;
-一个或多个打包步骤以获得经打包的产物或混合物;
-经打包的混合物或产物可被分开以形成经造粒的混合物;
-一个或多个混合或配混步骤以获得经配混的复合物。
作为进一步的实例,在形成含硅石和炭黑的固态或半固态连续橡胶相之后,可以发生如下顺序的步骤,并且每个步骤可以重复任意次数(具有相同或不同的设置):
-一个或多个存储步骤或进一步的凝聚步骤以产生进一步的弹性
-使复合物(例如,离开反应区的弹性体复合物)脱水以获得经脱水的复合物;
-对经脱水的复合物进行混合或配混以获得经配混的混合物;
-研磨该经配混的混合物以获得经研磨的混合物(例如,辊磨);
-对该经研磨的混合物进行造粒或混合;
-任选地,在造粒或混合后,对混合物进行打包以获得经打包的混合物;
-任选地,分开该经打包的混合物并进行混合。
在任何实施方案中,偶联剂可以在任何步骤中(或在多个步骤或位置中)引入,只要偶联剂有机会变得分散在弹性体复合物中。
仅作为一个实例,离开反应区或反应区域的含硅石和炭黑的固态或半固态连续橡胶相可通过合适的装置(例如带或传送带)转移到脱水挤出机中。合适的脱水挤出机是公知的且可从例如French Oil Mill Machinery Co.(Piqua,Ohio,USA)商购获得。可选择地,或者此外,含硅石和炭黑的固态或半固态连续橡胶相可例如在金属板之间进行压缩,以排出水性流体相的至少一部分,例如,排出水性流体直至这样的材料的水含量低于40wt%。
通常,后处理步骤可包括压缩弹性体复合物以除去约1wt%~约15wt%或更高的水性流体相(基于弹性体复合物的总重量)。脱水挤出机可使得弹性体复合物从例如大致约40%~约95%的水含量达到大致约5%~约60%的水含量(例如,约5%~约10%的水含量、约10%~约20%的水含量、约15%~约30%的水含量、或约30%~约50%的水含量),其中,所有的wt%都基于复合物的总重量。脱水挤出机可用于将弹性体复合物的水含量降至约35wt%或其它量。最佳的水含量可随着所用的弹性体、填料的量和/或类型、以及用于脱水产品的塑炼的设备而发生变化。可以将弹性体复合物脱水至所需的水含量,然后,将所得的脱水产物进一步塑炼,同时干燥至所需的水分水平(例如,约0.5%~约10%,诸如约0.5%~约1%、约1%~约3%、约3%~约5%、或约5%~约10%,优选低于1%,所有的wt%都基于产物的总重量)。赋予材料的机械能可以提供橡胶性能的改善。例如,脱水产物可以用连续混合机、密炼机、双螺杆挤出机、单螺杆挤出机或辊磨机中的一种或多种进行机械加工。该任选的混合步骤可以具有这样的能力:塑炼混合物和/或产生表面区域或暴露表面,这可以允许去除可能存在于混合物中的水(至少其一部分)。适合的塑炼设备是公知的且可商购获得,包括,例如,来自Farrel Corporation of Ansonia,CT,USA的Unimix ContinuousMixer和MVX(混合、通风、挤出)机、来自Pomini,Inc.的长型连续混合机、PominiContinuous Mixer、双转子同向旋转啮合挤出机、双转子反向旋转非啮合挤出机、Banbury混合机、Brabender混合机、啮合式密炼机、捏和式密炼机、连续配混挤出机、Kobe Steel,Ltd.生产的双轴混炼挤出机、和Kobe Continuous Mixer。替代性的塑炼装置对于本领域技术人员来说是熟悉的并且是可以使用的。
当经脱水的产物在所需的装置中进行处理时,该装置将能量赋予材料。不受限于任何具体理论,据信,在机械塑炼期间产生的摩擦对经脱水的产物进行加热。该热量中的一些通过加热和汽化经脱水的产物中的水分而消耗。一部分水也可以通过与加热并行地挤压材料来得以移除。温度应该足够高,以迅速地将水蒸发成释放至大气和/或从装置移出的蒸汽,但不能太高以致于使橡胶烧焦。经脱水的产物可以达到约130℃~约180℃的温度,例如约140℃~约160℃,当在塑炼之前或期间加入偶联剂时尤其如此。偶联剂可以含有少量的硫,且温度应保持在足够低的水平以防止塑炼期间橡胶交联。
作为选择,添加剂可以在机械混合机中与经脱水的产物组合。具体地说,可以向机械混合机中加入添加剂,例如,填料(其可以与混合机中使用的填料相同或不同;示例性的填料包括硅石、炭黑和/或氧化锌)、其它弹性体、其它或额外的母料(即,相同或不同的包含硅石和/或炭黑的弹性体复合物)、抗氧化剂、偶联剂、增塑剂、加工助剂(例如,硬脂酸,其也可用作固化剂、液态聚合物、油、蜡等)、树脂、阻燃剂、增量油、和/或润滑剂、以及它们的任何混合物。额外的弹性体可以与经脱水的产物组合以产生弹性体共混物。合适的弹性体包括在上述混合过程中以胶乳形式使用的任何弹性体以及未以胶乳形式获得的弹性体如EPDM,并且可以与含硅石的弹性体复合物中的弹性体相同或不同。示例性的弹性体包括,但不限于:橡胶;1,3-丁二烯、苯乙烯、异戊二烯、异丁烯、2,3-二烷基-1,3-丁二烯(其中烷基可以是甲基、乙基、丙基等)、丙烯腈、乙烯、丙烯等的聚合物(例如均聚物、共聚物和/或三元共聚物)。生产母料共混物的方法公开于共同拥有的美国专利No.7,105,595、6,365,663和6,075,084以及PCT公开WO2014/189826中。抗氧化剂(降解抑制剂的实例)可以是胺型抗氧化剂、酚型抗氧化剂、咪唑型抗氧化剂、氨基甲酸酯的金属盐、对苯二胺和/或二氢三甲基喹啉、聚合的奎宁抗氧化剂、和/或蜡和/或用于弹性体配制物中的其它抗氧化剂。具体的实例包括,但不限于,N-(1,3-二甲基丁基)-N′-苯基-对-苯二胺(6-PPD,例如,得自SumitomoChemical Co.,Ltd.的ANTIGENE 6C和得自Ouchi Shinko Chemical Industrial Co.,Ltd.的NOCLAC 6C)、来自Seiko Chemical Co.,Ltd.的″Ozonon″6C、聚合的1,2-二氢-2,2,4-三甲基喹啉(TMQ,例如得自R.T.Vanderbilt的Agerite Resin D)、2,6-二叔丁基-4-甲基苯酚(作为来自Vanderbilt Chemicals LLC的Vanox PC提供)、丁基羟基甲苯(BHT)和丁基羟基茴香醚(BHA)等。其它代表性的抗氧化剂可以是,例如,二苯基-对-苯二胺以及例如在TheVanderbilt Rubber Handbook(1978)的第344-346页中公开的其它那些。
偶联剂可以为或包括一种或多种硅烷偶联剂、一种或多种锆酸酯偶联剂、一种或多种钛酸酯偶联剂、一种或多种硝基偶联剂、或其任何组合。偶联剂可以为或包括双(3-三乙氧基甲硅烷基丙基)四硫烷(例如,来自Evonik Industries的Si 69、来自StruktolCompany的Struktol SCA98)、双(3-三乙氧基甲硅烷基丙基)二硫烷(例如,来自EvonikIndustries的Si 75和Si 266、来自Struktol Company的Struktol SCA985)、3-氰硫基丙基-三乙氧基硅烷(例如,来自Evonik Industries的Si 264)、γ-巯基丙基-三甲氧基硅烷(例如,来自Evonik Industries的VP Si 163、来自Struktol Company的StruktolSCA989)、γ-巯基丙基-三乙氧基硅烷(例如,来自Evonik Industries的VP Si 263)、锆二新烷醇酯基二(3-巯基)丙酸酯基-O(zirconium dineoalkanolatodi(3-mercapto)propionato-O)、N,N′-双(2-甲基-2-硝基丙基)-1,6-二氨基己烷、S-(3-(三乙氧基甲硅烷基)丙基)辛硫醇酯(S-(3-(triethoxysilyl)propyl)octanethioate)(例如,来自Momentive,Friendly,WV的NXT偶联剂)、和/或化学上相似或具有一个或多个相同化学基团的偶联剂。偶联剂的其它具体实例的商品名,包括,但不限于,来自Evonik Industries的VPSi 363。应认识到,可将弹性体、添加剂以及额外的母料的任何组合添加至例如在配混机中的经脱水的产物中。
作为选择,经脱水的产物可以使用密炼机如Banbury或Brabender混合机进行塑炼。可首先使经脱水的产物达到约3wt%~约40wt%(例如,约5wt%~约20wt%、或约20wt%~约30wt%)的水分含量。该水分含量可以通过如下实现:脱水至所需的水平;或者,作为第一步骤,将经脱水的产物的碎屑脱水至中等的水分含量,然后,通过加热所得的经脱水的产物、或通过使水在室温下从经脱水的产物蒸发、或通过本领域技术人员熟悉的其它方法来进一步降低水分含量。经脱水的产物可以在密炼机中塑炼,直至达到所需的水分水平或机械能输入。经脱水的产物可被塑炼直至达到预定的温度,使其冷却,然后,一次或多次地放回密炼机中,以便赋予材料额外的能量。温度的实例包括约140℃~约180℃,例如,约145℃~约160℃、或约150℃~约155℃。经脱水的产物可以在密炼机中的每次塑炼后在辊磨机中进行压片。可选择地,或者此外,已经在Banbury或Brabender混合机中进行塑炼的经脱水的产物可在开炼机中进一步塑炼。
作为选择,经塑炼的产物可在开炼机上进一步加工。经塑炼的产物可作为挤出物的长度从连续配混机中排出,并可在进入开炼机前切成较小的长度。经塑炼的产物可以任选地通过输送机输送到开炼机。输送机可以是输送带、导管、管道、或者用于将来自连续配混机的经塑炼的产物输送到开炼机的其它合适的装置。开炼机可以包括一对辊子,其可以任选地被加热或冷却以提供增强的开炼机操作性。开炼机的其它操作参数可以包括辊之间的间隙距离、堆积高度(即,辊之间的间隙中以及辊顶上的材料的蓄积)、以及每个辊的速度。每个辊的速度和用于冷却每个辊的流体的温度可以独立地针对每个辊进行控制。所述间隙距离可为约3mm~约10mm、或约6mm~约8mm。辊速可为约15rpm~约70rpm,并且辊可以相对于磨机的入口侧地朝向彼此滚动。摩擦比(收集辊(例如,其上收集经塑炼的产物的辊)的速度与后辊的速度的比值)可以为约0.9~约1.1。用于使辊冷却的流体可为约35℃~约90℃,例如,约45℃~约60℃、约55℃~约75℃、或约70℃~约80℃。除了控制开炼机的操作以提供所需的塑炼水平和使经塑炼的产物干燥以外,还期望开炼机的输出物应该作为光滑的片材收集在收集辊上。不受限于任何具体理论,认为,较冷的辊温有助于实现该目标。开炼机可将经塑炼的产物的温度降至大致约110℃~约140℃。经塑炼的产物在磨机中的停留时间可以部分地由辊速、间隙距离以及所需的塑炼和干燥的量来确定,并且,对于已经经过塑炼的材料,例如,在双转子连续混合机中,停留时间可为约10分钟~约20分钟。
本领域技术人员将认识到,可以采用设备的不同组合来向根据各种实施方案制造的含硅石和炭黑的固态连续橡胶相提供塑炼和干燥。取决于所使用的设备,在不同于上述条件的条件下对它们进行操作以赋予材料不同的工作量和干燥可为合乎期望的。此外,采用串联的超过一种的特定类型的设备(例如开炼机或密炼机)或使经塑炼的产物通过给定的设备超过一次可为合乎期望的。例如,经塑炼的产物可以通过开炼机两次或三次或更多次,或者,通过两个或三个或更多个串联的开炼机。在后一种情况下,在不同的操作条件(例如速度、温度、不同(例如较高)的能量输入等)下操作各开炼机可为合乎期望的。经塑炼的产物可在密炼机中进行塑炼后通过一个、两个、或三个开炼机。
弹性体复合物可用于生产弹性体或包含橡胶的制品。作为选择,弹性体复合物可被用于以下物品中或者被生产以用于以下物品中:轮胎的不同部分,例如,轮胎、轮胎胎面、轮胎侧壁、用于轮胎的衬线包层、和用于翻新轮胎的缓冲胶。可选择地,或者此外,弹性体复合物可用于:软管、密封物、衬垫、防振制品、履带、履带垫(用于诸如推土机等的轨道推进设备)、发动机支架、地震稳定器、采矿设备如筛网、采矿设备衬里、传送带、溜槽衬里、淤浆泵衬里、泥浆泵部件如叶轮、阀座、阀体、活塞毂、活塞杆、柱塞、用于各种应用(如混合浆料)的叶轮和淤浆泵叶轮、碾碎磨机的衬垫、旋风分离器和旋液分离器、膨胀接头、水上设备如泵(例如泥浆泵和舷外马达泵)的衬里、软管(例如清淤软管和舷外马达软管)、以及其它水上设备、用于水上、石油、航空以及其它应用的轴封、螺旋桨轴、用于输送例如油砂和/或沥青砂的管道的衬里、以及其中需要耐磨性和/或增强的动态性能的其它应用。经硫化的弹性体复合物可用于其中需要耐磨性和/或增强的动态性能的辊、凸轮、轴、管道、车辆用胎面衬套、或其它应用中。
传统的配混技术可以用于根据所需的用途将硫化试剂和本领域已知的其它添加剂(包括前面讨论的与经脱水的产物相关的添加剂)与经干燥的弹性体复合物组合起来。
本发明进一步涉及通过本发明在此描述的任何一种或多种方法形成的弹性体复合物。采用本发明,含硅石和炭黑的固态橡胶相制品可被生产且包含分散在橡胶(例如天然橡胶)中的至少25phr的硅石(例如,至少29phr、至少35phr、至少40phr的硅石)以及至少40wt%的水性流体并具有长度尺寸(L),其中,含硅石和炭黑的固态连续橡胶相制品可被拉伸至(L)的至少130-150%而不破裂。含硅石和炭黑的固态橡胶相制品可具有分散在橡胶(例如天然橡胶)中的至少10phr的炭黑,例如,至少10phr的炭黑、至少15phr的炭黑、或至少20phr的炭黑。
除非另外指明,否则本文中以百分比形式描述的所有的材料比例都是以wt%计。
通过以下实施例将进一步阐明本发明,这些实施例本质上仅是示例性的。
实施例
在这些实施例中,″新鲜胶乳″是干橡胶含量约为30wt%的新鲜胶乳(MuhibbahLateks Sdn Bhd,Malaysia)。″胶乳浓缩物″是使用纯水或具有0.6wt%~0.7wt%氨的水稀释约50%达到约30wt%干橡胶含量的胶乳浓缩物(高氨等级,来自Muhibbah Lateks SdnBhd,Malaysia,或来自Chemionics Corporation,Tallmadge,Ohio)。除非另有说明,否则″硅石″是
Figure GDA0002380113230000311
Z1165 MP沉淀硅石,其来自Solvay USA Inc.,Cranbury,NJ(以前的Rhodia)。
热重分析。根据ISO 6231方法,通过热重分析(TGA)测定实际硅石加载量水平。
产物的水含量。将测试材料切成毫米大小的片并装入湿度天平(例如MB35型和MB45型;Ohaus Corporation,Parsippany NJ冲进行测量。在130℃下测量水含量20分钟至30分钟,直到测试样品达到恒定的重量。
浆料ζ电势。在这些实施例中,使用来自Colloidal Dynamics,LLC,Ponte VedraBeach,Florida USA的ZetaProbe AnalyzerTM测量粒子浆料的ζ电势。采用多频电声学技术,ZetaProbe在高达60体积%的颗粒浓度下直接测量ζ电势。该仪器首先使用ColloidalDynamics提供的KSiW校准流体(2.5mS/cm)进行校准。然后,将40g样品置于具有搅拌棒的30mL Teflon杯(部件号A80031)中,并将该杯以250rpm的搅拌速度置于搅拌基座(部件号A80051)上。使用浸渍探针173以单点模式进行测量,在环境温度(约25℃)下进行5点运行。使用由Colloidal Dynamics提供的ZP版的2.14c PolarTM软件分析数据。根据颗粒上电荷的极性,ζ电势值可以是负值或正值。ζ电势的″量值″是指绝对值(例如,-35mV的ζ电势值比-20mV的ζ电势值高)。ζ电势的量值反映分散体中的类似带电颗粒之间的静电排斥程度。ζ电势的量值越高,分散体中的颗粒越稳定。对如下所述制备的粒子状硅石浆料进行ζ电势测量。
称重干燥的硅石,并且,使用5加仑桶和具有笼罩式搅拌器的高剪切顶置式实验室混合机(Silverson Model AX3,Silverson Machines,Inc.,East Longmeadow,MA;在5200-5400rpm下操作30分钟至45分钟)与去离子水进行组合。一旦硅石大致分散在水中并能够泵送,则硅石浆料通过蠕动泵(Masterflex 7592-20系统-驱动和控制器,使用I/P 73管的77601-10泵;Cole-Palmer,Vernon Hills,IL)转移至位于运行罐(30加仑的凸形底部开口容器)中的具有在线高剪切转子-定子混合机(位于蠕动泵之后的Silverson Model 150LB,以60Hz运行)的混合回路中并进行研磨,从而进一步分解硅石团聚体和剩余的硅石颗粒。然后,该运行罐中的浆料在2L/min下使用相同的蠕动泵通过混合回路循环一段时间,该时间足以使周转量至少为总浆料体积的5-7倍(>45分钟)以确保任何硅石团聚体都经过适当的研磨和分布。在运行罐中使用具有以约60rpm旋转的低剪切锚式叶片的顶置式混合机(IkaEurostar power control visc-P7;IKA-Works,Inc.,Wilmington,NC)以防止硅石颗粒的凝胶化或沉降。在碾碎后,将酸(甲酸或乙酸,试剂级,来自Sigma Aldrich,St.Louis,MO)或盐(硝酸钙、氯化钙、乙酸钙或硫酸铝,试剂级,来自Sigma Aldrich,St.Louis,MO)加入到运行罐中的浆料中。浆料中的硅石的量以及酸或盐的类型和浓度在下面的具体实施例中给出。
示例性过程B。在下面的实施例中指出,利用示例性过程B进行示例性方法。在方法B中,称重干燥的硅石,并且,使用5加仑桶和具有笼罩式搅拌器的高剪切顶置式实验室混合机(Silverson Model AX3,Silverson Machines,Inc.,East Longmeadow,MA;在5200-5400rpm下操作30分钟至45分钟)与去离子水进行组合。一旦硅石大致分散在水中并能够泵送,则硅石浆料通过蠕动泵(Masterflex 7592-20系统-驱动和控制器,使用I/P 73管的77601-10泵;Cole-Palmer,Vernon Hills,IL)转移至位于运行罐(30加仑的凸形底部开口容器)中的具有在线高剪切转子-定子混合机(位于蠕动泵之后的Silverson Model 150LB,以60Hz运行)的混合回路中并进行研磨,从而进一步分解硅石团聚体和剩余的硅石颗粒。然后,该运行罐中的浆料在2L/min下通过混合回路循环一段时间,该时间足以使周转量至少为总浆料体积的5-7倍(>45分钟)以确保任何硅石团聚体都经过适当的研磨和分散。在运行罐中使用具有以约60rpm旋转的低剪切锚式叶片的顶置式混合机(Ika Eurostar powercontrol visc-P7;IKA-Works,Inc.,Wilmington,NC)以防止硅石颗粒的凝胶化或沉降。在碾碎后,将酸(甲酸或乙酸,试剂级,来自Sigma Aldrich,St.Louis,MO)或盐(硝酸钙、氯化钙、乙酸钙或硫酸铝盐,试剂级,来自Sigma Aldrich,St.Louis,MO)加入到运行罐中的浆料中。
使用蠕动泵(Masterflex 7592-20系统-驱动和控制器,使用I/P 73管的77601-10泵;Cole-Palmer,Vernon Hills,IL),使胶乳泵送通过第二入口(11)并进入类似于图1(b)所示配置的反应区(13)。胶乳流动速率调整到约25kg/h~约250kg/h之间以改变弹性体复合物的硅石与橡胶的比率。
当硅石很好地分散在水中时,通过隔膜计量泵(LEWA-Nikkiso America,Inc.,Holliston,MA)将浆料从运行罐泵送通过脉冲式阻尼器(以减小由于隔膜动作引起的压力波动),经由循环回路″T″连接器进入反应区或运行罐中。浆料的方向由两个气动球阀控制,一个将浆料引导至反应区,且另一个将浆料引导至运行罐。当准备将硅石浆料与胶乳混合时,通过关闭两个阀门,将供给通向反应区的第一入口(3)的管线加压至100psig~150psig。然后,打开将浆料引导至反应区的球阀,并且,在初始压力100psig到150psig下,将加压硅石浆料供入图1(b)所示的喷嘴(ID 0.020’~0.070”)(3a)中,使浆料作为高速射流引入反应区。当与反应区内的胶乳接触时,以15m/s~80m/s的速度流动的硅石浆料的射流夹带以0.4m/s~5m/s流动的胶乳。在根据本发明实施方案的实施例中,硅石浆料对胶乳的冲击导致硅石颗粒与胶乳的橡胶颗粒的紧密混合,并且,橡胶发生凝聚,将硅石浆料和胶乳转化为这样的弹性体复合物,其包含硅石颗粒以及捕获在含硅石的固态或半固态连续橡胶相内的40wt%~95wt%的水。对硅石浆料流动速率(40kg/hr~80kg/hr)或胶乳流动速率(25kg胶乳/hr~300kg胶乳/hr)或这两者进行调整,以改变在所得的产品中的硅石与橡胶的比率(例如15-180phr的硅石),并达到所需的连续生产率(30kg/hr~200kg/hr,基于干物质)。下面的实施例中列出了脱水和干燥后的具体的硅石和橡胶的比率(phr)内容。
方法B脱水。
从反应区排出的物料被收集并且夹在捕集盘内的两块铝板之间。然后将该″三明治″插入液压机的两个压板之间。当在铝板上施加2500表压时,橡胶制品内所捕获的水被挤出。如果需要,将经挤压的材料折叠成较小的块,并使用液压机重复该挤压过程,直到橡胶制品的水含量低于40wt%。
方法B干燥和冷却。将经脱水的产物放入Brabender混合机(300cc)中进行干燥和塑炼,形成经塑炼的脱水弹性体复合物。将足够的经脱水的材料装入混合机中以覆盖转子。混合机的初始温度设定为100℃,转子速度一般为60rpm。残留在经脱水的产物中的水在混合过程中转化为蒸汽并从混合机中蒸发出来。当混合机中的材料由于蒸发而膨胀时,必要时除去任何溢出的材料。硅烷偶联剂(NXT硅烷,获自Momentive Performance Materials,Inc.,Waterford,NY;8wt%硅烷,基于硅石重量)和/或抗氧化剂(6-PPD,N-(1,3-二甲基丁基)-N′-苯基-对-苯二胺,Flexsys,St.Louis,MO)在混合机温度高于140℃时被任选地加入到混合机中。当混合机的温度达到160℃时,混合机内部的材料通过在材料倾倒前改变转子速度2分钟而保持在160℃~170℃。然后,在开炼机上加工该经塑炼的脱水弹性体复合物。从磨机中取出的材料的水分含量通常低于2wt%。
橡胶配混料的制备。
通过方法B获得的干燥弹性体复合物根据表A中的配方和表B中概述的过程进行配混。对于在干燥过程中加入硅烷或抗氧化剂的硅石弹性体复合物,最终的配混物组成如表A中所限定。相应地调节在配混期间添加的硅烷偶联剂和/或抗氧化剂的量。
表A
Figure GDA0002380113230000351
*N-(1,3-二甲基丁基)-N′-苯基-对-苯二胺(Flexsys,St.Louis,MO)
**主要活性组分:S-(3-(三乙氧基甲硅烷基)丙基)辛硫醇酯(S-(3-(triethoxysilyl)propyl)octanethioate)(Momentive,Friendly,WV)
***二苯胍(Akrochem,Akron,OH)
****N-叔丁基苯并噻唑-2-次磺酰胺(Emerald Performance Materials,Cuyahoga Falls,OH)
NR=天然橡胶
S=如所述的那样
表B
Figure GDA0002380113230000361
在设定为150℃的热压机中实施硫化,通过常规橡胶流变仪确定硫化时间(即,T90+T90的10%,其中T90是实现90%硫化的时间)。
橡胶/硅石配混料的性质。
根据ASTM标准D-412测量硫化样品的拉伸性能(T300和T100、断裂伸长率、拉伸强度)。在0.01%~60%的扭转下、在10Hz和60℃下,使用动态应变扫描仪测定tanδ60°。Tanδ最大被看作是在该应变范围内的tanδ60的最大值。
实施例1。
如前面关于浆料ζ电势测试方法所述的那样制备具有27.8wt%
Figure GDA0002380113230000371
1165硅石的硅石浆料。然后,用去离子水或从27.8wt%浆料的超速离心获得的上清液稀释浆料,以制备具有各种硅石浓度的一系列硅石浆料。测量各种硅石浆料的ζ电势,以显示浆料中的硅石浓度与浆料的ζ电势之间的关系。如表1所示,硅石浆料的ζ电势似乎取决于使用去离子水制备硅石浆料时的硅石浓度。然而,如表2所示,当使用从27.8wt%浆料的超速离心获得的上清液稀释浆料时,在不同硅石浓度下的ζ电势保持大致相同。
表1使用去离子水制成的硅石浆料的ζ电势。
浆料中的硅石浓度(w/w) 6% 10% 15% 20% 22% 25%
ζ电势(mV) -46.4 -42.7 -39.6 -36.2 -34.7 -32.3
pH 5.19 5.04 4.92 4.86 4.83 4.77
表2通过用27.8wt%硅石浆料的上清液稀释27.8wt%硅石浆料制成的硅石浆料的ζ电势。
浆料中的硅石浓度(w/w) 6% 22%
ζ电势(mV) -31.5 -31.4
pH 4.86 4.79
该结果表明,当这样的硅石浆料用去离子水稀释时,ζ电势的量值的增加主要是由于浆料的离子强度的降低。据信,硅石浆料中的离子来自于残留的盐,所述盐存在于来自硅石颗粒制造过程的硅石中。硅石浆料的ζ电势的高的量值(全部超过30mV)表明:硅石在浆料中具有高的静电稳定性。
实施例2。
表3列出了向硅石浆料中加入不同浓度的盐或酸对这些浆料的ζ电势的影响。通过上述浆料ζ电势测试方法在去离子水中制备浆料。表3中的数据说明了硅石浆料和经去稳定化的硅石浆料的ζ电势对硅石浓度、盐浓度和酸浓度的依赖性。在硅石浆料中加入盐或酸可降低ζ电势的量,从而降低硅石浆料的稳定性。在硅石浆料中加入盐或酸降低了ζ电势的量值,从而降低了硅石浆料的稳定性。如表3所示,ζ电势主要取决于浆料或去稳定化的浆料中的盐或酸的浓度,而不取决于硅石浓度。
表3在不同浆料浓度、盐浓度和酸浓度下的浆料的ζ电势和硅石的不稳定性。
Figure GDA0002380113230000381
Figure GDA0002380113230000391
ND=未测得。
表3所示的结果说明硅石浆料和经去稳定化的硅石浆料的ζ电势对乙酸浓度和硅石浓度的依赖性。数据表明,ζ电势值比硅石浓度更依赖于酸浓度。对于甲酸,观察到ζ电势与酸浓度和硅石浓度之间的类似关系。在给定的浓度下,甲酸比乙酸降低更多的ζ电势量值。如表3所示,甲酸和氯化钙的组合对降低ζ电势量值是有效的。表3的结果表明,通过添加去稳定剂如酸或盐或酸和盐的组合,可以有效地减少浆料中的硅石颗粒的稳定性。对于硝酸钙和醋酸钙,观察到类似的结果。
实施例3。
在该实施例中,证实了在硅石分散体与弹性体胶乳接触之前使硅石颗粒的分散体不稳定的重要性。具体地说,使用图1中的混合装置(c)进行四个实验,该混合装置(c)装备有三个入口(3、11、14)用于将多达三个的流体引入封闭式反应区(13),使得一个流体以90度角作为高速射流以15m/s~80m/s的速度撞击其他流体(参见图1(c))。在该四个实验的三个中,如方法B中所述磨碎硅石,且任选地,如下面实施例3-A至3-D中所述的那样加入乙酸。然后将浆料或去稳定化的浆料加压至100psig至150psig,并通过入口(3)以60升/小时(L/hr)的体积流动速率进料至封闭式反应区,使得浆料或去稳定化的浆料以80m/s作为高速射流引入反应区。同时,通过蠕动泵以106L/hr的体积流动速率和1.8m/s的速度,向第二入口(11)中引入天然橡胶胶乳浓缩物(60CX12021胶乳,31wt%的干橡胶含量,来自ChemionicsCorporation,Tallmadge,Ohio,用去离子水稀释)。选择这些速率并调节流量以得到包含50phr(份/100重量干橡胶)的硅石的弹性体复合物制品。硅石浆料或去稳定化的硅石浆料和胶乳是通过如下混合:使硅石浆料或去稳定化的浆料的低速胶乳流和高速射流通过夹带硅石浆料或去稳定化的硅石浆料的射流中的胶乳流在冲击点处组合。生产率(以干物质计)设定为50kg/hr。下面的实施例列出了由该方法生产的橡胶复合物中的具体的实际硅石和橡胶比。根据方法B的方法在干燥后进行TGA。
实施例3-A:
第一流体:如上述方法B所述制备含有6.2wt%(或1.18M)乙酸的25wt%硅石的去稳定化的水性分散体。去稳定化的浆料的ζ电势为-14mV,表明:酸使得浆料明显不稳定。将去稳定化的硅石浆料在压力下连续泵入第一入口(3)。
第二流体:弹性体胶乳通过第二入口(11)供给至反应区。
在反应区中,第一流体与第二流体发生碰撞。
结果:当去稳定化的硅石浆料和胶乳通过将低速胶乳流带入去稳定化的硅石浆料的高速射流中而紧密混合时,在反应区中发生液体到固相的反转。在夹带过程中,硅石紧密地分布在胶乳中,且混合物凝聚成含70wt%~85wt%水的固相。结果,在反应区(15)的出口处获得了呈蠕虫或绳状形状的含硅石的固态连续橡胶相的流。该复合物具有弹性且可以在不破裂的情况下伸展到原始长度的130%。干燥产物的TGA分析表明弹性体复合物含有58phr的硅石。
实施例3-B:
第一流体:根据上述方法B制备含有6.2wt%乙酸的25wt%硅石的去稳定化的水性分散体。浆料的ζ电势为-14mV,表明:酸使得浆料明显不稳定。将去稳定化的硅石浆料在压力下连续泵入第一入口(3)。
第二流体:弹性体胶乳通过第二入口(11)供给至反应区。
第三流体:去离子水也通过第三入口(14)以60L/hr的体积流动速率和1.0m/s的速度注入反应区。
在反应区中,这三种流体相遇并彼此碰撞。
结果:在反应区中发生液体到固相的反转,并且,从反应区的出口获得呈蠕虫或绳状形状的含硅石的固态或半固态连续橡胶相。含有硅石和/或胶乳的大量混浊液体与含硅石的固态或半固态连续橡胶相从出口(7)流出。含硅石的连续橡胶相含有约70wt%~约75wt%的水,基于复合物的重量。干燥产物的TGA分析显示弹性体复合物含有44phr的硅石。因此,通过第三个入口添加水对工艺产生了负面影响,产生硅石含量较低的产物(44phr,相比于实施例3-A中的58phr)和显著的废产物。
实施例3-C:
第一流体:制备不含硅石的10wt%乙酸水性溶液。使用蠕动泵以60L/hr的体积流动速率通过第三入口(14)将酸流体的连续进料泵入反应区中,在进入反应区时,速度为1.0m/s。
第二流体:弹性体胶乳通过第二入口(11)由蠕动泵以1.8m/s的速度和106L/hr的体积流动速率供应到反应区。
在反应区中,这两种流体相遇并彼此碰撞。
结果:形成了固态的蠕虫状粘性橡胶相。干燥产物的TGA分析显示固态橡胶相不含硅石。
实施例3-D:
第一流体:按照上述的方法B制备不含乙酸的25wt%的硅石水性分散体。将硅石浆料在压力下以在进入反应区的点处80m/s的速度和60L/hr的体积流动速率连续地泵入第一入口(3)中。浆料的ζ电势为-32mV,表明:硅石稳定地分散在浆料中。因此,在本实施例3-D中,硅石浆料在冲击胶乳流体之前通过向浆料中加入酸而未发生去稳定化。
第二流体:弹性体胶乳由蠕动泵以1.8m/s的速度和106L/hr的体积流动速率通过第二入口(11)供应到反应区。
第三流体:在第一和第二流体的连续流的初始阶段之后,通过第三入口(14),将10wt%乙酸水性溶液以从0L/hr增加到60L/hr的体积流动速率和从0m/s增加到1.0m/s的速度注入到反应区中。
在反应区中,所有三种流体彼此碰撞并混合。
结果:最初,在注入酸之前,不形成含硅石的连续橡胶相,而且,只有混浊液体从反应区出口(15)排出。当酸注入反应区(13)时,随着乙酸通过第三入口的流量从0L/hr增加至60L/hr,开始形成蠕虫状的含硅石的半固态连续橡胶相。从出口流出的材料仍然含有显著量的混浊液体,表明有显著量的废弃物。干燥产物的TGA分析显示:在该实验运行中形成的含硅石的连续橡胶相仅含有25phr的硅石。基于所选择的生产条件和硅石使用量,如果硅石已基本上结合到含硅石的橡胶相中(如实施例3-A中所述),则硅石将产生包含超过50phr硅石的含硅石的橡胶相。
这些实验表明,为了获得所需的含硅石的连续橡胶相,硅石浆料在用弹性体胶乳初次冲击之前必须去稳定化。实施例3-A实现了被认为在含硅石的固态连续橡胶相内有效捕获硅石的实例,而实施例3-D说明了使用最初稳定的硅石浆料的对比工艺并且显示出利用最初去稳定化的硅石浆料的实施例3-A的效率的不到一半。观察到离开反应区出口点的混浊液体表明:硅石与胶乳的混合不充分,并且在连续橡胶相内捕获较少比例的硅石。据推测,在对比工艺3B和3D中,混合过程中的流体的去稳定化是不充分的。结果进一步表明,当添加额外的流体并同时使第一流体和第二流体混合在一起时发生不良的硅石捕获,并且,这样的工艺条件产生不合乎需要的废物量。
实施例4
示例性过程A-1。在下面的实施例中指出,方法使用示例性过程A进行。在工艺A中,计量干的沉淀硅石和水(经过滤以去除粒子物质的市政用水)并进行组合,然后,在转子-定子磨机中研磨以形成硅石浆料,并且,使用搅拌器和另一个转子-定子磨机,将粒子浆料在进料罐中进一步研磨。然后将硅石浆料转移到装有两个搅拌器的运行罐中。使用与用于形成硅石浆料相同的方法由干燥的炭黑(N-134级炭黑,得自Cabot Corporation)制备炭黑浆料。将炭黑浆料添加到运行罐中的硅石浆料的顶部。硅石-炭黑浆料从运行罐通过均化器再循环并返回到运行罐中。然后将酸(甲酸或乙酸,工业级,得自Kong Long Huat Chemicals,Malaysia)的溶液泵入运行罐中。通过搅拌和任选地,通过在运行罐中的循环回路,使浆料保持处于分散状态。经过适当的时间后,通过均化器将硅石-炭黑浆料送入如图1a所示的封闭式反应区(13)。浆料中的硅石和炭黑的浓度以及酸的浓度在下面的具体实施例中给出。
胶乳用蠕动泵(在小于约40表压下)通过第二入口(11)泵入反应区(13)。胶乳流动速率调节到约300-1600kg胶乳/hr之间,以便在所得产品中获得所需的生产率和硅石-炭黑加载量水平。将均化的含有酸的浆料在压力下从均压器泵送到喷嘴(内径(ID)为0.060”-0.130”)(3a)(由图1(a)中的第一入口(3)所示),使浆料作为高速射流引入反应区。当与反应区内的胶乳接触时,以25m/s~120m/s的速度流动的硅石浆料射流夹带以1m/s~11m/s流动的胶乳。在根据本发明实施方案的实施例中,硅石-炭黑浆料对胶乳的冲击导致硅石-炭黑颗粒与胶乳的橡胶颗粒的紧密混合,并且,橡胶发生凝聚,将硅石-炭黑浆料和胶乳转化为这样的材料,其包含含有捕获在所述材料内的40~95wt%水(基于所述材料的总重量)的含硅石-炭黑的固态或半固态连续橡胶相。对浆料流动速率(500-1800kg/hr)或胶乳流动速率(300-1800kg/hr)或这两者进行调整,以改变在最终产品中的硅石与橡胶的比率(例如15-180phr的硅石),并达到所需的生产率。生产率(基于干物质)为200-800kg/hr。在下面的实施例中列出了在材料脱水和干燥之后的橡胶中的具体硅石含量(通过TGA分析)。
方法A-1脱水。材料在大气压下以200至800kg/hr(干重)的流动速率从反应区排入脱水挤出机(French Oil Machinery Company,Piqua,OH)中。该挤出机(8.5英寸内径)配备有具有各种模孔接钮构造(die-hole buttons configuration)的模板,并且以90~123RPM的典型转子速度、400-1300psig的模板压力和80kW~125kW的功率运行。在该挤出机中,将含硅石-炭黑的橡胶压缩,并且,通过挤出机的开槽机筒排出从含硅石的橡胶中挤出的水。在挤出机的出口处获得典型地含有15-60wt%水的经脱水的产物。
方法A-1干燥和冷却。将经脱水的产物投入连续配混机(Farrel ContinuousMixer(FCM),Farrel Corporation,Ansonia,CT;7和15号转子)中,在该连续配混机中,将其干燥、塑炼并与1-2phr抗氧化剂(例如来自Flexsys,St.Louis,MO的6PPD)和任选的硅烷偶联剂(例如NXT硅烷,得自Momentive Performance Materials,Inc.,Waterford,NY;8wt%硅烷,以硅石重量计)混合。FCM水夹套的温度设定为100℃,输出孔口处的FCM温度为140℃~180℃。离开FCM的经塑炼的脱水弹性体复合物的水分含量约为1wt%~5wt%。将产物在开炼机上进一步塑炼并冷却。将弹性体复合物的橡胶片直接从开炼机上切下,卷起并在空气中冷却。
橡胶配混料的制备。
通过方法A-1获得的干燥弹性体复合物根据表C中的配方和表D中概述的过程进行配混。对于在干燥过程中加入硅烷或抗氧化剂的弹性体复合物,最终的配混物组成如表C中所限定。相应地调节在配混期间添加的硅烷偶联剂和/或抗氧化剂的量。
表C
Figure GDA0002380113230000441
*N-(1,3-二甲基丁基)-N′-苯基-对-苯二胺(Flexsys,St.Louis,MO)
**主要活性组分:S-(3-(三乙氧基甲硅烷基)丙基)辛硫醇酯(S-(3-(triethoxysilyl)propyl)octanethioate)(Momentive,Friendly,WV)
***二苯胍(Akrochem,Akron,OH)
****N-叔丁基苯并噻唑-2-次磺酰胺(Emerald Performance Materials,Cuyahoga Falls,OH)
NR=天然橡胶
S=如所述的那样
表D
Figure GDA0002380113230000451
在设定为150℃的热压机中实施硫化,通过常规橡胶流变仪确定硫化时间(即,T90+T90的10%,其中T90是实现90%硫化的时间)。
橡胶/硅石-炭黑配混料的性质。
根据ASTM标准D-412测量硫化样品的拉伸性能(T300和T100、断裂伸长率、拉伸强度)。在0.01%~60%的扭转下、在10Hz和60℃下,使用动态应变扫描仪测定tanδ60°。Tanδ最大被看作是在该应变范围内的tanδ60的最大值。
在这些实施例中,根据本发明的各种实施方式的方法在如表4所示的各种条件下在图1((a)或(b))中所示的装置中运行,采用上述方法A-1。选择操作条件以产生具有表4中所述的硅石-炭黑与橡胶的比率的含硅石的固态或半固态连续橡胶相。
表4
Figure GDA0002380113230000461
N/A=不适用,ND=未测得
a.所有实施例均使用
Figure GDA0002380113230000462
Z1165 MP沉淀硅石。所有实施例均使用来自CabotCorporation 的N134炭黑。
b.ζ电势值通过对实验确定的ζ电势与相同等级硅石的浆料的盐或酸的浓度的依存关系曲线进行内插法来进行估算。
表4(续)
Figure GDA0002380113230000471
c.入口喷嘴速度是硅石-炭黑浆料在接触胶乳之前通过第一入口(3)处的喷嘴(3a)到达反应区(13)时的速度。
d.浆料和胶乳的流动速率分别是硅石-炭黑浆料和胶乳流体在它们被输送到反应区时的以L/小时计的体积流动速率。
在上表4的所有实施例中,选定的操作条件都产生了大致圆柱形的含硅石-炭黑的固态连续橡胶相。该产物含有较多量的水,具有弹性和可压缩性,并且在手动压缩时排出水并保持固体内容物。固体材料可以被拉伸,例如,材料可以被拉伸或伸长到其原始长度的130-150%,而不会断裂。下表5中示出了所制造的复合物的一些橡胶性质。观察到硅石和炭黑颗粒在整个连续橡胶相中均匀分布,并且该产物在外表面和内表面上都基本上没有游离的硅石颗粒和较大的硅石粒子。为了形成含硅石-炭黑的连续橡胶相,不仅需要使硅石去稳定化(例如,通过预先用酸和/或盐处理),而且必须调整去稳定化的硅石浆料相对于胶乳的体积流动速率,不仅为了在弹性体复合物中获得所需的硅石与橡胶的比率(phr),而且为了平衡浆料去稳定化的程度与浆料和胶乳的混合速率及胶乳橡胶颗粒的凝聚速率。通过这样的调整,由于硅石浆料夹带胶乳,使硅石颗粒(和炭黑颗粒)紧密地分布在橡胶中,胶乳中的橡胶变成固态或半固态的连续相,所有这些都是在将流体在反应区的有限体积内组合后的几分之一秒内完成的。因此,该方法通过具有足够的速度、选定的流体固体物浓度和体积的连续流体冲击步骤形成独特的硅石-炭黑弹性体复合物,并且调整流体的流动速率以使细小的粒子状硅石均匀且紧密地分布在胶乳中,并且平行地,随着这样的分布的发生,导致橡胶的液体向固相的反转。
表5
实施例编号 T300/T100 Tanδ@60℃ 拉伸强度(MPa) 断裂伸长率(%)*拉伸强度(MPa)
4-1 5.19 0.089 32.20 535
4-2 4.98 0.113 29.31 463
4-3 4.99 0.106 29.74 455
4-4 5.78 0.084 34.72 529
4-5 5.60 0.093 31.37 468
4-6 5.35 0.110 31.86 504
4-7 4.86 0.127 29.64 448
4-8 4.85 0.123 29.45 446
4-9 4.48 0.118 29.61 457
由这些实施例形成的弹性体复合物具有可接受的橡胶特性,并且特别地,对于具有分散在复合物中的硅石和炭黑的复合物,显示出有利的T300/T100性能。如这些实施例所示,含硅石和炭黑的固态橡胶相制品可包含分散在天然橡胶中的至少40phr的硅石和至少40wt%的水性流体且可具有长度尺寸(L),其中,该含硅石和炭黑的固态连续橡胶相制品可被拉伸至(L)的至少130%~150%而不破裂。
本发明以任意顺序和/或以任意组合包含以下方面/实施方式/特征:
1.硅石弹性体复合物的生产方法,包括:
(a)提供包含分散的颗粒且含有硅石的去稳定化的分散体的至少一种第一流体的在压力下的连续流、以及包含弹性体胶乳的至少第二流体的连续流;
(b)提供该第一流体相对于该第二流体的体积流量以在该硅石弹性体复合物中产生约15phr~约180phr的硅石含量;
(c)使用足够的能量冲击,将第一流体流和第二流体流组合起来,从而,将该硅石分布在该弹性体胶乳内,以获得含硅石的固态连续橡胶相或含硅石的半固态连续橡胶相的流,
其中,所述至少一种第一流体作为如下提供:
i)包括包含炭黑的分散体和包含硅石的去稳定化的分散体的两个物流;或者
ii)包括包含炭黑的分散体和包含硅石的去稳定化的分散体的单一物流;或者
iii)包含硅石和炭黑的去稳定化的分散体的单一物流。
2.任意前述或后续实施方式/特征/方面的方法,其中,所述至少一种第一流体是包含硅石和炭黑的去稳定化的分散体,且所述方法进一步包括对干燥的炭黑、干燥的硅石、和水性介质进行组合以形成所述包含炭黑以及基于总颗粒的至少45wt%硅石的去稳定化的分散体。
3.任意前述或后续实施方式/特征/方面的方法,进一步包括使一种或多种所述分散体经历至少一个机械处理步骤。
4.任意前述或后续实施方式/特征/方面的方法,其中,所述机械处理步骤包括碾碎、研磨、粉碎、冲击、或高剪切流体加工、或者其任意组合。
5.任意前述或后续实施方式/特征/方面的方法,其中,所述机械处理步骤包括碾碎所述分散体一次或多次。
6.任意前述或后续实施方式/特征/方面的方法,其中,所述机械处理步骤降低颗粒聚集、和/或调整粒度分布。
7.硅石弹性体复合物的生产方法,包括:
(a)提供包含硅石的去稳定化的分散体的至少第一流体的在压力下的连续流以及包含弹性体胶乳的至少第二流体的连续流;
(b)提供该第一流体相对于该第二流体的体积流量以在该硅石弹性体复合物中产生约15phr~约180phr的硅石含量;
(c)提供具有干燥形式的流化炭黑的连续流,
(d)使用足够的能量冲击,将第一流体流和第二流体流以及所述炭黑组合起来,从而,将该硅石和炭黑分布在该弹性体胶乳内,以获得含硅石-炭黑的固态连续橡胶相或含硅石-炭黑的半固态连续橡胶相的流,
其中,使所述炭黑的流与所述第一流体在步骤d之前组合,或者,使所述炭黑的流与所述第二流体在步骤d之前组合,或者,在步骤d中加入所述炭黑的流。
8.任意前述或后续实施方式/特征/方面的方法,其中,基于所述硅石弹性体复合物中所存在的全部粒子,炭黑以约10wt%~约50wt%的量存在于所述硅石弹性体复合物中。
9.任意前述或后续实施方式/特征/方面的方法,其中,在组合所述第一流体流和第二流体流之后,所述含硅石的固态或半固态连续橡胶相的所述流在两秒或更短的时间内形成。
10.任意前述或后续实施方式/特征/方面的方法,其中,在组合所述第一流体流和第二流体流之后,所述含硅石的固态或半固态连续橡胶相的所述流在约50毫秒~约1500毫秒的时间内形成。
11.任意前述或后续实施方式/特征/方面的方法,其中,步骤(a)中的所述第一流体进一步包含至少一种盐。
12.任意前述或后续实施方式/特征/方面的方法,其中,步骤(a)中的所述第一流体进一步包含至少一种酸。
13.任意前述或后续实施方式/特征/方面的方法,其中,所述含硅石的固态或半固态连续橡胶相包含约40wt%~约95wt%的水或水性流体。
14.任意前述或后续实施方式/特征/方面的方法,其中,所述组合发生在体积约10cc~约500cc的反应区中。
15.任意前述或后续实施方式/特征/方面的方法,其中,该相对体积流量处于第一流体对第二流体的0.4∶1~3.2∶1的体积流量比率下。
16.任意前述或后续实施方式/特征/方面的方法,其中,该相对体积流量处于第一流体对第二流体的0.2∶1~2.8∶1的体积流量比率下。
17.任意前述或后续实施方式/特征/方面的方法,其中,该相对体积流量处于第一流体对第二流体的0.4∶1~3.2∶1的体积流量比率下,而且,所述硅石的去稳定化的分散体包括至少一种盐。
18.任意前述或后续实施方式/特征/方面的方法,其中,该相对体积流量处于第一流体对第二流体的0.2∶1~2.8∶1的体积流量比率下,而且,所述硅石的去稳定化的分散体包括至少一种酸。
19.任意前述或后续实施方式/特征/方面的方法,其中,所述弹性体胶乳包含碱,所述硅石的去稳定化的分散体包含至少一种酸,而且,所述第一流体中的所述酸中的氢离子与所述第二流体中的所述碱的摩尔比为1~4.5。
20.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石的去稳定化的分散体包含至少一种酸,而且,其中,所述第二流体中所存在的所述弹性体胶乳具有基于该弹性体胶乳重量的约0.3wt%~约0.7wt%的氨浓度,且所述第一流体中的所述酸中的氢离子与所述第二流体中的氨的摩尔比为至少1∶1。
21.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石弹性体复合物的所述硅石含量为约26phr~约80phr。
22.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石弹性体复合物的所述硅石含量为约40phr~约115phr。
23.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石的去稳定化的分散体包含约6wt%~约35wt%的硅石。
24.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石的去稳定化的分散体包含约10wt%~约28wt%的硅石。
25.任意前述或后续实施方式/特征/方面的方法,进一步包括在环境压力下收取所述含硅石的固态或半固态连续橡胶相。
26.任意前述或后续实施方式/特征/方面的方法,其中,包含所述硅石的去稳定化的分散体的所述第一流体具有小于30mV的ζ电势量值。
27.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石的去稳定化的分散体包括至少一种盐,其中,所述去稳定化的分散体中的盐离子浓度为约10mM~约160mM。
28.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石的去稳定化的分散体包括至少一种盐,其中,基于所述去稳定化的分散体的重量,所述盐以约0.2wt%~约2wt%的量存在于所述去稳定化的分散体中。
29.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石的去稳定化的分散体包括至少一种酸,其中,基于所述去稳定化的分散体的重量,所述酸以约0.8wt%~约7.5wt%的量存在于所述去稳定化的分散体中。
30.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石的去稳定化的分散体包括至少一种酸,其中,所述去稳定化的分散体中的酸浓度为约200mM~约1000mM。
31.任意前述或后续实施方式/特征/方面的方法,其中,步骤(c)以在速度A下的第一流体连续流和在速度B下的第二流体连续流实施,而且,速度A为速度B的至少2倍。
32.任意前述或后续实施方式/特征/方面的方法,其中,步骤(c)在半封闭反应区中进行,而且,该第一流体具有足以在与该第二流体组合时在该反应区中引起空穴的速度。
33.任意前述或后续实施方式/特征/方面的方法,其中,该第二流体具有足以产生湍流的速度。
34.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石分散体包含具有疏水性表面部分的经表面改性的硅石。
35.任意前述或后续实施方式/特征/方面的方法,其中,所述第一流体包含水性流体。
36.任意前述或后续实施方式/特征/方面的方法,其中,所述第一流体包含水性流体和约6wt%~约31wt%的硅石及至少3wt%的炭黑。
37.任意前述或后续实施方式/特征/方面的方法,其中,所述第一流体包含水性流体,进一步包含至少一种盐和至少一种酸。
38.任意前述或后续实施方式/特征/方面的方法,所述方法进一步包括:通过降低硅石分散体的pH来使该硅石分散体去稳定化,从而形成步骤(a)中所提供的该硅石的去稳定化的分散体。
39.任意前述或后续实施方式/特征/方面的方法,所述方法进一步包括:通过将硅石分散体的pH降低至2~4的pH来使该硅石分散体去稳定化,从而形成步骤(a)中所提供的该硅石的去稳定化的分散体。
40.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石具有亲水性表面。
41.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石是能够高度分散的硅石(HDS)。
42.任意前述或后续实施方式/特征/方面的方法,其中,所述酸包含乙酸、甲酸、柠檬酸、磷酸、或硫酸、或者其任意组合。
43.任意前述或后续实施方式/特征/方面的方法,其中,所述酸具有低于200的分子量或平均分子量。
44.任意前述或后续实施方式/特征/方面的方法,其中,所述盐包含至少一种第1、2或13族的金属盐。
45.任意前述或后续实施方式/特征/方面的方法,其中,所述盐包含钙盐、镁盐、或铝盐、或者其组合。
46.任意前述或后续实施方式/特征/方面的方法,所述方法进一步包括使硅石经历机械处理以降低颗粒聚集、和/或调整粒度分布。
47.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石是沉淀硅石、或热解硅石、或胶体硅石、或者其任意组合。
48.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石的BET表面积为约20m2/g~约450m2/g。
49.任意前述或后续实施方式/特征/方面的方法,其中,所述弹性体胶乳为天然橡胶胶乳。
50.任意前述或后续实施方式/特征/方面的方法,其中,所述天然橡胶胶乳具有以下形式:新鲜胶乳、胶乳浓缩物、经除渣的胶乳、经化学改性的胶乳、经酶改性的胶乳、或者其任意组合。
51.任意前述或后续实施方式/特征/方面的方法,其中,所述天然橡胶胶乳具有经环氧化的天然橡胶胶乳的形式。
52.任意前述或后续实施方式/特征/方面的方法,其中,所述天然橡胶胶乳具有胶乳浓缩物的形式。
53.任意前述或后续实施方式/特征/方面的方法,进一步包括:使该硅石弹性体复合物与额外的弹性体混合以形成弹性体复合物共混物。
54.橡胶配混料的制造方法,包括
(a)进行任意前述或后续实施方式/特征/方面的方法,和
(b)使该硅石弹性体复合物与其它组分共混以形成橡胶配混料,其中所述其它组分包含至少一种抗氧化剂、硫、不同于弹性体胶乳的聚合物、催化剂、增量油、树脂、偶联剂、额外的弹性体复合物、或增强填料、或者其任意组合。
55.制造选自轮胎、模制品、支架、衬垫、传送带、密封物、或夹套的橡胶制品的方法,包括:
(a)进行任意前述或后续实施方式/特征/方面的方法,和
(b)使该硅石弹性体复合物与其它组分配混以形成配混料,和
(c)使所述配混料硫化以形成所述橡胶制品。
56.任意前述或后续实施方式/特征/方面的方法,进一步包括:在收取该硅石弹性体复合物后进行一个或多个后处理步骤。
57.任意前述或后续实施方式/特征/方面的方法,其中,所述后处理步骤包括以下中的至少之一:
a)使该硅石弹性体复合物脱水以获得经脱水的混合物;
b)对该经脱水的混合物进行混合或配混以获得经配混的硅石弹性体复合物;
c)研磨该经配混的硅石弹性体复合物以获得经研磨的硅石弹性体复合物;
d)对该经研磨的硅石弹性体复合物进行造粒或混合;
e)在该造粒或混合后,对该硅石弹性体复合物进行打包以获得经打包的硅石弹性体复合物;
f)对该硅石弹性体复合物进行挤压;
g)对该硅石弹性体复合物进行压延;和/或
h)任选地,将该经打包的硅石弹性体复合物分开并与进一步的组分混合。
58.任意前述或后续实施方式/特征/方面的方法,其中,所述后处理步骤至少包括该硅石弹性体复合物的辊磨。
59.任意前述或后续实施方式/特征/方面的方法,其中,该后处理步骤包括压缩该含硅石的固态或半固态连续橡胶相以除去其中所含的水性流体的约1wt%~约15wt%。
60.任意前述或后续实施方式/特征/方面的方法,其中,当该硅石的去稳定化的分散体与该弹性体胶乳组合时,使该弹性体胶乳与至少一种去稳定剂接触。
61.任意前述或后续实施方式/特征/方面的方法,进一步包括使含硅石的固态或半固态连续橡胶相的流与至少一种去稳定剂接触。
62.任意前述或后续实施方式/特征/方面的方法,进一步包括这样的步骤,其使用含硅石的固态或半固态连续橡胶相进行以下中的一者或多者:
a)将该含硅石的固态或半固态连续橡胶相转移至存储罐或容器;
b)加热该含硅石的固态或半固态连续橡胶相以降低水含量;
c)使该含硅石的固态或半固态连续橡胶相经历酸浴;
d)对该含硅石的固态或半固态连续橡胶相进行机械加工以降低水含量。
63.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石弹性体复合物是含硅石的半固态连续橡胶相,而且,所述方法进一步包括使所述含硅石的半固态连续橡胶相转化成含硅石的固态连续橡胶相。
64.任意前述或后续实施方式/特征/方面的方法,其中,通过以包含至少一种酸、或至少一种盐、或者至少一种酸与至少一种盐的组合的水性流体进行处理,使所述含硅石的半固态连续橡胶相转化成所述含硅石的固态连续橡胶相。
65.任意前述或后续实施方式/特征/方面的方法,其中,所述第二流体包含两种或更多种不同弹性体胶乳的共混物。
66.任意前述或后续实施方式/特征/方面的方法,其中,所述方法进一步包括提供一种或多种额外的流体并且使该一种或多种额外的流体与所述第一流体流和第二流体流组合,其中所述一种或多种额外的流体包含一种或多种弹性体胶乳流体,并且,所述额外的流体与所述第二流体流中所存在的所述弹性体胶乳相同或不同。
67.任意前述或后续实施方式/特征/方面的方法,其中,所述硅石弹性体复合物的所述硅石含量为约26phr~约180phr。
68.含硅石和炭黑的固态连续橡胶相制品,其包含分散在天然橡胶中的至少25份/100橡胶(phr)的硅石和至少40wt%的水性流体并且具有长度尺寸(L),其中,该含硅石的固态连续橡胶相制品可被拉伸至(L)的至少130-150%而不破裂。
69.任意前述或后续实施方式/特征/方面的含硅石和炭黑的固态连续橡胶相制品,进一步包含分散在所述天然橡胶中的至少10phr的炭黑。
本发明可包含如以句子和/或段落阐述的以上和/或以下这些各种特征或实施方式的任意组合。本文中所公开的特征的任意组合被认为是本发明的部分并且对于可组合的特征不意图有限制。
申请人明确地将所有引用的参照文献的全部内容引入到本公开内容中。进一步地,当量、浓度、或其它值或参数作为范围、优选范围、或者较高优选值和较低优选值的列表给出时,这应被理解为具体地公开了由任意较高范围界限或优选值和任意较低范围界限或优选值的任意对所形成的所有范围,而不管范围是否被单独地公开。当本文中叙述数值范围时,除非另有说明,否则所述范围意图包含其端点、以及在该范围内的所有整数和分数(部分)。本发明的范围不意图限于在定义范围时所叙述的特定值。
由对本说明书的思考和本文中公开的本发明的实践,本发明的其它实施方式对于本领域技术人员而言将是明晰的。意图是,本说明书和实施例被认为仅是示例性的,并且本发明的真实范围和精神由所附权利要求和其等同物所指示。

Claims (67)

1.硅石弹性体复合物的生产方法,包括:
(a)提供包含分散的颗粒且含有硅石的去稳定化的分散体的至少一种第一流体的在压力下的连续流、以及包含弹性体胶乳的至少第二流体的连续流;
(b)提供该第一流体相对于该第二流体的体积流量以在该硅石弹性体复合物中产生15phr~180phr的硅石含量;
(c)使用足够的能量冲击,将第一流体流和第二流体流组合起来,从而,将该硅石分布在该弹性体胶乳内,以获得含硅石的固态连续橡胶相或含硅石的半固态连续橡胶相的流,
其中,所述至少一种第一流体作为如下提供:
i)包括包含炭黑的分散体和包含硅石的去稳定化的分散体的两个物流;或者
ii)包括包含炭黑的分散体和包含硅石的去稳定化的分散体的单一物流;或者
iii)包含硅石和炭黑的去稳定化的分散体的单一物流。
2.权利要求1的方法,其中,所述至少一种第一流体是包含硅石和炭黑的去稳定化的分散体,且所述方法进一步包括对干燥的炭黑、干燥的硅石、和水性介质进行组合以形成所述包含炭黑以及基于总颗粒的至少45wt%硅石的去稳定化的分散体。
3.权利要求1的方法,进一步包括使一种或多种所述分散体经历至少一个机械处理步骤。
4.权利要求3的方法,其中,所述机械处理步骤包括碾碎、研磨、粉碎、冲击、或高剪切流体加工、或者其任意组合。
5.权利要求4的方法,其中,所述机械处理步骤包括碾碎所述分散体一次或多次。
6.权利要求3的方法,其中,所述机械处理步骤降低颗粒聚集、和/或调整粒度分布。
7.硅石弹性体复合物的生产方法,包括:
(a)提供包含硅石的去稳定化的分散体的至少第一流体的在压力下的连续流以及包含弹性体胶乳的至少第二流体的连续流;
(b)提供该第一流体相对于该第二流体的体积流量以在该硅石弹性体复合物中产生15phr~180phr的硅石含量;
(c)提供具有干燥形式的流化炭黑的连续流,
(d)使用足够的能量冲击,将第一流体流和第二流体流以及所述炭黑组合起来,从而,将该硅石和炭黑分布在该弹性体胶乳内,以获得含硅石-炭黑的固态连续橡胶相或含硅石-炭黑的半固态连续橡胶相的流,
其中,使所述炭黑的流与所述第一流体在步骤d之前组合,或者,使所述炭黑的流与所述第二流体在步骤d之前组合,或者,在步骤d中加入所述炭黑的流。
8.权利要求1的方法,其中,基于所述硅石弹性体复合物中所存在的全部粒子,炭黑以10wt%~50wt%的量存在于所述硅石弹性体复合物中。
9.权利要求1的方法,其中,在组合所述第一流体流和第二流体流之后,所述含硅石的固态或半固态连续橡胶相的所述流在两秒或更短的时间内形成。
10.权利要求1的方法,其中,在组合所述第一流体流和第二流体流之后,所述含硅石的固态或半固态连续橡胶相的所述流在50毫秒~1500毫秒的时间内形成。
11.权利要求1的方法,其中,步骤(a)中的所述第一流体进一步包含至少一种盐。
12.权利要求1的方法,其中,步骤(a)中的所述第一流体进一步包含至少一种酸。
13.权利要求1的方法,其中,所述含硅石的固态或半固态连续橡胶相包含40wt%~95wt%的水或水性流体。
14.权利要求1的方法,其中,所述组合发生在体积10cc~500cc的反应区中。
15.权利要求1的方法,其中,该相对体积流量处于第一流体对第二流体的0.4:1~3.2:1的体积流量比率下。
16.权利要求1的方法,其中,该相对体积流量处于第一流体对第二流体的0.2:1~2.8:1的体积流量比率下。
17.权利要求1的方法,其中,该相对体积流量处于第一流体对第二流体的0.4:1~3.2:1的体积流量比率下,而且,所述硅石的去稳定化的分散体包括至少一种盐。
18.权利要求1的方法,其中,该相对体积流量处于第一流体对第二流体的0.2:1~2.8:1的体积流量比率下,而且,所述硅石的去稳定化的分散体包括至少一种酸。
19.权利要求1的方法,其中,所述弹性体胶乳包含碱,所述硅石的去稳定化的分散体包含至少一种酸,而且,所述第一流体中的所述酸中的氢离子与所述第二流体中的所述碱的摩尔比为1~4.5。
20.权利要求1的方法,其中,所述硅石的去稳定化的分散体包含至少一种酸,而且,其中,所述第二流体中所存在的所述弹性体胶乳具有基于该弹性体胶乳重量的0.3wt%~0.7wt%的氨浓度,且所述第一流体中的所述酸中的氢离子与所述第二流体中的氨的摩尔比为至少1:1。
21.权利要求1的方法,其中,所述硅石弹性体复合物的所述硅石含量为26phr~80phr。
22.权利要求1的方法,其中,所述硅石弹性体复合物的所述硅石含量为40phr~115phr。
23.权利要求1的方法,其中,所述硅石的去稳定化的分散体包含6wt%~35wt%的硅石。
24.权利要求1的方法,其中,所述硅石的去稳定化的分散体包含10wt%~28wt%的硅石。
25.权利要求1的方法,进一步包括在环境压力下收取所述含硅石的固态或半固态连续橡胶相。
26.权利要求1的方法,其中,包含所述硅石的去稳定化的分散体的所述第一流体具有小于30mV的ζ电势量值。
27.权利要求1的方法,其中,所述硅石的去稳定化的分散体包括至少一种盐,其中,所述去稳定化的分散体中的盐离子浓度为10mM~160mM。
28.权利要求1的方法,其中,所述硅石的去稳定化的分散体包括至少一种盐,其中,基于所述去稳定化的分散体的重量,所述盐以0.2wt%~2wt%的量存在于所述去稳定化的分散体中。
29.权利要求1的方法,其中,所述硅石的去稳定化的分散体包括至少一种酸,其中,基于所述去稳定化的分散体的重量,所述酸以0.8wt%~7.5wt%的量存在于所述去稳定化的分散体中。
30.权利要求1的方法,其中,所述硅石的去稳定化的分散体包括至少一种酸,其中,所述去稳定化的分散体中的酸浓度为200mM~1000mM。
31.权利要求1的方法,其中,步骤(c)以在速度A下的第一流体连续流和在速度B下的第二流体连续流实施,而且,速度A为速度B的至少2倍。
32.权利要求1的方法,其中,步骤(c)在半封闭反应区中进行,而且,该第一流体具有足以在与该第二流体组合时在该反应区中引起空穴的速度。
33.权利要求32的方法,其中,该第二流体具有足以产生湍流的速度。
34.权利要求1的方法,其中,所述硅石分散体包含具有疏水性表面部分的经表面改性的硅石。
35.权利要求1的方法,其中,所述第一流体包含水性流体。
36.权利要求1的方法,其中,所述第一流体包含水性流体和6wt%~31wt%的硅石及至少3wt%的炭黑。
37.权利要求1的方法,其中,所述第一流体包含水性流体,进一步包含至少一种盐和至少一种酸。
38.权利要求1的方法,所述方法进一步包括:通过降低硅石分散体的pH来使该硅石分散体去稳定化,从而形成步骤(a)中所提供的该硅石的去稳定化的分散体。
39.权利要求1的方法,所述方法进一步包括:通过将硅石分散体的pH降低至2~4的pH来使该硅石分散体去稳定化,从而形成步骤(a)中所提供的该硅石的去稳定化的分散体。
40.权利要求1的方法,其中,所述硅石具有亲水性表面。
41.权利要求1的方法,其中,所述硅石是能够高度分散的硅石(HDS)。
42.权利要求12的方法,其中,所述酸包含乙酸、甲酸、柠檬酸、磷酸、或硫酸、或者其任意组合。
43.权利要求12的方法,其中,所述酸具有低于200的分子量或平均分子量。
44.权利要求11的方法,其中,所述盐包含至少一种第1、2或13族的金属盐。
45.权利要求11的方法,其中,所述盐包含钙盐、镁盐、或铝盐、或者其组合。
46.权利要求1的方法,所述方法进一步包括使硅石经历机械处理以降低颗粒聚集、和/或调整粒度分布。
47.权利要求1的方法,其中,所述硅石是沉淀硅石、或热解硅石、或胶体硅石、或者其任意组合。
48.权利要求1的方法,其中,所述硅石的BET表面积为20m2/g~450m2/g。
49.权利要求1的方法,其中,所述弹性体胶乳为天然橡胶胶乳。
50.权利要求49的方法,其中,所述天然橡胶胶乳具有以下形式:新鲜胶乳、胶乳浓缩物、经除渣的胶乳、经化学改性的胶乳、经酶改性的胶乳、或者其任意组合。
51.权利要求49的方法,其中,所述天然橡胶胶乳具有经环氧化的天然橡胶胶乳的形式。
52.权利要求49的方法,其中,所述天然橡胶胶乳具有胶乳浓缩物的形式。
53.权利要求1的方法,进一步包括:使该硅石弹性体复合物与额外的弹性体混合以形成弹性体复合物共混物。
54.橡胶配混料的制造方法,包括
(a)进行权利要求1的方法,和
(b)使该硅石弹性体复合物与其它组分共混以形成橡胶配混料,其中所述其它组分包含至少一种抗氧化剂、硫、不同于弹性体胶乳的聚合物、催化剂、增量油、树脂、偶联剂、额外的弹性体复合物、或增强填料、或者其任意组合。
55.制造选自轮胎、模制品、支架、衬垫、传送带、密封物、或夹套的橡胶制品的方法,包括:
(a)进行权利要求1的方法,和
(b)使该硅石弹性体复合物与其它组分配混以形成配混料,和
(c)使所述配混料硫化以形成所述橡胶制品。
56.权利要求1的方法,进一步包括:在收取该硅石弹性体复合物后进行一个或多个后处理步骤。
57.权利要求56的方法,其中,所述后处理步骤包括以下中的至少之一:
a)使该硅石弹性体复合物脱水以获得经脱水的混合物;
b)对该经脱水的混合物进行混合或配混以获得经配混的硅石弹性体复合物;
c)研磨该经配混的硅石弹性体复合物以获得经研磨的硅石弹性体复合物;
d)对该经研磨的硅石弹性体复合物进行造粒或混合;
e)在该造粒或混合后,对该硅石弹性体复合物进行打包以获得经打包的硅石弹性体复合物;
f)对该硅石弹性体复合物进行挤压;
g)对该硅石弹性体复合物进行压延;和/或
h)任选地,将该经打包的硅石弹性体复合物分开并与进一步的组分混合。
58.权利要求56的方法,其中,所述后处理步骤至少包括该硅石弹性体复合物的辊磨。
59.权利要求56的方法,其中,该后处理步骤包括压缩该含硅石的固态或半固态连续橡胶相以除去其中所含的水性流体的1wt%~15wt%。
60.权利要求1的方法,其中,当该硅石的去稳定化的分散体与该弹性体胶乳组合时,使该弹性体胶乳与至少一种去稳定剂接触。
61.权利要求1的方法,进一步包括使含硅石的固态或半固态连续橡胶相的流与至少一种去稳定剂接触。
62.权利要求1的方法,进一步包括这样的步骤,其使用含硅石的固态或半固态连续橡胶相进行以下中的一者或多者:
a)将该含硅石的固态或半固态连续橡胶相转移至存储罐或容器;
b)加热该含硅石的固态或半固态连续橡胶相以降低水含量;
c)使该含硅石的固态或半固态连续橡胶相经历酸浴;
d)对该含硅石的固态或半固态连续橡胶相进行机械加工以降低水含量。
63.权利要求1的方法,其中,所述硅石弹性体复合物是含硅石的半固态连续橡胶相,而且,所述方法进一步包括使所述含硅石的半固态连续橡胶相转化成含硅石的固态连续橡胶相。
64.权利要求63的方法,其中,通过以包含至少一种酸、或至少一种盐、或者至少一种酸与至少一种盐的组合的水性流体进行处理,使所述含硅石的半固态连续橡胶相转化成所述含硅石的固态连续橡胶相。
65.权利要求1的方法,其中,所述第二流体包含两种或更多种不同弹性体胶乳的共混物。
66.权利要求1的方法,其中,所述方法进一步包括提供一种或多种额外的流体并且使该一种或多种额外的流体与所述第一流体流和第二流体流组合,其中所述一种或多种额外的流体包含一种或多种弹性体胶乳流体,并且,所述额外的流体与所述第二流体流中所存在的所述弹性体胶乳相同或不同。
67.权利要求1的方法,其中,所述硅石弹性体复合物的所述硅石含量为26phr~180phr。
CN201680053373.2A 2015-07-15 2016-07-13 制造用硅石和炭黑增强的弹性体复合物的方法以及包含其的制品 Active CN108026314B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562192891P 2015-07-15 2015-07-15
US62/192,891 2015-07-15
US201662294599P 2016-02-12 2016-02-12
US62/294,599 2016-02-12
PCT/US2016/042109 WO2017011566A1 (en) 2015-07-15 2016-07-13 Methods of making an elastomer composite reinforced with silica and carbon black and products containing same

Publications (2)

Publication Number Publication Date
CN108026314A CN108026314A (zh) 2018-05-11
CN108026314B true CN108026314B (zh) 2021-02-09

Family

ID=56511950

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201680053417.1A Active CN108291049B (zh) 2015-07-15 2016-07-13 用硅石增强的弹性体复合物以及包含其的制品
CN201680053373.2A Active CN108026314B (zh) 2015-07-15 2016-07-13 制造用硅石和炭黑增强的弹性体复合物的方法以及包含其的制品
CN201680053415.2A Active CN108026315B (zh) 2015-07-15 2016-07-13 制造用硅石增强的弹性体复合物的方法以及包含其的制品

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201680053417.1A Active CN108291049B (zh) 2015-07-15 2016-07-13 用硅石增强的弹性体复合物以及包含其的制品

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201680053415.2A Active CN108026315B (zh) 2015-07-15 2016-07-13 制造用硅石增强的弹性体复合物的方法以及包含其的制品

Country Status (14)

Country Link
US (7) US11312824B2 (zh)
JP (3) JP6756816B2 (zh)
CN (3) CN108291049B (zh)
AU (3) AU2016294430B2 (zh)
BR (3) BR112018000834B1 (zh)
CA (3) CA2992267C (zh)
CL (3) CL2018000088A1 (zh)
DE (3) DE112016003162T5 (zh)
FR (3) FR3038901B1 (zh)
GB (3) GB2556570B (zh)
IT (2) IT201600073305A1 (zh)
MY (3) MY183718A (zh)
RU (3) RU2703619C2 (zh)
WO (3) WO2017011561A1 (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LT3176170T (lt) 2012-06-13 2019-04-25 Incyte Holdings Corporation Pakeisti tricikliniai junginiai, kaip fgfr inhibitoriai
DK2986610T5 (en) 2013-04-19 2018-12-10 Incyte Holdings Corp BICYCLIC HETEROCYCLES AS FGFR INHIBITORS
WO2015163168A1 (ja) * 2014-04-25 2015-10-29 横浜ゴム株式会社 コンベヤベルト用コートゴム組成物
US10851105B2 (en) 2014-10-22 2020-12-01 Incyte Corporation Bicyclic heterocycles as FGFR4 inhibitors
MA41551A (fr) 2015-02-20 2017-12-26 Incyte Corp Hétérocycles bicycliques utilisés en tant qu'inhibiteurs de fgfr4
CN107438607B (zh) 2015-02-20 2021-02-05 因赛特公司 作为fgfr抑制剂的双环杂环
JP6756816B2 (ja) 2015-07-15 2020-09-16 キャボット コーポレイションCabot Corporation シリカおよびカーボンブラックで補強されたエラストマー複合材の製造方法およびそれを含む製品
MY184652A (en) 2015-07-15 2021-04-14 Cabot Corp Methods of making an elastomer composite reinforced with silica and products containing same
AR111960A1 (es) 2017-05-26 2019-09-04 Incyte Corp Formas cristalinas de un inhibidor de fgfr y procesos para su preparación
FR3067351B1 (fr) * 2017-06-07 2020-10-23 Michelin & Cie Procede de decontamination de caoutchouc naturel par filtration sous haute pression d'un coagulum humide de caoutchouc naturel
WO2019213506A1 (en) 2018-05-04 2019-11-07 Incyte Corporation Salts of an fgfr inhibitor
PE20210920A1 (es) 2018-05-04 2021-05-19 Incyte Corp Formas solidas de un inhibidor de fgfr y procesos para prepararlas
JP7080130B2 (ja) * 2018-08-01 2022-06-03 Toyo Tire株式会社 ゴムウエットマスターバッチの製造方法
CN109795045B (zh) * 2019-02-25 2021-06-04 朝阳浪马轮胎有限责任公司 一种全白炭黑的胎面胶逆式混炼工艺
WO2020185532A1 (en) 2019-03-08 2020-09-17 Incyte Corporation Methods of treating cancer with an fgfr inhibitor
CN114174399B (zh) * 2019-06-05 2023-11-07 超越莲花有限责任公司 轮胎胎面
WO2021007269A1 (en) 2019-07-09 2021-01-14 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
RU2717032C1 (ru) * 2019-08-26 2020-03-17 ООО "Вектор полимир" Способ получения органо-минерального композита для оксобиоразложения термопластов
US11773240B2 (en) 2019-10-06 2023-10-03 Silpara Technologies LLC Molecular composites of functional silica and natural rubber
KR20220100879A (ko) 2019-10-14 2022-07-18 인사이트 코포레이션 Fgfr 저해제로서의 이환식 헤테로사이클
WO2021076728A1 (en) 2019-10-16 2021-04-22 Incyte Corporation Bicyclic heterocycles as fgfr inhibitors
CN112824459B (zh) * 2019-11-20 2023-08-15 中胶永生东南亚乳胶制品股份有限公司 白炭黑的改性方法、橡胶复合材料及其制备方法和应用
JP2023505258A (ja) 2019-12-04 2023-02-08 インサイト・コーポレイション Fgfr阻害剤としての三環式複素環
PE20221504A1 (es) 2019-12-04 2022-09-30 Incyte Corp Derivados de un inhibidor de fgfr
CN115996901A (zh) 2020-05-29 2023-04-21 埃克森美孚化学专利公司 由聚合物生产环状烯烃及其再聚合的方法
WO2022125683A1 (en) * 2020-12-09 2022-06-16 Beyond Lotus Llc Methods of preparing a composite comprising never-dried natural rubber and filler
CN116635454A (zh) 2020-12-09 2023-08-22 超越莲花有限责任公司 制备具有弹性体和填料的配混物的方法
WO2022231807A1 (en) * 2021-04-28 2022-11-03 Coe William B Organometallic compound incorporated within existing sulfur cross-linked rubber morphology
US11939331B2 (en) 2021-06-09 2024-03-26 Incyte Corporation Tricyclic heterocycles as FGFR inhibitors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231339C (zh) * 1996-04-01 2005-12-14 卡伯特公司 新型弹性体组合物、其制备方法及设备
WO2011034589A2 (en) * 2009-09-17 2011-03-24 Cabot Corporation Formation of latex coagulum composite
CN103221463A (zh) * 2010-09-15 2013-07-24 卡博特公司 具有含二氧化硅的填料的弹性体复合材料及其制造方法
CN103874586A (zh) * 2011-10-11 2014-06-18 米其林集团总公司 用于制备二烯弹性体和二氧化硅的母料的方法

Family Cites Families (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700621A (en) 1970-07-16 1972-10-24 Burke Oliver W Jun Elastomer-silica pigment masterbatches and production processes relating thereto
US3700620A (en) * 1970-07-16 1972-10-24 Burke Oliver W Jun Elastomer-silica pigment masterbatches and production processes relating thereto
DE2135266C3 (de) * 1971-07-15 1979-09-06 Chemische Werke Huels Ag, 4370 Marl Verfahren zur Herstellung rieselfähiger, pulverförmiger, fuUstoffhaltiger Kautschuk-Mischungen aus Kautschuk-Lösungen
US3878153A (en) * 1971-11-26 1975-04-15 Cities Service Co Process of mixing two elastomers
DE2822148C2 (de) 1978-05-20 1983-02-24 Chemische Werke Hüls AG, 4370 Marl Verfahren zur Herstellung eines pulverförmigen, füllstoffhaltigen Kautschuks
FR2453880A1 (fr) 1979-04-13 1980-11-07 Rhone Poulenc Ind Nouveau pigment a base de silice sous forme de bille, procede pour l'obtenir et application, notamment comme charge renforcante dans les elastomeres
GB2113692B (en) 1981-12-18 1985-06-26 Malaysian Rubber Producers Epoxidized cis 1, 4-polyisoprene rubber
FR2588008B1 (fr) 1985-09-27 1988-06-24 Rhone Poulenc Chim Base Procede d'obtention d'une composition charge-polymere et produit obtenu
JPH0730269B2 (ja) 1986-09-04 1995-04-05 大日精化工業株式会社 粉体塗料用カ−ボンブラツクの表面処理方法
FR2678259B1 (fr) 1991-06-26 1993-11-05 Rhone Poulenc Chimie Nouvelles silices precipitees sous forme de granules ou de poudres, procedes de synthese et utilisation au renforcement des elastomeres.
US7071257B2 (en) 1993-10-07 2006-07-04 Degussa Ag Precipitated silicas
WO1995017459A1 (en) 1993-12-20 1995-06-29 Ppg Industries, Inc. Tire tread composition comprising highly reinforcing silica
JP2788212B2 (ja) 1994-11-11 1998-08-20 横浜ゴム株式会社 表面処理カーボンブラック及びそれを用いたゴム組成物
TW334467B (en) 1994-12-22 1998-06-21 Cabot Corp Latex compositions and films
US5440064A (en) 1994-12-23 1995-08-08 The Goodyear Tire & Rubber Company Process for the preparation of organosilicon disulfide compounds
US5674932A (en) * 1995-03-14 1997-10-07 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and use in tires
US5580919A (en) 1995-03-14 1996-12-03 The Goodyear Tire & Rubber Company Silica reinforced rubber composition and use in tires
DE69739057D1 (de) * 1996-04-01 2008-12-04 Cabot Corp Neue elastomere verbundwerkstoffe, verfahren und vorrichtung zur herstellung derselben
US6365663B2 (en) 1996-04-01 2002-04-02 Cabot Corporation Elastomer composite blends and methods-II
US6075084A (en) 1996-04-01 2000-06-13 Cabot Corporation Elastomer composite blends and methods - II
US5872173A (en) 1996-04-03 1999-02-16 Cabot Corporation Synthetic latex compositions and articles produced therefrom
US5763388A (en) 1996-12-18 1998-06-09 Dsm Copolymer, Inc. Process for producing improved silica-reinforced masterbatch of polymers prepared in latex form
DE19740440A1 (de) 1997-09-15 1999-03-18 Degussa Leicht dispergierbare Fällungskieselsäure
WO2000005312A1 (en) 1998-07-24 2000-02-03 Cabot Corporation Methods for preparing silica-coated carbon products
EP1171271B1 (en) 1999-04-16 2005-07-27 Cabot Corporation Method and apparatus for producing and treating elastomer composites, and elastomere composite obtainable by the method
CA2381514A1 (en) 1999-08-10 2001-02-15 Bayer Inc. Process for preparation of rubber silica masterbatches based on the use of polymer latices
WO2001055245A2 (en) 2000-01-25 2001-08-02 Cabot Corporation Polymers containing modified pigments and methods of preparing the same
RU2223980C2 (ru) 2000-09-25 2004-02-20 Андряков Евгений Иванович Способ получения резиновой смеси
KR100899909B1 (ko) * 2001-04-30 2009-05-28 제너럴 일렉트릭 캄파니 충진된 엘라스토머 조성물용 하이브리드 규소-함유 커플링제
EP1607408B1 (en) 2001-07-27 2010-11-17 Bridgestone Corporation Natural rubber master batch, production method thereof, and natural rubber composition
EP1423459B1 (fr) 2001-08-13 2008-02-27 Société de Technologie Michelin Composition de caoutchouc dienique pour pneumatique comprenant une silice specifique comme charge renforcante
US6812277B2 (en) * 2001-10-31 2004-11-02 The Goodyear Tire & Rubber Company Tire with component comprised of a blend of polybutadiene-rich rubber composition which contains a minor portion of styrene-rich styrene/isoprene elastomer
US7341142B2 (en) 2001-11-09 2008-03-11 Cabot Corporation Elastomer composite materials in low density forms and methods
US6908961B2 (en) 2001-12-07 2005-06-21 Cabot Corporation Elastomer composites, elastomer blends and methods
EP1489102B1 (en) 2002-03-28 2007-12-05 Bridgestone Corporation Natural rubber, rubber composition and pneumatic tire
DE10256790A1 (de) 2002-12-05 2004-06-17 Degussa Ag Kontinuierliches Verfahren zur Herstellung füllstoffhaltiger Kautschukgranulate
EP1640414B1 (en) 2003-06-30 2011-04-20 Zeon Corporation Rubber composition containing silica and method for production thereof
JP4573523B2 (ja) 2003-12-17 2010-11-04 住友ゴム工業株式会社 シリカマスターバッチ、その製造方法およびシリカマスターバッチを用いてなるゴム組成物
WO2006054713A1 (ja) 2004-11-19 2006-05-26 Bridgestone Corporation 変性天然ゴムマスターバッチ及びその製造方法、並びにゴム組成物及びタイヤ
JP4963786B2 (ja) 2004-11-26 2012-06-27 株式会社ブリヂストン 変性天然ゴムラテックス及びその製造方法、変性天然ゴム及びその製造方法、並びにゴム組成物及びタイヤ
JP4595513B2 (ja) 2004-12-01 2010-12-08 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP4872209B2 (ja) 2004-12-01 2012-02-08 株式会社ブリヂストン 重荷重用空気入りタイヤ
JP4770422B2 (ja) 2004-12-01 2011-09-14 株式会社ブリヂストン 空気入りタイヤ
JP4582703B2 (ja) 2004-12-20 2010-11-17 株式会社ブリヂストン ゴム組成物およびタイヤ
JP4726510B2 (ja) 2005-02-07 2011-07-20 株式会社ブリヂストン 天然ゴムマスターバッチ、その製造方法、これを用いたゴム組成物及びタイヤ
JP4726509B2 (ja) 2005-02-07 2011-07-20 株式会社ブリヂストン 天然ゴムマスターバッチ及びその製造方法、並びにこれを用いたゴム組成物及びタイヤ
JP2007154089A (ja) 2005-12-07 2007-06-21 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2007154095A (ja) 2005-12-07 2007-06-21 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
US7312271B2 (en) 2005-12-29 2007-12-25 Bridgestone Corporation Solution masterbatch process using fine particle silica for low hysteresis rubber
US7625965B2 (en) * 2007-02-08 2009-12-01 Momentive Performance Materials Inc. Rubber composition, process of preparing same and articles made therefrom
JP5594556B2 (ja) 2007-08-28 2014-09-24 住友ゴム工業株式会社 マスターバッチの製造方法およびゴム組成物
CN101842421B (zh) 2007-08-30 2012-09-26 卡伯特公司 弹性体复合材料及其制造方法
US7816435B2 (en) * 2007-10-31 2010-10-19 Momentive Performance Materials Inc. Halo-functional silane, process for its preparation, rubber composition containing same and articles manufactured therefrom
BR122019017677B1 (pt) 2008-02-08 2020-08-18 Cabot Corporation compósito de elastômero vulcanizado
FR2928374B1 (fr) 2008-03-10 2011-10-07 Michelin Soc Tech Composition de caoutchouc dienique pour pneumatique comprenant une silice en tant que charge renforcante
WO2010011345A1 (en) 2008-07-24 2010-01-28 Industrias Negromex, S.A. De C.V. Processes for making silane, hydrophobated silica, silica masterbatch and rubber products
RU2405003C2 (ru) * 2009-02-17 2010-11-27 ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "СИБУР Холдинг" Жидкофазный способ приготовления каучуковых маточных смесей, содержащих белую сажу
EP2424740B1 (en) 2009-04-30 2013-10-16 Dow Corning Corporation Elastomer compositions modified by silanes
US8114935B2 (en) 2009-05-04 2012-02-14 Ppg Industries Ohio, Inc. Microporous precipitated silica
EP2478052A4 (en) 2009-09-17 2015-12-16 Michelin & Cie TIRES COMPOSITION WITH ELASTOMER COMPOSITE MIXTURES
FR2952064B1 (fr) 2009-10-30 2012-08-31 Michelin Soc Tech Methode de preparation d'un melange maitre d'elastomere dienique et de silice
FR2954774B1 (fr) 2009-10-30 2012-01-06 Michelin Soc Tech Methode de preparation d'un melange maitre de caoutchouc naturel et de silice
FR2954775B1 (fr) * 2009-10-30 2012-03-30 Michelin Soc Tech Methode de preparation d'un melange maitre d'elastomere dienique synthetique et de silice
GB201000136D0 (en) 2010-01-06 2010-02-24 Dow Corning Diene elastomers modified by silicones
CN102869521A (zh) 2010-04-01 2013-01-09 罗地亚管理公司 含有铝的沉淀二氧化硅和3-丙烯酰氧基丙基三乙氧基硅烷在异戊二烯弹性体组合物中的用途
US20110244382A1 (en) * 2010-04-06 2011-10-06 Christopher Alyson M Hydrophobic silica particles and method of producing same
FR2969164B1 (fr) * 2010-12-17 2014-04-11 Michelin Soc Tech Composition elastomerique presentant une tres bonne dispersion de la charge dans la matrice elastomerique
FR2969163B1 (fr) * 2010-12-17 2012-12-28 Michelin Soc Tech Composition elastomerique presentant une bonne dispersion de la charge dans la matrice elastomerique
FR2969624B1 (fr) 2010-12-23 2013-02-08 Michelin Soc Tech Procede de preparation d'un melange-maitre en phase liquide
FR2969623B1 (fr) 2010-12-23 2013-02-08 Michelin Soc Tech Procede de preparation d'un melange-maitre en phase liquide
FR2974093B1 (fr) 2011-04-15 2015-05-08 Michelin Soc Tech Procede de preparation d'un melange maitre d'elastomere et d'une charge inorganique renforcante
JP5443453B2 (ja) 2011-09-16 2014-03-19 住友ゴム工業株式会社 複合体の製造方法、複合体、ゴム組成物及び空気入りタイヤ
FR2981079B1 (fr) 2011-10-11 2013-11-01 Michelin Soc Tech Methode pour preparer un melange maitre d'elastomere dienique et de silice
FR2981078B1 (fr) 2011-10-11 2013-11-01 Michelin Soc Tech Methode pour preparer un melange maitre d'elastomere dienique et de silice
FR2981077B1 (fr) 2011-10-11 2013-11-01 Michelin Soc Tech Methode pour preparer un melange maitre d'elastomere dienique et de silice
FR2981081B1 (fr) 2011-10-11 2013-11-01 Michelin Soc Tech Methode de preparation d'un melange maitre de caoutchouc naturel et de silice
FR2981080B1 (fr) 2011-10-11 2013-11-01 Michelin Soc Tech Methode de preparation d'un melange maitre de caoutchouc naturel et de silice dopee magnesium
FR2981937B1 (fr) 2011-10-28 2013-11-08 Michelin Soc Tech Composition elastomerique presentant une tres bonne dispersion de la charge dans la matrice elastomerique
CN103159994B (zh) 2011-12-08 2015-02-11 中国石油化工股份有限公司 一种母炼胶及其制备方法和硫化橡胶及其应用
FR2984333B1 (fr) 2011-12-14 2014-05-09 Michelin Soc Tech Procede de preparation d'un melange-maitre en phase liquide.
TWI555829B (zh) * 2011-12-20 2016-11-01 Gcp應用技術有限公司 容器密封劑組合物
FR2988385B1 (fr) 2012-03-22 2014-05-09 Rhodia Operations Procede de preparation de silice precipitee comprenant une etape de concentration membranaire
BR102012019607A2 (pt) 2012-08-06 2014-09-16 Onelio Pilecco Processo de obtenção de compósitos via precipitação de sílica em látex
JP2014133829A (ja) 2013-01-10 2014-07-24 Sumitomo Rubber Ind Ltd 複合体、その製造方法、ゴム組成物及び空気入りタイヤ
EP2943322B1 (en) 2013-01-14 2017-08-02 Cabot Corporation Method for processing elastomer composite
JP6370884B2 (ja) 2013-05-20 2018-08-08 キャボット コーポレイションCabot Corporation エラストマー複合物、配合物、及びその調製方法
WO2016014037A1 (en) * 2014-07-22 2016-01-28 Li Junjuan A process to prepare high-quality natural rubber-silica masterbatch by liquid phase mixing
CN103419293B (zh) 2013-08-05 2016-04-27 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
US20150037087A1 (en) 2013-08-05 2015-02-05 Senju Metal Industry Co., Ltd. Lead-Free Solder Alloy
CN103600435B (zh) 2013-08-05 2016-04-27 怡维怡橡胶研究院有限公司 橡胶母炼胶的连续式制造方法及该方法制备的橡胶母炼胶
US20160194479A1 (en) * 2013-08-13 2016-07-07 3M Innovative Properties Company Nanocomposites containing layered nanoparticles and dispersant, composites, articles, and methods of making same
BR112016030998B1 (pt) 2014-06-30 2022-01-25 Industrias Negromex, S.A. De C.V. Métodos para a fabricação de um produto de sílica modificada e de uma mistura base de sílica com um produto de sílica modificada
JP6756816B2 (ja) * 2015-07-15 2020-09-16 キャボット コーポレイションCabot Corporation シリカおよびカーボンブラックで補強されたエラストマー複合材の製造方法およびそれを含む製品
MY184652A (en) * 2015-07-15 2021-04-14 Cabot Corp Methods of making an elastomer composite reinforced with silica and products containing same
MX2018002519A (es) * 2016-03-28 2018-06-06 Sintokogio Ltd Aparato de mezclado continuo, sistema y metodo de mezclado continuo para material en polvo/granular y liquido viscoso.
US10782236B2 (en) * 2018-06-11 2020-09-22 Semiconductor Components Industries, Llc Methods and apparatus for a biosensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1231339C (zh) * 1996-04-01 2005-12-14 卡伯特公司 新型弹性体组合物、其制备方法及设备
WO2011034589A2 (en) * 2009-09-17 2011-03-24 Cabot Corporation Formation of latex coagulum composite
CN103221463A (zh) * 2010-09-15 2013-07-24 卡博特公司 具有含二氧化硅的填料的弹性体复合材料及其制造方法
CN103874586A (zh) * 2011-10-11 2014-06-18 米其林集团总公司 用于制备二烯弹性体和二氧化硅的母料的方法

Also Published As

Publication number Publication date
RU2690260C1 (ru) 2019-05-31
GB201801671D0 (en) 2018-03-21
US20180273702A1 (en) 2018-09-27
CA2992270A1 (en) 2017-01-19
DE112016003168T5 (de) 2018-04-12
US11312824B2 (en) 2022-04-26
FR3038901B1 (fr) 2022-06-17
BR112018000831B1 (pt) 2022-12-13
BR112018000834B1 (pt) 2022-06-21
CA2992270C (en) 2020-09-08
US9926413B2 (en) 2018-03-27
US10301439B2 (en) 2019-05-28
BR112018000831A2 (pt) 2018-09-11
CA2992267C (en) 2020-07-21
GB201801673D0 (en) 2018-03-21
CN108026315A (zh) 2018-05-11
GB2556571A (en) 2018-05-30
CN108026314A (zh) 2018-05-11
WO2017011570A1 (en) 2017-01-19
US11053360B2 (en) 2021-07-06
AU2016294426B2 (en) 2018-10-18
GB2556568A (en) 2018-05-30
US10882964B2 (en) 2021-01-05
MY186076A (en) 2021-06-18
CL2018000088A1 (es) 2018-08-24
CA2992267A1 (en) 2017-01-19
JP6717927B2 (ja) 2020-07-08
CN108291049B (zh) 2021-06-01
RU2018105498A (ru) 2019-08-15
FR3038901A1 (zh) 2017-01-20
AU2016294421A1 (en) 2018-02-01
US10494490B2 (en) 2019-12-03
BR112018000834A2 (pt) 2018-09-11
US20180251609A1 (en) 2018-09-06
GB2556570B (en) 2021-04-28
MY183718A (en) 2021-03-09
CN108291049A (zh) 2018-07-17
AU2016294421B2 (en) 2018-10-18
US10000613B2 (en) 2018-06-19
FR3038900B1 (fr) 2022-06-17
FR3038900A1 (zh) 2017-01-20
BR112018000830A2 (pt) 2018-09-04
US20170306107A1 (en) 2017-10-26
US20190375901A1 (en) 2019-12-12
CL2018000089A1 (es) 2018-05-11
BR112018000830B1 (pt) 2022-06-21
RU2703619C2 (ru) 2019-10-21
US20190375902A1 (en) 2019-12-12
IT201600073305A1 (it) 2018-01-13
MY186627A (en) 2021-07-31
FR3038902A1 (zh) 2017-01-20
DE112016003173T5 (de) 2018-03-29
RU2018105498A3 (zh) 2019-08-15
CA2992269C (en) 2020-06-02
JP2018524450A (ja) 2018-08-30
AU2016294430A1 (en) 2018-02-01
GB2556568B (en) 2022-07-06
JP2018528283A (ja) 2018-09-27
JP6744394B2 (ja) 2020-08-19
JP6756816B2 (ja) 2020-09-16
US20170306108A1 (en) 2017-10-26
RU2689750C1 (ru) 2019-05-28
GB2556571B (en) 2021-07-07
CA2992269A1 (en) 2017-01-19
DE112016003162T5 (de) 2018-04-19
IT201600073198A1 (it) 2018-01-13
WO2017011566A1 (en) 2017-01-19
CL2018000090A1 (es) 2018-08-03
GB2556570A (en) 2018-05-30
AU2016294430B2 (en) 2018-11-29
AU2016294426A1 (en) 2018-02-01
US20180201753A1 (en) 2018-07-19
JP2018525474A (ja) 2018-09-06
CN108026315B (zh) 2021-02-09
WO2017011561A1 (en) 2017-01-19
FR3038902B1 (fr) 2022-03-11
GB201801669D0 (en) 2018-03-21

Similar Documents

Publication Publication Date Title
CN108026314B (zh) 制造用硅石和炭黑增强的弹性体复合物的方法以及包含其的制品
CN108026316B (zh) 制造用硅石增强的弹性体复合物的方法以及包含其的制品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant