CN110479239A - 一种厚度为1.5nm铋纳米线及其制备方法和应用 - Google Patents

一种厚度为1.5nm铋纳米线及其制备方法和应用 Download PDF

Info

Publication number
CN110479239A
CN110479239A CN201910777772.9A CN201910777772A CN110479239A CN 110479239 A CN110479239 A CN 110479239A CN 201910777772 A CN201910777772 A CN 201910777772A CN 110479239 A CN110479239 A CN 110479239A
Authority
CN
China
Prior art keywords
wire
thickness
solution
bismuth
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910777772.9A
Other languages
English (en)
Inventor
徐维林
杨发
阮明波
宋平
杨吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Applied Chemistry of CAS
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CN201910777772.9A priority Critical patent/CN110479239A/zh
Publication of CN110479239A publication Critical patent/CN110479239A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/18Arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种厚度为1.5nm铋纳米线及其制备方法和应用,属于纳米线制备方法技术领域。该方法将氯化铋加入到乙二醇乙醚溶液中,超声搅拌均匀直至溶液澄清,放置于油浴中,在惰性气体的保护下,升温反应,然后加入NaI溶液,再升温反应,冷却至常温后,放置于超声仪器中搅拌超声,同时快速加入NaBH4还原液,得到厚度为1.5nm铋纳米线。本发明还提供上述制备方法得到的厚度为1.5nm铋纳米线。本发明还提供上述厚度为1.5nm铋纳米线在电催化还原CO2中的应用。本发明的Bi纳米线材料在宽谱窗口‑0.48V vs.RHE~‑0.98V vs.RHE下,生成甲酸的法拉第效率均能维持在85%以上。

Description

一种厚度为1.5nm铋纳米线及其制备方法和应用
技术领域
本发明属于纳米线制备方法技术领域,具体涉及一种厚度为1.5nm铋纳米线及其制备方法和应用。
背景技术
随着工业的快速发展,大量的化石燃料的使用导致了大气中二氧化碳浓度的急剧升高,由此引发一系列环境问题,如温室效应、沙漠化、全球变暖等。电化学二氧化碳还原反应(CO2RR)用可再生能源(如太阳能,风能和潮汐能等)产生电能驱动反应,将二氧化碳转化为高附加值的化学产品,如甲烷、甲酸、乙醇等,是减轻相关环境危机的最具前景的方法之一,有利于实现真正意义的碳循环。然而,受限于反应物CO2本身的惰性、缓慢的多电子转移动力学以及析氢竞争反应,使得大多数电催化剂的催化活性和选择性均较低。因此,开发经济、稳定、高效的CO2还原电催化材料是实现电化学CO2还原技术大规模应用的关键所在。
CO2还原反应路径复杂,产物众多。从市场价格上来说,含有两个碳原子以上的C2+产物(如乙烯,乙醇,丙醇等)具有更高的工业价值,但根据目前最先进的技术水平来看,含有多个碳原子的长链产物的反应选择性太低,远远不能满足工业生产的要求。因此,通过电化学CO2还原技术生产小分子的化学产品如一氧化碳或甲酸是目前最具实用性的方案。其中,甲酸(或甲酸盐)是CO2还原的重要液体产物,反应路径简单,只涉及两个电子的转移。此外,甲酸也是重要的储氢材料和一种关键的化学中间体,具有重要的工业意义。然而,高能量效率和可规模化的电催化CO2技术要求催化剂在低过电位下具有高反应活性和选择性;可是目前大多数的催化剂都面临高的过电位和低的法拉第效率等问题,导致实际工作中的能源转化效率低下,不能满足工业化的需求。
发明内容
本发明的目的是为了解决现有的CO2催化剂存在高的过电位和低的法拉第效率的问题,而提供一种厚度为1.5nm铋纳米线及其制备方法和应用。
本发明首先提供一种厚度为1.5nm铋纳米线的制备方法,该方法包括:
称取氯化铋加入到乙二醇乙醚溶液中,超声搅拌均匀直至溶液澄清,放置于油浴中,在惰性气体的保护下,升温至60-80℃搅拌反应,然后加入NaI溶液,再升温至140-160℃反应,冷却至常温后,放置于超声仪器中搅拌超声,同时快速加入NaBH4还原液形成黑灰色的分散液,然后将产物经过滤洗涤和干燥,得到厚度为1.5nm铋纳米线。
优选的是,所述的氯化铋、NaI溶液和NaBH4还原液的摩尔为(1-3):0.05:(50-60)。
优选的是,所述的在80℃下反应时间为30-40min。
优选的是,所述的在160℃下反应时间为30-40min。
本发明还提供上述制备方法得到的厚度为1.5nm铋纳米线。
本发明还提供上述厚度为1.5nm铋纳米线在电催化还原CO2中的应用。
优选的是,所述的应用方法为:在被质子交换膜分隔成的三电极电解池中,将上述得到的铋纳米线粉末与乙醇、Nafion溶液混合,超声分散,均匀涂在碳纸上作为工作电极,以铂片为对电极,饱和甘汞电极为参比电极,在阴极槽和阳极槽中分别装入电解质溶液,并通入CO2至饱和,然后在连续通入CO2的条件下恒电位还原CO2,所述恒电位还原过程中的电位控制范围为-0.18V~-1.18V vs.RHE,电解还原时间为100h。
优选的是,所述的电解质溶液为NaHCO3、KHCO3或者Na2SO4溶液。
本发明的有益效果
本发明提供一种厚度为1.5nm铋纳米线及其制备方法和应用,该厚度为1.5nm铋纳米线是采用阶梯升温降温,在惰性气体的保护下,以乙二醇乙醚为溶剂,采用高浓度的NaBH4还原得到了厚度仅为1.5nm的Bi纳米线结构。该制备工艺流程简单且环境友好,整个过程都在常压下进行。
本发明的Bi纳米线材料表现出了优异的CO2催化还原性能,其在宽谱窗口(-0.48Vvs.RHE~-0.98V vs.RHE)下,生成甲酸的法拉第效率均能维持在85%以上,在-0.58Vvs.RHE达到最大值为99%,稳定性长达100小时,且没有其他副产物;同时其能源转换效率高达68.4%,解决了目前CO2电还原催化剂向大规模工业化转型面临的高过电位和低的法拉第效率等问题。本催化剂电催化还原CO2生成的甲酸是一种重要的储氢材料和关键的化学中间体,具有重要的工业意义。
附图说明
图1为本发明实施例1合成的铋纳米线的不同放大倍数透射电子显微镜图;
图2为本发明实施例1合成的超薄铋纳米线催化剂的原子力显微镜图(a)和相对应的厚度分布图(b);
图3为本发明实施例1合成的厚度为1.5nm的Bi纳米线在不同电位下将CO2还原至甲酸的法拉第效率图;
图4为本发明实施例1合成的1.5nm厚的Bi纳米线催化剂还原CO2的线性扫描伏安比较图;
图5为本发明实施例1合成1.5nm厚的Bi纳米线在不同电位下还原CO2至甲酸的能源效率转换图;
图6为本发明实施例1合成1.5nm厚的Bi纳米线在-0.58V下运行100小时的电流效率图;
图7为本发明实施例1合成的Bi纳米线在-0.68V下催化CO2还原生成甲酸的核磁检测图。
具体实施方式
下面结合具体实施例对本发明做进一步的说明,实施例中涉及到的原料均为商购。
实施例1
称取1mmol的氯化铋,加入到100mL的乙二醇乙醚溶液中,超声搅拌均匀直至溶液澄清,放置于油浴中;之后在惰性气体的保护下,升温至80℃搅拌反应30min,加入0.05mmolNaI溶液,再升温至160℃反应30min,冷却至常温后,放置于超声仪器中搅拌超声,同时快速加入50mmol高浓度NaBH4还原液形成黑灰色的分散液;之后用乙醇和水过滤洗涤3次收集,最后置于50℃的真空干燥箱中过夜干燥,得到1.5nm厚Bi纳米线。
图1为本发明实施例1合成的铋纳米线的不同放大倍数透射电子显微镜图,该图可以看出该方法合成出的材料呈现超薄的纳米线结构。
图2为本发明实施例1合成的超薄铋纳米线催化剂的原子力显微镜图(a)和相对应的厚度分布图(b),从图中可以看出该片层的厚度为1.5nm。
实施例2
称取1mmol的氯化铋,加入到100mL的乙二醇乙醚溶液中,超声搅拌均匀直至溶液澄清,放置于油浴中;之后在惰性气体的保护下,升温至60℃搅拌反应30min,加入0.05mmolNaI溶液,再升温至140℃反应30min,冷却至常温后,放置于超声仪器中搅拌超声,同时快速加入50mmol高浓度NaBH4还原液形成黑灰色的分散液;之后用乙醇和水过滤洗涤3次收集,最后置于50℃的真空干燥箱中过夜干燥,得到1.5nm厚Bi纳米线。
实施例3
称取3mmol的氯化铋,加入到200mL的乙二醇乙醚溶液中,超声搅拌均匀直至溶液澄清,放置于油浴中;之后在惰性气体的保护下,升温至80℃搅拌反应40min,加入0.05mmolNaI溶液,再升温至160℃反应40min,冷却至常温后,放置于超声仪器中搅拌超声,同时快速加入60mmol高浓度NaBH4还原液形成黑灰色的分散液;之后用乙醇和水过滤洗涤3次收集,最后置于50℃的真空干燥箱中过夜干燥,得到1.5nm厚Bi纳米线。
实施例4铋纳米线材料用于高效电催化还原二氧化碳生成甲酸的方法的具体步骤:
在被质子交换膜分隔成的三电极电解池中,将实施例1制备得到的5mg铋纳米线粉末与950uL乙醇、50uL Nafion溶液混合、超声分散、均匀涂在碳纸上、作为工作电极,铂片为对电极,饱和甘汞电极为参比电极,在阴极槽和阳极槽中分别装入电解质溶液,并通入CO2至饱和,然后在连续通入CO2的条件下恒电位还原CO2,所述恒电位还原过程中的电位控制范围为-0.18V~-1.18V vs.RHE,电解还原时间为100h。上述电解质溶液为NaHCO3、KHCO3或者Na2SO4溶液。
图3为本发明实施例1合成的厚度为1.5nm的Bi纳米线在不同电位下将CO2还原至甲酸的法拉第效率图。从图中可以看出在宽谱窗口(-0.48V vs.RHE~-0.98V vs.RHE)下,生成甲酸的法拉第效率均能维持在85%以上,在-0.58V vs.RHE达到最大值为99%。
图4为本发明实施例1合成的1.5nm厚的Bi纳米线催化剂还原CO2的线性扫描伏安比较图。该图说明该材料对CO2的电流响应大。
图5为本发明实施例1合成1.5nm厚的Bi纳米线在不同电位下还原CO2至甲酸的能源效率转换图。从图中可以看出,在在-0.58V vs.RHE达到最大值为68.4%,基本满足了工业化的需求。
图6为本发明实施例1合成1.5nm厚的Bi纳米线在-0.58V下运行100小时的电流效率图,从该图可以看出该催化剂在运行100小时内,电流基本没有任何衰减,生成甲酸的法拉第效率保持不变为99%,这也说明该催化剂超高的稳定性。
图7为本发明实施例1Bi纳米线在-0.68V下催化CO2还原生成甲酸的核磁检测图。该图说明:通过核磁NMR(AV 500)氢谱的检测,确实检测到了甲酸,如图标识所示;并以DMSO作为内标进行定量。

Claims (8)

1.一种厚度为1.5nm铋纳米线的制备方法,其特征在于,该方法包括:
称取氯化铋加入到乙二醇乙醚溶液中,超声搅拌均匀直至溶液澄清,放置于油浴中,在惰性气体的保护下,升温至60-80℃搅拌反应,然后加入NaI溶液,再升温至140-160℃反应,冷却至常温后,放置于超声仪器中搅拌超声,同时快速加入NaBH4还原液形成黑灰色的分散液,然后将产物经过滤洗涤和干燥,得到厚度为1.5nm铋纳米线。
2.根据权利要求1所述的一种厚度为1.5nm铋纳米线的制备方法,其特征在于,所述的氯化铋、NaI溶液和NaBH4还原液的摩尔为(1-3):0.05:(50-60)。
3.根据权利要求1所述的一种厚度为1.5nm铋纳米线的制备方法,其特征在于,所述的在80℃下反应时间为30-40min。
4.根据权利要求1所述的一种厚度为1.5nm铋纳米线的制备方法,其特征在于,所述的在160℃下反应时间为30-40min。
5.权利要求1-4任何一项所述的制备方法得到的厚度为1.5nm铋纳米线。
6.权利要求5所述的厚度为1.5nm铋纳米线在电催化还原CO2中的应用。
7.根据权利要求6所述的厚度为1.5nm铋纳米线在电催化还原CO2中的应用,其特征在于,所述的应用方法为:在被质子交换膜分隔成的三电极电解池中,将上述得到的铋纳米线粉末与乙醇、Nafion溶液混合,超声分散,均匀涂在碳纸上作为工作电极,以铂片为对电极,饱和甘汞电极为参比电极,在阴极槽和阳极槽中分别装入电解质溶液,并通入CO2至饱和,然后在连续通入CO2的条件下恒电位还原CO2,所述恒电位还原过程中的电位控制范围为-0.18V~-1.18V vs.RHE,电解还原时间为100h。
8.根据权利要求7所述的厚度为1.5nm铋纳米线在电催化还原CO2中的应用,其特征在于,所述的电解质溶液为NaHCO3、KHCO3或者Na2SO4溶液。
CN201910777772.9A 2019-08-22 2019-08-22 一种厚度为1.5nm铋纳米线及其制备方法和应用 Pending CN110479239A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910777772.9A CN110479239A (zh) 2019-08-22 2019-08-22 一种厚度为1.5nm铋纳米线及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910777772.9A CN110479239A (zh) 2019-08-22 2019-08-22 一种厚度为1.5nm铋纳米线及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110479239A true CN110479239A (zh) 2019-11-22

Family

ID=68552902

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910777772.9A Pending CN110479239A (zh) 2019-08-22 2019-08-22 一种厚度为1.5nm铋纳米线及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN110479239A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408363A (zh) * 2019-12-02 2020-07-14 杭州师范大学 一种用于氮气光电化学还原的催化剂制备方法
CN111719165A (zh) * 2020-06-24 2020-09-29 江南大学 一种电化学剥离法制备Bi纳米片的方法
CN113463119A (zh) * 2021-06-15 2021-10-01 华东理工大学 一种铋基-银基复合材料及其制备方法、应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971806A (zh) * 2010-07-02 2013-03-13 富士胶片株式会社 导电层转印材料及触控式面板
CN106498437A (zh) * 2015-09-07 2017-03-15 中国科学院大连化学物理研究所 一种二氧化碳电化学还原用电极制备方法
CN108480656A (zh) * 2018-03-13 2018-09-04 中国科学院长春应用化学研究所 一种厚度可控的铋纳米片及其合金的制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971806A (zh) * 2010-07-02 2013-03-13 富士胶片株式会社 导电层转印材料及触控式面板
CN106498437A (zh) * 2015-09-07 2017-03-15 中国科学院大连化学物理研究所 一种二氧化碳电化学还原用电极制备方法
CN108480656A (zh) * 2018-03-13 2018-09-04 中国科学院长春应用化学研究所 一种厚度可控的铋纳米片及其合金的制备方法和应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111408363A (zh) * 2019-12-02 2020-07-14 杭州师范大学 一种用于氮气光电化学还原的催化剂制备方法
CN111719165A (zh) * 2020-06-24 2020-09-29 江南大学 一种电化学剥离法制备Bi纳米片的方法
CN111719165B (zh) * 2020-06-24 2021-04-30 江南大学 一种电化学剥离法制备Bi纳米片的方法
CN113463119A (zh) * 2021-06-15 2021-10-01 华东理工大学 一种铋基-银基复合材料及其制备方法、应用
CN113463119B (zh) * 2021-06-15 2022-09-09 华东理工大学 一种铋基-银基复合材料及其制备方法、应用

Similar Documents

Publication Publication Date Title
CN110227531B (zh) 一种钼掺杂钴铁氧化物纳米片双功能电催化剂的制备方法
CN108411324A (zh) 一种硫氮共掺杂石墨烯负载硫化钴镍催化材料及制备与应用
CN109967080A (zh) 一种负载在泡沫镍表面的无定形(Ni,Fe)OOH薄膜电催化剂的制备方法及应用
CN110479239A (zh) 一种厚度为1.5nm铋纳米线及其制备方法和应用
CN107999132A (zh) 一种甲醇电催化重整催化剂的制备方法
CN113235104B (zh) 一种基于zif-67的镧掺杂氧化钴催化剂及其制备方法与应用
CN107051565A (zh) 一种高性能碱式碳酸盐类电解水催化剂及其制备方法与应用
JP7434372B2 (ja) ニッケル鉄触媒材料の製作方法、酸素発生反応への使用、水電解による水素および/または酸素の製造方法、および液体太陽燃料の製作方法
CN109647464A (zh) 一种将氮气转化为氨气的电催化材料
CN113637996B (zh) 一种用于电催化还原二氧化碳的铜基纳米材料及其制备方法
CN107088432A (zh) 一种二维Ru掺杂Ni2P盘状纳米薄片及其制备方法和应用
CN106207205B (zh) 一种燃料电池用PtPd电催化剂及其制备方法
CN112808274A (zh) 室温方法制备高性能的铁掺杂镍或钴基非晶态羟基氧化物催化剂及其高效电解水制氢研究
CN109939711A (zh) 甘油辅助水分解制氢及甘油氧化的双功能电催化剂及制备方法
CN113026031A (zh) 电极材料及其制备方法和应用以及组装电解水装置
CN113104862A (zh) 一种快速批量制备普鲁士蓝或其类似物的方法及其应用
CN108977849A (zh) 一种MXene/Ni3S2电极及其制备方法和在电催化制备氢气中的应用
CN108671929A (zh) 一种用于电催化水分解析氧反应的超小纳米合金催化剂的制备方法
CN106299395B (zh) 一种具备高效电催化氧还原性能的NiO/rGO复合材料
CN113416973B (zh) 一种CoNiFeS-OH纳米阵列材料的制备及其在OER、UOR和全水解方面的应用
CN114147221A (zh) 一种Ag@CoMoO4析氧电催化剂的制备方法
CN113731431A (zh) 一种铋铜双金属催化剂的制备方法及应用
CN106374118A (zh) 一种具备高效电催化氧还原性能的ZnO/rGO复合材料
Chen et al. Electroreduction of air-level CO2 with high conversion efficiency
CN112121785A (zh) 铅纳米片-石墨烯二维复合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191122

WD01 Invention patent application deemed withdrawn after publication