CN107999132A - 一种甲醇电催化重整催化剂的制备方法 - Google Patents

一种甲醇电催化重整催化剂的制备方法 Download PDF

Info

Publication number
CN107999132A
CN107999132A CN201711111688.0A CN201711111688A CN107999132A CN 107999132 A CN107999132 A CN 107999132A CN 201711111688 A CN201711111688 A CN 201711111688A CN 107999132 A CN107999132 A CN 107999132A
Authority
CN
China
Prior art keywords
bdc
cocu
preparation
deionized water
ethyl alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711111688.0A
Other languages
English (en)
Inventor
魏新发
陈立松
施剑林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN201711111688.0A priority Critical patent/CN107999132A/zh
Publication of CN107999132A publication Critical patent/CN107999132A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种甲醇电催化重整催化剂的制备方法,具体步骤:首先将一定量的对苯二甲酸(BDC)溶解在一定比例的乙醇、去离子水和N,N‑二甲基甲酰胺(DMF)的混合溶液中,再将CuCl2•2H2O和CoCl2•6H2O溶解其中,再加入三乙胺(TEA),搅拌数分钟后,在密封条件下超声数小时生成铜离子、钴离子与BDC的双金属有机框架化合物,并经过数次超声离心,室温干燥得到样品(记为CoCu‑BDC)与炭黑按一定比例混合,加入一定量的Nafion溶液,超声分散在乙醇与水的混合溶液中,最终得到催化剂浆料。本发明制备的CoCu‑BDC在催化剂中以超薄纳米片的形式分散在浆料中,电荷传导能力好,具有很高的甲醇电催化重整性能。而且该制备方法简单易行,时间短。工业应用前景良好。

Description

一种甲醇电催化重整催化剂的制备方法
技术领域
本发明涉及材料领域,尤其涉及一种甲醇电催化重整催化剂的制备方法。
背景技术
越来越多的能源短缺和环境问题日益突出,已成为全球关注的焦点。寻找无碳,清洁可持续的新能源已成为当务之急。氢能源(H2)被认为是其高热值,无污染和简单制备等最有希望和潜在的替代能源之一。电化学水分裂是近年来最引人注目的H2生产方法之一。水电解包含析氢反应(HER)和氧(O2)析出反应(OER)。然而,OER整体反应的速率确定步骤需要高超电势,其通常降低能量转换效率并增加能量消耗。贵金属催化剂(用于HER的Pt,用于OER的IrO 2或RuO2)是具有最佳电催化性能的催化剂,但是目前受到稀缺性和大规模应用的高成本的限制。
甲醇是有机原料之一,而且产能过剩。低价格和巨大的生产引起了许多研究人员的兴趣。十多年前,研究人员发现,一些有机小分子,包括甲醇,可以通过在铂/氧化铝催化剂上进行水相重整来转化生成氢。 Lili Lin等人最近报道了通过甲醇(APRM)的水相重整,利用原子分散在α-碳化钼(α-MoC)上的铂(Pt)在低温(150-190摄氏度)下产生氢。虽然它们具有相对较高的氢生成速率,但贵金属的使用大大增加了催化剂的生产成本,这限制了其大规模应用。此外,这些反应不能在室温和压力下进行,这需要额外的能量来维持催化剂的连续工作。反应体系和气体净化的可回收性差,大大增加了成本。然而,电催化反应器系统可以在室温下容易地进行,并且分别使用PEM来分离阴极和阳极产生的气体(H2和O2)。
MOF材料作为新型多孔,高表面积材料在催化领域中的应用潜力巨大。 MOF的一个重要性质是MOF的所有金属离子或金属簇是单分散的,因此暴露和利用更多的催化活性位点。绝大多数MOF对于其孔隙度是不导电的。由于这个原因,MOFs在催化领域很少应用。二维材料的兴起引起了MOF材料电化学研究学者的兴趣,因为它具有优良的电子传导性和快速的离子传输,电解质和生产能力。因此,超薄MOFs将会有优势。
发明内容
本发明的目的在于针对现有技术的不足而提供的一种甲醇电催化重整催化剂的制备方法。
本发明的目的是这样实现的:
一种甲醇电催化重整催化剂的制备方法,特点是:该方法包括以下具体步骤:
步骤1:将同等摩尔量的CuCl2• 2H2O与CoCl2• 6H2O和对苯二甲酸(BDC)均匀分散在去离子水、乙醇以及DMF的混合溶液中;其中,去离子水、乙醇以及DMF的体积比为1:1:(10-20);
步骤2:搅拌条件下,在CuCl2• 2H2O与CoCl2• 6H2O和BDC完全溶解后加入三乙胺,并持续搅拌3-7分钟;加入三乙胺的量为步骤1中去离子水体积的1/2-1倍;
步骤3:将步骤2所得前驱体在40KHz的条件下超声晶化5-8h,温度为室温;再将前驱体离心分离,用无水乙醇洗涤5次,通过冷冻干燥得到CoCu-BDC纳米片,
步骤4:将步骤3中晶化得到的CoCu-BDC混合材料与炭黑按比例混合,分散在去离子水与无水乙醇的混合溶液中,加入体积为去离子水的1/30-1/10倍的5%Nafion溶液,获得甲醇电催化重整催化剂浆料;其中,炭黑与CoCu-BDC混合材料的质量比为0.5-2:1;去离子水与无水乙醇体积比为0.5-2:1。
步骤3所述超声晶化过程为密封条件下进行。
所述CoCu-BDC纳米片的厚度为3-5nm。
本发明为超声辅助法制备双金属纳米片状MOF材料,反应时间为4-8h,此方法简便易行,相对于传统水热合成MOF材料,大大缩短了制备时间,降低了成本。
本发明提供的甲醇电催化重整催化剂的制备方法简单易行、成本低,在超声条件下实现CoCu-BDC的晶化,无需加热,无需搅拌,晶化时间短,省时省力;通过超声活化和离心分离3-5次,简单易行,同时避免了污染。
附图说明
图1为实施例1所得纳米片状MOF材料的扫描电子显微镜(TEM)照片图;
图2为实施例1所得纳米片状MOF材料的透射电子显微镜(AFM)照片图;
图3为实施例1所得纳米片状MOF材料的广角X射线衍射(XRD)图谱图;
图4为实施例3所得纳米片状MOF材料的AFM照片图;
图5为实施例3所得纳米片状MOF材料的TEM照片图;
图6为实例例1、2、3所得纳米片状MOF材料甲醇电催化重整性能(LSV)对比图。
具体实施方式
下面参照附图,通过具体的实施例对本发明作进一步说明,以更好地理解本发明。
实施例1
量取2mL去离子水、2mL乙醇以及32mLDMF的混合溶液于100mL蓝盖瓶中,再称取0.12gBDC溶于混合溶液中,随后将同等摩尔量的CuCl2• 2H2O和CoCl2• 6H2O溶解其中,加入0.8mL三乙胺,快速搅拌5分钟,拧上瓶盖并继续超声反应8小时(1600W,40KHZ)。将上述所得前驱体离心分离,然后用无水乙醇洗涤5次,在通过冷冻干燥得到CoCu-BDC,其TEM和AFM照片以及XRD图谱分别如图1、图2以及图3所示,从TEM图中看出CoCu-BDC MOF纳米片结构,通过AFM测试,超薄MOF纳米片的厚度为3-5 nm,其广角XRD结果与文献报道的CoCu-BDC材料的结构符合。
将所得纳米片状MOF材料与炭黑按质量比为1:1混合,分散在去离子水与无水乙醇的混合溶液中,加入50μL的5%Nafion溶液,获得最终的催化剂浆料。
最后将得到的浆料滴在玻璃碳电极上,采用三电极体系在1 M KOH + 3 M 甲醇的溶液中测试其甲醇电催化重整性能,测得起始电位(10 mA/cm-2)为1.356(V vs RHE)。
实施例2
量取2mL去离子水、2mL乙醇以及32mLDMF的混合溶液于100mL蓝盖瓶中,再称取0.12gBDC溶于混合溶液中,随后将同等摩尔量的CoCl2• 6H2O溶解其中,随后加入0.8mL三乙胺,快速搅拌5分钟,拧上瓶盖并继续超声反应8小时(1600W,40KHZ)。将上述所得前驱体离心分离,然后用无水乙醇洗涤5次,在通过冷冻干燥得到CoCu-BDC。通过TEM,SEM以及XRD对所得纳米片状MOF材料的结构进行表征,从TEM图中看出CoCu-BDC MOF纳米片结构,通过AFM测试,超薄MOF纳米片的厚度为3-5 nm,其广角XRD结果与文献报道的Co-BDC材料的结构符合。
将所得纳米片状MOF材料与炭黑按质量比为1:1混合,分散在去离子水与无水乙醇的混合溶液中,加入50μL的5%Nafion溶液,获得最终的催化剂浆料。
最后将得到的浆料滴在玻璃碳电极上,采用三电极体系在1 M KOH + 3 M 甲醇的溶液中测试其甲醇电催化重整性能,测得起始电位(10 MA/cm-2)为1.427(V vs RHE)。
实施例3
量取2mL去离子水、2mL乙醇以及32mLDMF的混合溶液于100mL蓝盖瓶中,再称取0.12gBDC溶于混合溶液中,随后将同等摩尔量的CuCl2• 2H2O溶解其中,随后加入0.8mL三乙胺,快速搅拌5分钟,拧上瓶盖并继续超声反应8小时(1600W,40KHZ)。将上述所得前驱体离心分离,然后用无水乙醇洗涤5次,在通过冷冻干燥得到CoCu-BDC。通过TEM,SEM以及XRD对所得纳米片状MOF材料的结构进行表征,从TEM图中看出CoCu-BDC MOF纳米片的卷曲结构,通过AFM测试,超薄MOF纳米片的厚度为3-5 nm,其广角XRD结果与文献报道的Cu-BDC材料的结构符合。
将所得纳米片状MOF材料与炭黑按按质量比为1:1混合,分散在去离子水与无水乙醇的混合溶液中,加入50μL的5%Nafion溶液,获得最终的催化剂浆料。
最后将得到的浆料滴在玻璃碳电极上,采用三电极体系在1 M KOH + 3 M 甲醇的溶液中测试其甲醇电催化重整性能,测得起始电位(10 MA/cm-2)为1.495(V vs RHE)。
性能对比,CoCu-BDC达到起始电位(10 MA/cm-2)所需要的电位最低,所需要消耗的能量最少,即性能最佳。
以上对本发明的具体实施例进行了详细描述,但其只是作为范例,本发明并不限制于以上描述的具体实施例。对于本领域技术人员而言,任何对本发明进行的等同修改和替代也都在本发明的范畴之中。因此,在不脱离本发明的精神和范围下所作的均等变换和修改,都应涵盖在本发明的范围内。

Claims (3)

1.一种甲醇电催化重整催化剂的制备方法,其特征在于,该方法包括以下具体步骤:
步骤1:将同等摩尔量的CuCl2• 2H2O与CoCl2• 6H2O和对苯二甲酸(BDC)均匀分散在去离子水、无水乙醇以及DMF的混合溶液中;其中,去离子水、无水乙醇以及DMF的体积比为1:1:(10-20);
步骤2:搅拌条件下,在CuCl2• 2H2O与CoCl2• 6H2O和BDC完全溶解后加入三乙胺,并持续搅拌3-7分钟;加入三乙胺的量为步骤1中去离子水体积的1/2-1倍;
步骤3:将步骤2所得前驱体在40KHz的条件下超声晶化5-8h,温度为室温;再将前驱体离心分离,用无水乙醇洗涤5次,通过冷冻干燥得到CoCu-BDC纳米片,
步骤4:将步骤3中晶化得到的CoCu-BDC混合材料与炭黑按比例混合,分散在去离子水与无水乙醇的混合溶液中,加入体积为去离子水的1/30-1/10倍的5%Nafion溶液,获得甲醇电催化重整催化剂浆料;其中,炭黑与CoCu-BDC混合材料的质量比为0.5-2:1;去离子水与无水乙醇体积比为0.5-2:1。
2.根据权利要求1所述的制备方法,其特征在于,步骤3所述超声晶化过程为密封条件下进行。
3.根据权利要求1所述的制备方法,其特征在于,所述CoCu-BDC纳米片的厚度为3-5nm。
CN201711111688.0A 2017-11-13 2017-11-13 一种甲醇电催化重整催化剂的制备方法 Pending CN107999132A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711111688.0A CN107999132A (zh) 2017-11-13 2017-11-13 一种甲醇电催化重整催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711111688.0A CN107999132A (zh) 2017-11-13 2017-11-13 一种甲醇电催化重整催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN107999132A true CN107999132A (zh) 2018-05-08

Family

ID=62052237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711111688.0A Pending CN107999132A (zh) 2017-11-13 2017-11-13 一种甲醇电催化重整催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN107999132A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108993557A (zh) * 2018-07-26 2018-12-14 厦门大学 一种电催化甲醇制乙醇Co3ZnC催化剂及其应用
CN109054034A (zh) * 2018-06-26 2018-12-21 杭州电子科技大学 双金属铜/钴金属-有机骨架材料及其制备方法和应用
CN110010881A (zh) * 2019-04-30 2019-07-12 海南医学院 一种纳米氧化镍碳复合电极材料的制备方法
CN110026242A (zh) * 2019-05-10 2019-07-19 上海纳米技术及应用国家工程研究中心有限公司 一种Co/Ce双金属MOF基臭氧催化剂的制备方法及其产品和应用
CN111111716A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种mof指导的镍钴双金属磷化物的制备及应用
CN111676484A (zh) * 2020-06-17 2020-09-18 深圳大学 一种降低能耗电解水制氢及共生增值化学品的方法及系统
CN112011065A (zh) * 2020-08-26 2020-12-01 合肥工业大学 一种双金属有机框架Fe/Co-BDC超薄纳米片的制备方法及其应用
CN112295604A (zh) * 2019-07-30 2021-02-02 中国科学技术大学 金属有机框架纳米片、其制备方法及在高效光催化还原二氧化碳中的应用
CN113113618A (zh) * 2021-03-26 2021-07-13 西北工业大学 一种钴基氮掺杂mof衍生多孔碳材料的制备方法
CN113185399A (zh) * 2021-04-30 2021-07-30 北京化工大学 一种金属铜络合物及其在电化学co2还原中的应用
CN113644260A (zh) * 2021-08-25 2021-11-12 合肥工业大学 一种CuCo-BDC超薄纳米片及其制备方法和用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008607B2 (en) * 2002-10-25 2006-03-07 Basf Aktiengesellschaft Process for preparing hydrogen peroxide from the elements
CN101144176A (zh) * 2007-07-17 2008-03-19 北京航空航天大学 电化学阴极析氢还原金属及合金氢氧化物凝胶的方法
CN104328046A (zh) * 2014-09-28 2015-02-04 南京工业大学 微生物电化学系统还原二氧化碳产乙酸的装置与方法
CN105732728A (zh) * 2016-01-26 2016-07-06 国家纳米科学中心 金属有机骨架配合物纳米片、制备方法及其用途
CN106861717A (zh) * 2017-03-14 2017-06-20 中国科学技术大学先进技术研究院 一种CuPd金属纳米催化剂及其制备方法、应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7008607B2 (en) * 2002-10-25 2006-03-07 Basf Aktiengesellschaft Process for preparing hydrogen peroxide from the elements
CN101144176A (zh) * 2007-07-17 2008-03-19 北京航空航天大学 电化学阴极析氢还原金属及合金氢氧化物凝胶的方法
CN104328046A (zh) * 2014-09-28 2015-02-04 南京工业大学 微生物电化学系统还原二氧化碳产乙酸的装置与方法
CN105732728A (zh) * 2016-01-26 2016-07-06 国家纳米科学中心 金属有机骨架配合物纳米片、制备方法及其用途
CN106861717A (zh) * 2017-03-14 2017-06-20 中国科学技术大学先进技术研究院 一种CuPd金属纳米催化剂及其制备方法、应用

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109054034A (zh) * 2018-06-26 2018-12-21 杭州电子科技大学 双金属铜/钴金属-有机骨架材料及其制备方法和应用
CN109054034B (zh) * 2018-06-26 2021-06-04 杭州电子科技大学 双金属铜/钴金属-有机骨架材料及其制备方法和应用
CN108993557B (zh) * 2018-07-26 2020-07-10 厦门大学 一种电催化甲醇制乙醇Co3ZnC催化剂及其应用
CN108993557A (zh) * 2018-07-26 2018-12-14 厦门大学 一种电催化甲醇制乙醇Co3ZnC催化剂及其应用
CN110010881A (zh) * 2019-04-30 2019-07-12 海南医学院 一种纳米氧化镍碳复合电极材料的制备方法
CN110026242A (zh) * 2019-05-10 2019-07-19 上海纳米技术及应用国家工程研究中心有限公司 一种Co/Ce双金属MOF基臭氧催化剂的制备方法及其产品和应用
CN112295604A (zh) * 2019-07-30 2021-02-02 中国科学技术大学 金属有机框架纳米片、其制备方法及在高效光催化还原二氧化碳中的应用
CN112295604B (zh) * 2019-07-30 2021-12-10 中国科学技术大学 金属有机框架纳米片、其制备方法及在高效光催化还原二氧化碳中的应用
CN111111716A (zh) * 2020-01-19 2020-05-08 西北师范大学 一种mof指导的镍钴双金属磷化物的制备及应用
CN111676484A (zh) * 2020-06-17 2020-09-18 深圳大学 一种降低能耗电解水制氢及共生增值化学品的方法及系统
CN112011065A (zh) * 2020-08-26 2020-12-01 合肥工业大学 一种双金属有机框架Fe/Co-BDC超薄纳米片的制备方法及其应用
CN113113618A (zh) * 2021-03-26 2021-07-13 西北工业大学 一种钴基氮掺杂mof衍生多孔碳材料的制备方法
CN113185399A (zh) * 2021-04-30 2021-07-30 北京化工大学 一种金属铜络合物及其在电化学co2还原中的应用
CN113644260A (zh) * 2021-08-25 2021-11-12 合肥工业大学 一种CuCo-BDC超薄纳米片及其制备方法和用途

Similar Documents

Publication Publication Date Title
CN107999132A (zh) 一种甲醇电催化重整催化剂的制备方法
Liu et al. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis
CN105688958B (zh) 多面体形磷化钴/石墨碳杂化材料及其制备方法和应用
CN105107536A (zh) 一种多面体形磷化钴电解水制氢催化剂的制备方法
CN104269565B (zh) 一种多壁碳纳米管负载Ni0.85Se复合材料的制备方法及其应用
CN110743603B (zh) 一种钴铁双金属氮化物复合电催化剂及其制备方法与应用
CN108716007A (zh) 通过氧空位工程提高氢氧化物电催化析氢反应性能的方法
WO2020252820A1 (zh) 镍铁催化材料、其制备方法及在电解水制氢气、制备液态太阳燃料中的应用
Jiang et al. Direct conversion of methane to methanol by electrochemical methods
Li et al. Graphitized carbon nanocages/palladium nanoparticles: Sustainable preparation and electrocatalytic performances towards ethanol oxidation reaction
Zhang et al. Mass-transfer-enhanced hydrophobic Bi microsheets for highly efficient electroreduction of CO2 to pure formate in a wide potential window
CN110117797B (zh) 一种电解池及其在电解水制氢中的应用
CN110586127B (zh) 一种铂钴双金属纳米空心球的制备方法及其应用
Wang et al. Three-phase electrochemistry for green ethylene production
Linghu et al. Enhanced methanol oxidation activity of porous layered Ni/CeO2@ CN nanocomposites in alkaline medium
Li et al. Recent advances in hybrid water electrolysis for energy-saving hydrogen production
CN109289852B (zh) 一种钴铁氧化物中空纳米笼材料、其制备方法及用途
CN114525542A (zh) 用于电催化还原co2的纳米钯合金催化剂及其制备方法与应用
CN110479239A (zh) 一种厚度为1.5nm铋纳米线及其制备方法和应用
He et al. Nano-NiFe LDH assembled on CNTs by electrostatic action as an efficient and durable electrocatalyst for oxygen evolution
Ma et al. Nickel foam supported Mn-doped NiFe-LDH nanosheet arrays as efficient bifunctional electrocatalysts for methanol oxidation and hydrogen evolution
He et al. Grain boundary and interface interaction of metal (copper/indium) oxides to boost efficient electrocatalytic carbon dioxide reduction into syngas
Ampelli et al. Effect of Current Density on Product Distribution for the Electrocatalytic Reduction of CO 2.
Zhang et al. PdFe alloy nanoparticles supported on nitrogen-doped carbon nanotubes for electrocatalytic upcycling of poly (ethylene terephthalate) plastics into formate coupled with hydrogen evolution
Wang et al. CuAg nanoparticle/carbon aerogel for electrochemical CO 2 reduction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180508

RJ01 Rejection of invention patent application after publication