CN108011522A - 整流ic以及使用该整流ic的绝缘型开关电源 - Google Patents

整流ic以及使用该整流ic的绝缘型开关电源 Download PDF

Info

Publication number
CN108011522A
CN108011522A CN201711018253.1A CN201711018253A CN108011522A CN 108011522 A CN108011522 A CN 108011522A CN 201711018253 A CN201711018253 A CN 201711018253A CN 108011522 A CN108011522 A CN 108011522A
Authority
CN
China
Prior art keywords
rectification
transistor
lead frame
chip
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711018253.1A
Other languages
English (en)
Other versions
CN108011522B (zh
Inventor
萩野淳
萩野淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Publication of CN108011522A publication Critical patent/CN108011522A/zh
Application granted granted Critical
Publication of CN108011522B publication Critical patent/CN108011522B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49506Lead-frames or other flat leads characterised by the die pad an insulative substrate being used as a diepad, e.g. ceramic, plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/4952Additional leads the additional leads being a bump or a wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49537Plurality of lead frames mounted in one device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49171Fan-out arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

本发明提供一种整流IC以及使用该整流IC的绝缘型开关电源。整流IC(30)将集成了晶体管(垂直型NDMOSFET)的晶体管芯片(31)以及检测晶体管的漏极电压VD和源极电压VS来进行晶体管的导通/截止控制的控制器芯片(32)封装在单一封装中而成,并用作绝缘型开关电源(1)的二次侧整流单元。控制器芯片(32)在VD<VS时导通晶体管,在VD>VS时截止晶体管。绝缘型开关电源(1)具有:被施加输入电压Vi的变压器(10)、根据反馈信号Sfb控制变压器(10)的一次侧电流Ip的控制部(20)、对变压器(10)的二次侧电压VS进行整流滤波来生成输出电压Vo的整流滤波部(30和40)以及根据输出电压Vo生成反馈信号Sfb的输出反馈部(50)。

Description

整流IC以及使用该整流IC的绝缘型开关电源
技术领域
本发明涉及整流IC以及使用该整流IC的绝缘型开关电源。
背景技术
以往,绝缘型开关电源用于各个领域(汽车领域、工业机械领域、消费领域等)。
此外,可以列举日本特开2008-067443号公报作为与上述相关的现有技术的一例。
图10是表示绝缘型开关电源的第1现有例的电路框图。如果是本现有例的绝缘型开关电源100,则可以一边对一次电路系统100p(GND1系统)与二次电路系统100s(GND2系统)之间进行电绝缘,一边从输入电压Vi生成输出电压Vo来提供给负载Z。
然而,在第1现有例的绝缘型开关电源100中,使用正向下降电压Vf大的二极管130作为二次侧整流单元,因此其转换效率还存在改善的余地。
图11是表示绝缘型开关电源的第2现有例的电路框图。在第2现有例的绝缘型开关电源200中,使用导通电阻值小的整流晶体管231和进行其导通/截止控制的控制IC232代替之前的二极管130,因此可以实现比第1现有例更高的转换效率。
然而,在第2现有例的绝缘型开关电源200中,在每一次配合搭载其的应用的规格来选择最佳的整流晶体管231时,需要用户自己进行与控制器IC232之间的匹配作业(栅极电阻值的调整作业等),针对其便利性还存在改善的余地。另外,与第1现有例相比,零件个数增加,因此还存在导致电路面积的增大、成本增加的问题。
发明内容
本说明书中所公开的发明鉴于本申请的发明者发现的上述问题,以提供一种可以简单地提高绝缘型开关电源的转换效率的整流IC为目的。
例如,本说明书中所公开的整流IC是如下结构:将集成了晶体管的晶体管芯片和分别检测所述晶体管的第1节点电压与第2节点电压来进行所述晶体管的导通/截止控制的控制器芯片密封在单一封装中而成,并作为绝缘型开关电源的二次侧整流单元发挥作用。
此外,根据接下来对最佳方式的详细说明、与其有关的附图,可以使本发明的其他特征、要素、步骤、优点以及特性变得更清楚。
附图说明
图1是表示绝缘型开关电源的整体结构的电路框图。
图2是晶体管芯片的平面图。
图3是晶体管芯片的α-α’截面图。
图4是引线框架的图案图。
图5是控制器芯片的安装工序图。
图6是ZIP封装的表面侧立体图。
图7是ZIP封装的背面侧立体图。
图8是SON封装的表面侧立体图。
图9是SON封装的背面侧立体图。
图10是表示绝缘型开关电源的第1现有例的电路框图。
图11是表示绝缘型开关电源的第2现有例的电路框图。
具体实施方式
<绝缘型开关电源>
图1是表示绝缘型开关电源的整体结构的框图。本图的绝缘型开关电源1是一边对一次电路系统1p(GND1系统)与二次电路系统1s(GND2系统)之间进行电绝缘,一边从输入电压Vi生成输出电压Vo来提供给负载Z的反激式的DC/DC转换器,并具有变压器10、电源控制IC20、整流IC30、滤波电容器40以及输出反馈部50。
变压器10包括一边对一次电路系统1p与二次电路系统1s之间进行电绝缘,一边互相通过逆极性而电磁耦合的一次绕组11(匝数Np)和二次绕组12(匝数Ns)。一次绕组11的第1端连接到输入电压Vi的施加端。一次绕组11的第2端经由输出晶体管21(在本图的例子中内置在电源控制IC20中)连接到一次电路系统1p的接地端GND1。二次绕组12的第1端经由整流IC30连接到输出电压Vo的施加端(负载Z的电源端)。二次绕组12的第2端连接到二次电路系统1s的接地端GND2。可以任意调整匝数Np以及Ns,以便获得所期望的输出电压Vo。例如,匝数Np越多或匝数Ns越少,则输出电压Vo变低,反之匝数Np越少或匝数Ns越多,则输出电压Vo变高。
电源控制IC20通过根据反馈信号Sfb来导通/截止输出晶体管21,控制流过变压器10的一次绕组11的一次侧电流Ip。输出晶体管21可以作为集成元件内置在电源控制IC20中,也可以作为分立元件外接至电源控制IC20。此外,针对由电源控制IC20所进行的输出反馈控制,可以应用已有的公知技术(电压模式控制方式、电流模式控制方式或者迟滞控制方式等),因此省略详细的说明。
整流IC30是作为绝缘型开关电源1的二次侧整流单元发挥作用的多芯片型的半导体集成电路装置。此外,稍后针对整流IC30的结构以及动作进行详细描述。
滤波电容器40并联连接到负载Z,并作为绝缘型开关电源1的二次侧滤波单元发挥作用。
也就是说,上述整流IC30和滤波电容器40作为通过对在变压器10的二次绕组12中感应出的二次侧电压(=整流IC30的源极电压VS)进行整流以及滤波来生成输出电压Vo的整流滤波部发挥作用。
输出反馈部50根据输出电压Vo生成反馈信号Sfb。此外,输出反馈部50的电路结构是任意的,但是通常是使用分流调节器和光电耦合器的结构或者使用变压器10的辅助绕组的结构等。
在本结构例的绝缘型开关电源1中,当输出晶体管21导通时,从输入电压Vi的施加端经由一次绕组11以及输出晶体管21流过向着接地端GND1的一次侧电流Ip,因此在一次绕组11中积累电能。另一方面,当输出晶体管21截止时,在与一次绕组11电磁耦合的二次绕组12中感应出二次侧电压,因此从二次绕组12经由整流IC30流过向着接地端GND2的二次侧电流Is。其结果,滤波电容器40被充电,向负载Z提供输出电压Vo。
如此,根据本结构例的绝缘型开关电源1,可以一边对一次电路系统1p与二次电路系统1s之间进行电绝缘,一边从输入电压Vi生成输出电压Vo来提供给负载Z。此外,反激式与需要滤波电感器的正激式相比,零件个数少,因此可以说有利于低成本化。
<整流IC>
接着,一边参照图1,一边针对整流IC30的结构以及动作进行说明。本结构例的整流IC30是将晶体管芯片31和控制器芯片32密封在单一封装中而成的多芯片型的半导体集成电路装置。
另外,整流IC30作为用于建立与IC外部的电连接的单元,至少具有外部端子T1~T3。在整流IC30的外部,外部端子T1(=相当于漏极端子)连接到输出电压Vo的施加端。外部端子T2(=相当于源极端子)连接到二次绕组12的第1端,并作为整流IC30的接地端子(=基准电位端子)发挥作用。外部端子T3(=相当于电源端子)连接到电源电压Vcc的施加端。
晶体管芯片31是集成了整流晶体管(垂直型的NDMOSFET[N-channel typedouble-diffused metal oxide semiconductor field effect transistor](N沟道型双扩散金属氧化物半导体场效应晶体管)等,会在后面进行详细描述)的半导体芯片,也可以理解为是整流晶体管本身。因此,在以下的说明中,有时将晶体管芯片31称为“整流晶体管31”。此外,整流晶体管31的漏极分别连接到外部端子T1与控制器芯片32的漏极电压检测焊盘。另一方面,整流晶体管31的源极分别连接到外部端子T2与控制器芯片32的源极电压检测焊盘。另外,整流晶体管31的栅极连接到控制器芯片32的栅极控制焊盘。
控制器芯片32从外部端子T3接受电源电压Vcc(>VS)的供给来进行动作,分别检测整流晶体管31的漏极电压VD与源极电压VS来进行整流晶体管31的导通/截止控制。具体而言,控制器芯片32进行整流晶体管31的栅极控制,使得在漏极电压VD比源极电压VS低时(相当于图10中的二极管130的正向偏置时)导通整流晶体管31,在漏极电压VD比源极电压VS高时(相当于二极管130的反向偏置时)截止整流晶体管31。
如此,在本结构例的整流IC30中,使用导通电阻值小的整流晶体管31作为二次侧整流单元,因此,与使用二极管的现有结构(图10)相比,可以提高绝缘型开关电源1的转换效率。
另外,如果是本结构例的整流IC30,则可以由供应方完成晶体管芯片31与控制器芯片32的匹配作业(栅极电阻值的调整作业等)。因此,用户只要配合搭载绝缘型开关电源1的应用的规格来选择最佳的整流IC30即可,非常易于使用。
另外,如果是本结构例的整流IC30,与使用分立的整流晶体管和控制器IC的现有结构(图11)相比,零件个数减少,因此可以实现电路面积的缩小、成本降低。
<晶体管芯片>
图2以及图3分别是晶体管芯片31的平面图以及α-α’截面图。集成在晶体管芯片31(例如3mm×3mm,包括划线宽度90μm)中的整流晶体管是垂直型NDMOSFET,在其表面侧如图2所示,形成有2个源极焊盘31S(例如2400μm×900μm)和1个栅极焊盘31G(例如480μm×320μm)。此外,可以根据整流晶体管的电流能力、制造工艺规则等来适当调整源极焊盘31S以及栅极焊盘31G的各自的个数、尺寸以及配置布局。
另外,如图3所示,在晶体管芯片31中,在其硅基板上形成有单元部31a(厚度d31a=270μm、150μm等的各种)。在单元部31a中包括多个单位单元,通过并联连接它们,形成一个整流晶体管。此外,单位单元的构造,可以设为沟槽栅极型,也可以设为平面栅极型。特别是,如果是沟槽栅极型,则可以使单位单元小型化,因此可以实现整流晶体管的低导通电阻化。
在单元部31a的表面,以覆盖各单位单元的栅极的方式形成有中间绝缘层31b(例如SiO2层)。
在中间绝缘层31b的表面,形成在其平面图中为矩形的金属层31c(相当于源极焊盘31S,厚度d31c=4.2μm)。此外,作为金属层31c的材料,例如可以适当使用Al Cu类合金。
在中间绝缘层31b与金属层31c的周围,以覆盖到金属层31c的表面外周边缘部的方式形成有保护层31d(厚度d31d=1.6μm)。也就是说,保护层31d在晶体管芯片31的平面图中,以露出源极焊盘31S(以及栅极焊盘31G)的方式覆盖晶体管芯片31的表面(参照图2的阴影区域)。此外,作为保护层31d的材料,例如可以适当使用SiN。
另一方面,在单元部31a的背面,对漏极电极31e进行了固定配线。此外,漏极电极31e被设为按照从单元部31a侧开始的顺序,层叠了Ti层31e1、Ni层31e2、Au层31e3、Ag层31e4的层状结构,使用银膏或焊料将最外层的Ag层31e4与引线框架进行芯片焊接。此外,各层的厚度d31e1~d31e4例如是70-600-70-300nm。
<引线框架>
图4是整流IC30中的引线框架的图案图(TO220封装的采用例)。如本图所示,整流IC30具有引线框架A1~A3。引线框架A1~A3分别作为外部端子T1~T3从封装的一个端面沿一个方向延伸。此外,在对整流IC30赋予追加功能时,如图中的虚线所示,也可以增加引线框架。
晶体管芯片31的背面(=漏极电极)与引线框架A1相芯片焊接。此外,理想的是,引线框架A1在收纳在封装的范围内,以具有尽可能大的面积的方式进行图案化。通过设为这样的结构,可以高效地散发晶体管芯片31产生的热量。
另一方面,控制器芯片32经由绝缘部件33被安装在引线框架A1上。通过设为这样的结构,可以一边对引线框架A1与控制器芯片32之间进行电绝缘,一边将控制器芯片32安装在引线框架A1上。
此外,如果将晶体管芯片31与控制器芯片32分别安装在不同引线框架上,则很难从晶体管芯片31向控制器芯片32传播热量、噪音。然而,为了分离引线框架,必须缩小搭载晶体管芯片31的引线框架A1的面积,因此会牺牲散热性能。
另一方面,如果是本图的结构,则不需要缩小引线框架A1的面积,因此不损失散热性能即可。此外,在整流IC30中安装附加芯片时,也与上述同样,理想的是经由绝缘部件33将附加芯片安装在引线框架A1上。
在晶体管芯片31的源极焊盘31S与引线框架A2之间、控制器芯片32的源极电压检测焊盘32S与引线框架A2之间、控制器芯片32的漏极电压检测焊盘32D与引线框架A1之间、控制器芯片32的栅极控制焊盘32G与晶体管芯片31的栅极焊盘31G之间以及控制器芯片32的电源焊盘32V与引线框架A3之间,分别铺设有1条或多条线W1~W5。此外,可以使用Cu、Al作为线W1~W5各自的材料。
另外,在引线框架A1上形成有将绝缘部件33与线接合区域A1x(=线W3的一端所接合的区域)之间分隔的隔离沟槽A1y。隔离沟槽A1y例如可以以包围线接合区域A1x的周围的方式形成为U字型。通过设为这样的结构,引线框架A1的线接合区域A1x会变得一目了然,因此容易确认线W3的接合状况。
另外,即使用于将绝缘部件33粘贴在引线框架A1上的粘合剂(后述的绝缘膏B1)超出了绝缘部件33的周围,也不用担心其越过隔离沟槽A1y而到达线接合区域A1x。因此,可以预先避免线W3的接合不良。
<安装工序>
图5是在引线框架A1上安装控制器芯片32时的工序图,从纸面的左侧向右侧按顺序开展安装工序。
首先,在第1步骤中,在引线框架A1的表面涂抹绝缘膏B1(例如硅膏)。
接着,在第2步骤中,在绝缘膏B1上放置陶瓷绝缘基板B2(例如氧化铝绝缘基板)。也就是说,使用绝缘膏B1将陶瓷绝缘基板B2粘贴在引线框架A1上。此外,本图的陶瓷绝缘基板B2相当于图4的绝缘部件33。
然后,在第3步骤中,在陶瓷绝缘基板B2的表面涂抹导电膏B3(例如银膏)。
最后,在第4步骤中,在导电膏B3上放置控制器芯片32。也就是说,使用导电膏B3将控制器芯片32粘贴在陶瓷绝缘基板B2上。
通过上述工序,可以一边对引线框架A1与控制器芯片32之间进行电绝缘,一边将控制器芯片32安装在引线框架A1上。
<封装>
此外,作为整流IC30的封装,可以使用插入安装型封装(ZIP封装[zigzag in-linepackage]、SIP封装[single line package]或者TO封装[transistor outline package]等),也可以使用表面安装型封装(SON封装[small outline non-leaded package]或者QFN封装[quad flat non-leaded package]等)。
图6以及图7分别是ZIP封装的立体图(表面侧以及背面侧)。在ZIP封装X中,从其一个端面沿一个方向延伸出的多条(在本图中是5条)引线引脚X1以Z字形弯折。
图8以及图9分别是SON封装的立体图(表面侧以及背面侧)。在SON封装Y中,沿着底面的2条边排列有多个(在本图中是8个)电极焊盘Y1。
在采用上述任意的封装的情况下,安装晶体管芯片31的引线框架A1(参照图4)至少可以使其一部分作为散热焊盘X2或Y2从封装中露出。通过设为这样的结构,可以提高晶体管芯片31的散热性,因此很难产生整流IC30的热击穿、热失控。
当然,整流晶体管31如之前所述,其导通电阻值小,与使用整流二极管的现有结构相比,自身的电力损失少。因此,根据流过晶体管芯片31的电流,在晶体管芯片31中的发热不会引起严重的问题,可能不需要使引线框架A1从封装中露出来提高散热效果。在这种情况下,例如可以使用通常的SOP[small outline package]封装或者被全模制作的TO220封装等。
<其他的变形例>
除了上述实施方式,本说明书中所公开的各种各样的技术特征还可以在不脱离其技术创作的主旨的范围内增加各种变更。也就是说,应当认为上述实施方式在任意方面都是示例而不是限制性的内容,本发明的技术范围是由请求专利保护的范围而不是上述实施方式的说明所表示的,应当理解为包括请求专利保护的范围和属于同等意思以及范围内的全部变更。
<工业上的可利用性>
本说明书中所公开的发明可以用于在所有领域(汽车领域、工业机械领域、消费领域等)使用的绝缘型开关电源。

Claims (10)

1.一种整流IC,其特征在于,
将以下部件密封在单一封装中而成,用作绝缘型开关电源的二次侧整流单元:
晶体管芯片,其集成了晶体管;以及
控制器芯片,其分别检测所述晶体管的第1节点电压和第2节点电压来进行所述晶体管的导通/截止控制。
2.根据权利要求1所述的整流IC,其特征在于,
所述控制器芯片在所述第1节点电压比所述第2节点电压低时导通所述晶体管,在所述第1节点电压比所述第2节点电压高时截止所述晶体管。
3.根据权利要求1或2所述的整流IC,其特征在于,
所述晶体管是垂直N沟道型双扩散金属氧化物半导体场效应晶体管。
4.根据权利要求3所述的整流IC,其特征在于,
所述晶体管芯片被芯片焊接至第1引线框架,
所述控制器芯片经由绝缘部件被安装在所述第1引线框架上。
5.根据权利要求4所述的整流IC,其特征在于,
在所述晶体管芯片的源极焊盘与第2引线框架之间、所述控制器芯片的源极电压检测焊盘与所述第2引线框架之间、所述控制器芯片的漏极电压检测焊盘与所述第1引线框架之间、所述控制器芯片的栅极控制焊盘与所述晶体管芯片的栅极焊盘之间以及所述控制器芯片的电源焊盘与第3引线框架之间,分别铺设1条或多条线。
6.根据权利要求5所述的整流IC,其特征在于,
在所述第1引线框架上形成隔离所述绝缘部件与线接合区域之间的隔离沟槽。
7.根据权利要求4所述的整流IC,其特征在于,
所述绝缘部件通过绝缘膏被粘贴在所述引线框架上。
8.根据权利要求4所述的整流IC,其特征在于,
所述绝缘部件是陶瓷绝缘基板。
9.根据权利要求4所述的整流IC,其特征在于,
所述第1引线框架至少露出一部分作为散热焊盘。
10.一种绝缘型开关电源,具有:
变压器,其被施加输入电压;
控制部,其根据反馈信号来控制所述变压器的一次侧电流;
整流滤波部,其整流滤波所述变压器的二次侧电压来生成输出电压;以及
输出反馈部,其根据所述输出电压来生成所述反馈信号,其特征在于,
所述整流滤波部包括权利要求1~9中任意一项所述的整流IC作为二次侧整流单元。
CN201711018253.1A 2016-10-27 2017-10-26 整流ic以及使用该整流ic的绝缘型开关电源 Active CN108011522B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-210962 2016-10-27
JP2016210962A JP6867778B2 (ja) 2016-10-27 2016-10-27 整流ic及びこれを用いた絶縁型スイッチング電源

Publications (2)

Publication Number Publication Date
CN108011522A true CN108011522A (zh) 2018-05-08
CN108011522B CN108011522B (zh) 2020-09-18

Family

ID=62021931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711018253.1A Active CN108011522B (zh) 2016-10-27 2017-10-26 整流ic以及使用该整流ic的绝缘型开关电源

Country Status (3)

Country Link
US (2) US10270362B2 (zh)
JP (1) JP6867778B2 (zh)
CN (1) CN108011522B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108900071A (zh) * 2018-08-27 2018-11-27 北京嘉楠捷思信息技术有限公司 一种开关电源以及包括该开关电源的计算设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927069A (en) * 1988-07-15 1990-05-22 Sanken Electric Co., Ltd. Soldering method capable of providing a joint of reduced thermal resistance
US9093918B2 (en) * 2011-10-17 2015-07-28 System General Corporation Control circuit for offline power converter without input capacitor
US9093434B2 (en) * 2011-04-04 2015-07-28 Rohm Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US20160049876A1 (en) * 2014-08-12 2016-02-18 Alpha And Omega Semiconductor Incorporated Single package synchronous rectifier
CN105529939A (zh) * 2014-09-30 2016-04-27 万国半导体股份有限公司 单独封装同步整流器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915394B2 (ja) * 1978-08-31 1984-04-09 富士通株式会社 厚膜微細パタ−ン生成方法
JP3895570B2 (ja) * 2000-12-28 2007-03-22 株式会社ルネサステクノロジ 半導体装置
JP2008067443A (ja) 2006-09-05 2008-03-21 Oki Power Tech Co Ltd スイッチング電源回路
JP5415823B2 (ja) * 2008-05-16 2014-02-12 株式会社デンソー 電子回路装置及びその製造方法
US8816497B2 (en) * 2010-01-08 2014-08-26 Transphorm Inc. Electronic devices and components for high efficiency power circuits
US9576932B2 (en) * 2013-03-09 2017-02-21 Adventive Ipbank Universal surface-mount semiconductor package
JP6563651B2 (ja) * 2014-12-24 2019-08-21 ローム株式会社 絶縁同期整流型dc/dcコンバータ、同期整流コントローラ、それを用いた電源装置、電源アダプタおよび電子機器
CN108282092B (zh) * 2017-01-05 2020-08-14 罗姆股份有限公司 整流ic以及使用该整流ic的绝缘型开关电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927069A (en) * 1988-07-15 1990-05-22 Sanken Electric Co., Ltd. Soldering method capable of providing a joint of reduced thermal resistance
US9093434B2 (en) * 2011-04-04 2015-07-28 Rohm Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US9093918B2 (en) * 2011-10-17 2015-07-28 System General Corporation Control circuit for offline power converter without input capacitor
US20160049876A1 (en) * 2014-08-12 2016-02-18 Alpha And Omega Semiconductor Incorporated Single package synchronous rectifier
CN105529939A (zh) * 2014-09-30 2016-04-27 万国半导体股份有限公司 单独封装同步整流器

Also Published As

Publication number Publication date
CN108011522B (zh) 2020-09-18
US10270362B2 (en) 2019-04-23
US20190207531A1 (en) 2019-07-04
JP6867778B2 (ja) 2021-05-12
US10594228B2 (en) 2020-03-17
US20180123472A1 (en) 2018-05-03
JP2018074721A (ja) 2018-05-10

Similar Documents

Publication Publication Date Title
US9355991B2 (en) Integrating multi-output devices having vertically stacked semiconductor chips
US8188596B2 (en) Multi-chip module
TWI539561B (zh) 半導體裝置
US9842797B2 (en) Stacked die power converter
US7884444B2 (en) Semiconductor device including a transformer on chip
CN101990709A (zh) 层叠的功率转换器结构和方法
US20120193772A1 (en) Stacked die packages with flip-chip and wire bonding dies
TW201413895A (zh) 多晶片封裝結構及其封裝方法
US9099441B2 (en) Power transistor arrangement and method for manufacturing the same
US6858922B2 (en) Back-to-back connected power semiconductor device package
TWI779569B (zh) 應用於功率轉換器的封裝結構
CN108282092A (zh) 整流ic以及使用该整流ic的绝缘型开关电源
WO2021200337A1 (ja) 電子装置
CN109935561A (zh) 一种氮化镓器件及氮化镓器件的封装方法
CN108011522A (zh) 整流ic以及使用该整流ic的绝缘型开关电源
JP2009164288A (ja) 半導体素子及び半導体装置
US20230335509A1 (en) Power module package with magnetic mold compound
TWI718250B (zh) 封裝結構
CN211828761U (zh) 应用于功率转换器的封装结构
US11145629B2 (en) Semiconductor device and power conversion device
CN207753000U (zh) 一种氮化镓器件
CN104103680B (zh) 芯片和芯片装置
TW202006898A (zh) 功率元件封裝結構
TW201244052A (en) A combined packaged power semiconductor device
JP5412559B2 (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant