CN107626304A - 一种负载型贵金属催化剂及其制备和应用 - Google Patents

一种负载型贵金属催化剂及其制备和应用 Download PDF

Info

Publication number
CN107626304A
CN107626304A CN201610573686.2A CN201610573686A CN107626304A CN 107626304 A CN107626304 A CN 107626304A CN 201610573686 A CN201610573686 A CN 201610573686A CN 107626304 A CN107626304 A CN 107626304A
Authority
CN
China
Prior art keywords
preparation
catalyst
noble metal
metal catalyst
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610573686.2A
Other languages
English (en)
Other versions
CN107626304B (zh
Inventor
唐南方
丛昱
陈帅
杜健
许国梁
吴春田
张涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201610573686.2A priority Critical patent/CN107626304B/zh
Publication of CN107626304A publication Critical patent/CN107626304A/zh
Application granted granted Critical
Publication of CN107626304B publication Critical patent/CN107626304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

本发明涉及一种负载型贵金属催化剂制备的新方法。该催化剂包括载体有序介孔氧化铝以及负载在该载体上的活性组分Ru、Rh、Pd、Ag、Ir、Pt、Au等,且该催化剂以高分散的亚纳米尺度存在。该催化剂广泛适用于加氢反应和氧化反应过程中,表现出很高的加氢活性和分子氧活化性能,且制备方法操作简单,易于实现。

Description

一种负载型贵金属催化剂及其制备和应用
技术领域
本发明涉及一种负载型贵金属催化剂的制备方法,更具体地涉及一种用溶胶-凝胶法一步合成有序介孔氧化铝负载的贵金属型催化剂,该催化剂广泛用于加氢反应和氧化反应过程中。
背景技术
全世界85%的化学工业反应是在催化剂作用下进行的,高活性、高选择性、长寿命的催化剂对于降低原料和能源消耗、提高生产经济性、防止环境污染等方面有着重大贡献。贵金属具有空的d能带轨道,能够高效地活化氢气、分子氧,被广泛应用于加氢、氧化反应中。由于贵金属价格昂贵,如何提高贵金属的利用率和寿命一直是贵金属催化剂研究的重点。
制备负载型贵金属催化剂是提高贵金属活性组分的利用率和寿命最常用的手段。负载型贵金属催化剂还兼具无机非均相催化剂和金属有机配合物均相催化剂的优点。日本自动车株式会社于2006年在CN101300076A中提出使用有机络合物与贵金属溶液混合形成贵金属有机配合物,将该有机贵金属配合物滴加到含有氢微泡的溶液中,使贵金属还原并施加于载体上,煅烧得到贵金属催化剂。该方法先将贵金属还原再负载于载体上,不能保证贵金属在载体表面及孔道的均匀分布,而且,还原后进行焙烧还容易导致金属粒子长大。该制备方法贵金属分散度较低,贵金属利用率不高。
中国科学院长春应用化学研究所在专利CN105529475A中提出以碳载体、非金属杂原子试剂和氯铂酸为原料,通过搅拌回流,旋转蒸干,研磨及高温处理的方法配合使用,制备出铂单原子分散的催化剂。然而,该专利制备方法繁琐,不易操作;采用碳载体的比表面积较低、孔道结构复杂,孔径不均匀。这些不足限制了该催化剂在催化反应中的应用。
CN105435787A公共了一种高分散负载型纳米金催化剂的制备方法。该发明采用水热还原一步法合成锌镁铝尖晶石负载的纳米金催化剂。通过调变原料组成,催化剂中Au的质量百分含量为1.0-3.0%,Au纳米颗粒的平均粒径为2-5nm。该发明合成方法简单,然而,催化剂粒径仍旧较大。
上述负载型贵金属催化剂的制备方法均有一定的局限性,因此亟需开发一种新型的负载型贵金属催化剂制备方法。
发明内容
本发明旨在解决现有技术中负载型贵金属催化剂制备过程繁琐、金属利用率低的技术问题,提供一种操作简单、活性金属组分利用率高的负载型贵金属催化剂制备方法。此外,本发明制备的负载型贵金属催化剂可以应用于多种加氢和氧化反应中。
基于上述目的,本发明采用的技术方案为:
一种负载型贵金属催化剂的制备方法,主要步骤如下:
A)将表面活性剂、酸、铝源配制成醇溶液;
B)将上述醇溶液在室温、搅拌下加入活性组分前驱体,然后继续搅拌3-8小时;
C)将步骤B)中得到的溶液蒸干醇溶剂,然后继续老化36-72h;
D)取步骤C)中固体物质焙烧;
E)将步骤D)得到的焙烧后的固体还原活化;
F)将步骤E)还原活化后的产物在惰性气氛中钝化即得到所述负载型金属催化剂。
步骤A)中原料按质量份数计包括以下组分:表面活性剂15-25份,酸30-40份,铝源40-50份;
其中所述的表面活性剂为非离子型表面活性剂P123、F127、F68等一种或几种的组合;酸为浓硝酸、浓盐酸、草酸、柠檬酸、羟基丁二酸等中的一种或几种的组合;铝源为硝酸铝、氯化铝、异丙醇铝、仲丁醇铝等无机或有机铝源;溶剂醇为甲醇、乙醇、丙醇等低碳数一元醇中的一种或几种。铝在溶剂中的摩尔浓度为0.5-2mol/L,优选1mol/L。
步骤B)中所述的活性组分前驱体为含Ru3+、Rh3+、Pd2+、Ag+、Ir4+、Pt4+、Au3+的可溶性无机金属盐的一种或多种;金属活性组分的含量为0.05-2wt%。。
步骤B)中所述的搅拌时间为2-10h,优选为5-7h;步骤C)溶剂醇的蒸发和老化温度为50℃-80℃,优选为60℃,老化时间为36h-72h,优选为48h。
步骤D)焙烧时的升温速率为0.5-2℃/min,从室温升温至焙烧温度,焙烧温度为400℃-600℃,焙烧时间为4-8h。
步骤E)中的还原为气相还原或者液相还原;其中气相还原气氛为H2体积含量为50%-100%的H2/N2混合气或H2,还原温度为200℃-400℃,时间为1-12h;液相还原法采用的还原剂为质量分数为1%的硼氢化钠溶液,时间为1-10h。
步骤F)中采用的钝化气为O2体积含量为0.2%-2%的O2/N2混合气,钝化时间为1-12h。
所述制备方法制备获得的氧化铝负载型贵金属催化剂。
所述负载型贵金属催化剂应用于加氢反应或氧化反应中。
本发明采用溶胶-凝胶法一步合成负载型贵金属催化剂前驱体,然后经过还原得到负载型贵金属催化剂。所制备的催化剂具有均一的孔径分布,有序规整的孔结构,较强的路易斯酸性。所制备的催化剂在芳烃加氢饱和反应、醇选择性氧化反应、CO选择性氧化反应中表现出很高的反应活性。
且该催化剂以高分散的亚纳米尺度存在。该催化剂广泛适用于加氢反应和氧化反应过程中,表现出很高的加氢活性和分子氧活化性能,且制备方法操作简单,易于实现。
附图说明
图1为实施例1制备的负载型Rh催化剂的XRD谱图。
图2为实施例1制备的负载型Rh催化剂的HR-TEM谱图。
具体实施方式
为了进一步说明本发明,列举以下实施例,但它并不限制各附加权利要求所定义的发明范围。
实施例1
a.称取2.0g P123溶于40ml无水乙醇中,滴加3ml浓硝酸,剧烈搅拌下加入4.08g异丙醇铝,剧烈搅拌使异丙醇铝完全溶解。
b.按Rh/Al2O3中的Rh的1wt%质量百分数配制RhCl3溶液1ml,逐滴滴加至上述溶液中,继续搅拌5h。
c.将b中混合溶液置于60℃环境中,蒸发干乙醇溶剂,继续老化48h。
d.将上述步骤中得到的固体,以1℃/min的升温速率升至400℃,焙烧4h。
e.将上述步骤中得到的固体,以一定的升温速率和氢气流量,250℃下进行还原,得到还原态金属催化剂1wt%Rh/Al2O3
对得到的1wt%Rh/Al2O3催化剂进行结构表征测试。图1为1wt%Rh/Al2O3催化剂的粉末X射线衍射(XRD)谱图,从图中我们并未看到明显归属于金属Rh的特征衍射峰,Al2O3载体的特征衍射峰强度也很弱。上述结果表明Rh高度分散在Al2O3载体上。图2为1wt%Rh/Al2O3催化剂的高分辨投射电镜谱图,从图中我们可以看出Al2O3载体呈现有序规整的介孔结构,介孔形貌为六方形,孔径均一,孔径大小为5nm;Rh金属粒子的分散度很高,达到亚纳米级,平均粒径为0.69nm。
对比例1
按Rh/Al2O3中的Rh的1wt%质量百分数配制RhCl3溶液1ml,采用等体积浸渍法,将RhCl3负载在商业Al2O3上,以与实施例1中所述相同还原方法对得到的RhCl3/Al2O3进行还原,得到还原态金属催化剂1wt%Rh/Al2O3。该催化剂呈现无序颗粒状,无规整的孔结构,孔径分为1.5-10nm,Rh的金属粒子为2-4nm。
实施例2
除了在步骤b中使用0.05wt%RhCl3溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂0.05wt%Rh/Al2O3
实施例3
除了在步骤b中使用0.1wt%RhCl3溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂0.1wt%Rh/Al2O3
实施例4
除了在步骤b中使用0.5wt%RhCl3溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂0.5wt%Rh/Al2O3
实施例5
除了在步骤b中使用2wt%RhCl3溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂2wt%Rh/Al2O3
实施例6
除了在步骤b中使用RuCl3溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%Ru/Al2O3
实施例7
除了在步骤b中使用PdCl2溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%Pd/Al2O3
实施例8
除了在步骤b中使用AgNO3溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%Ag/Al2O3
实施例9
除了在步骤b中使用H2IrCl6外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%Ir/Al2O3
实施例10
除了在步骤b中使用H2PtCl6外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%Pt/Al2O3
实施例11
除了在步骤b中使用HAuCl4外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%Au/Al2O3
实施例12
除了在步骤e中使用NaBH4还原外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%Rh/Al2O3
实施例13
除了在步骤b中使用RhCl3和H2PtCl6混合溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%PtRh/Al2O3
实施例14
除了在步骤b中使用PdCl2和H2PtCl6混合溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%PtPd/Al2O3
实施例15
除了在步骤b中使用PdCl2和HAuCl4混合溶液外,以与实施例1中所述相同方法制备,得到还原态金属催化剂1wt%AuPd/Al2O3
实施例16
将催化剂1wt%Rh/Al2O3和10wt%的苯/正己烷溶液按照1:200的质量比,在30ml高压反应釜中混合,用氢气置换两次后,加热至120℃,充入氢气至3MPa,反应0.5h。冷却至室温,用GC-FID检测苯的加氢结果,得到苯的加氢饱和率为100%。
实施例17
同实施例16,只是催化剂改用1wt%Ru/Al2O3。得到苯的加氢饱和率为100%。
实施例18
同实施例16,只是催化剂改用1wt%Pt/Al2O3。得到苯的加氢饱和率为100%。
实施例19
同实施例16,只是催化剂改用1wt%Ir/Al2O3。得到苯的加氢饱和率为100%。
实施例20
同实施例16,只是催化剂改用1wt%Pd/Al2O3。得到苯的加氢饱和率为100%。
实施例21
同实施例16,只是催化剂改用1wt%PtPd/Al2O3。得到苯的加氢饱和率为100%。
实施例22
同实施例16,只是催化剂改用1wt%PtRu/Al2O3。得到苯的加氢饱和率为100%。
实施例23
将40mg1wt%Pd/Al2O3催化剂和50mmol苯甲醇放置于10ml双口瓶中,上方瓶口接上冷凝管,另一瓶口接上带有质量流量计的导气管,氧气流速控制为20ml/min,剧烈搅拌下,升温至80℃,反应3h后,取出部分溶液离心,反应产物用气相色谱分析,得到苯甲醇完全被氧化成苯甲醛,苯甲醛选择性高达100%。
实施例24
同实施例23,只是催化剂改用1wt%Ru/Al2O3。反应产物用气相色谱分析,得到苯甲醇完全被氧化成苯甲醛,苯甲醛选择性高达100%。
实施例25
同实施例23,只是催化剂改用1wt%Rh/Al2O3。反应产物用气相色谱分析,得到苯甲醇完全被氧化成苯甲醛,苯甲醛选择性高达100%。
实施例26
同实施例23,只是催化剂改用1wt%Au/Al2O3。反应产物用气相色谱分析,得到苯甲醇完全被氧化成苯甲醛,苯甲醛选择性高达100%。
实施例27
同实施例23,只是催化剂改用1wt%AuPd/Al2O3。反应产物用气相色谱分析,得到苯甲醇完全被氧化成苯甲醛,苯甲醛选择性高达100%。
以上所述,仅为本发明较佳实施例,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化,皆应仍属本发明涵盖的范围内。

Claims (9)

1.一种负载型贵金属催化剂的制备方法,主要步骤如下:
A)将表面活性剂、酸、铝源与醇混合,配制成醇溶液;
B)将上述醇溶液在室温、搅拌下加入活性组分前驱体,然后继续搅拌3-8小时;
C)将步骤B)中得到的溶液蒸干醇溶剂,然后继续老化36-72h;
D)取步骤C)中固体物质焙烧;
E)将步骤D)得到的焙烧后的固体还原活化;
F)将步骤E)还原活化后的产物在惰性气氛中钝化即得到所述氧化铝负载型金属催化剂。
2.按照权利要求1所述的制备方法,其特征在于:步骤A)中原料按质量份数计包括以下组分:表面活性剂15-25份,酸30-40份,铝源40-50份;
其中所述的表面活性剂为非离子型表面活性剂P123、F127、F68中的一种或二种以上的组合;
酸为质量浓度为65%的浓硝酸、质量浓度为67%的浓盐酸、草酸、柠檬酸、羟基丁二酸中的一种或二种以上的组合;
铝源为硝酸铝、氯化铝、异丙醇铝、仲丁醇铝中的一种或二种以上的组合;
溶剂醇为甲醇、乙醇、丙醇中的一种或二种以上的组合。
3.按照权利要求1所述的制备方法,其特征在于:步骤B)中所述的活性组分前驱体为含Ru3+、Rh3+、Pd2+、Ag+、Ir4+、Pt4+、Au3+的可溶性无机金属盐的一种或多种;金属活性组分于负载型金属催化剂中的含量为0.05-2wt%。
4.按照权利要求1所述的制备方法,其特征在于:步骤B)中所述的搅拌时间为2-10h,优选为5-7h;步骤C)溶剂醇的蒸发和老化温度为50℃-80℃,优选为60℃,老化时间为36h-72h,优选为48h。
5.按照权利要求1所述的制备方法,其特征在于:步骤D)焙烧时的升温速率为0.5-2℃/min,从室温升温至焙烧温度,焙烧温度为400℃-600℃,焙烧时间为4-8h。
6.按照权利要求1所述的制备方法,其特征在于:步骤E)中的还原为气相还原或者液相还原;其中气相还原气氛为H2体积含量为50%-100%的H2/N2混合气或H2,还原温度为200℃-400℃,时间为1-12h;液相还原法采用的还原剂为质量分数为0.1%-10%的硼氢化钠溶液,时间为1-10h。
7.按照权利要求1所述的制备方法,其特征在于:步骤F)中采用的钝化气为O2体积含量为0.2%-2%的O2/N2混合气,钝化时间为1-12h。
8.一种权利要求1-7任所述制备方法制备获得的负载型贵金属催化剂。
9.一种权利要求8所述负载型贵金属催化剂应用于加氢反应或氧化反应中。
CN201610573686.2A 2016-07-19 2016-07-19 一种负载型贵金属催化剂及其制备和应用 Active CN107626304B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610573686.2A CN107626304B (zh) 2016-07-19 2016-07-19 一种负载型贵金属催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610573686.2A CN107626304B (zh) 2016-07-19 2016-07-19 一种负载型贵金属催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN107626304A true CN107626304A (zh) 2018-01-26
CN107626304B CN107626304B (zh) 2020-10-23

Family

ID=61113339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610573686.2A Active CN107626304B (zh) 2016-07-19 2016-07-19 一种负载型贵金属催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN107626304B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435179A (zh) * 2018-05-04 2018-08-24 山东师范大学 一种双活性单原子氨合成催化剂的制备方法
CN108479767A (zh) * 2018-03-30 2018-09-04 河北伟量环保科技有限公司 一种一锅法制备的大比表面甲醛净化催化剂及其制备方法
CN108525670A (zh) * 2018-05-04 2018-09-14 太原理工大学 氧化硅限域镍基催化剂及其制备方法与应用
CN109985620A (zh) * 2019-03-25 2019-07-09 北京三聚环保新材料股份有限公司 一种费托合成油加氢精制催化剂及其制备方法和应用
CN111644172A (zh) * 2019-09-09 2020-09-11 上海浦景化工技术股份有限公司 一种用于液相加氢的催化剂及其制备方法和应用
CN113996312A (zh) * 2020-07-27 2022-02-01 中国科学院大连化学物理研究所 一种铁掺杂镁铝尖晶石负载贵金属催化剂及制备和应用
CN114618518A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 一种负载型双金属催化剂及其制备和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539173A (zh) * 2013-10-06 2014-01-29 太原理工大学 一种高热稳定有序介孔氧化铝材料及其制备方法
CN104399470A (zh) * 2014-12-10 2015-03-11 太原理工大学 一种用于甲烷部分氧化的介孔三氧化二铝镍基催化剂的制备方法
CN104549272A (zh) * 2014-12-17 2015-04-29 中国人民解放军防化学院 一种有序介孔氧化铝负载铜催化剂的制备方法
CN104923215A (zh) * 2015-05-07 2015-09-23 中国石油大学(北京) 担载贵金属的有序介孔氧化铝材料及其合成方法与应用
CN105478109A (zh) * 2015-12-23 2016-04-13 上海大学 介孔Al2O3负载纳米Pd催化剂的制备方法
CN105618033A (zh) * 2015-12-23 2016-06-01 上海大学 介孔γ-Al2O3高分散负载钯催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103539173A (zh) * 2013-10-06 2014-01-29 太原理工大学 一种高热稳定有序介孔氧化铝材料及其制备方法
CN104399470A (zh) * 2014-12-10 2015-03-11 太原理工大学 一种用于甲烷部分氧化的介孔三氧化二铝镍基催化剂的制备方法
CN104549272A (zh) * 2014-12-17 2015-04-29 中国人民解放军防化学院 一种有序介孔氧化铝负载铜催化剂的制备方法
CN104923215A (zh) * 2015-05-07 2015-09-23 中国石油大学(北京) 担载贵金属的有序介孔氧化铝材料及其合成方法与应用
CN105478109A (zh) * 2015-12-23 2016-04-13 上海大学 介孔Al2O3负载纳米Pd催化剂的制备方法
CN105618033A (zh) * 2015-12-23 2016-06-01 上海大学 介孔γ-Al2O3高分散负载钯催化剂的制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108479767A (zh) * 2018-03-30 2018-09-04 河北伟量环保科技有限公司 一种一锅法制备的大比表面甲醛净化催化剂及其制备方法
CN108479767B (zh) * 2018-03-30 2021-06-29 河北伟量环保科技有限公司 一种一锅法制备的大比表面甲醛净化催化剂及其制备方法
CN108525670B (zh) * 2018-05-04 2021-03-16 太原理工大学 氧化硅限域镍基催化剂及其制备方法与应用
CN108525670A (zh) * 2018-05-04 2018-09-14 太原理工大学 氧化硅限域镍基催化剂及其制备方法与应用
CN108435179A (zh) * 2018-05-04 2018-08-24 山东师范大学 一种双活性单原子氨合成催化剂的制备方法
CN108435179B (zh) * 2018-05-04 2020-11-20 山东师范大学 一种双活性单原子氨合成催化剂的制备方法
CN109985620A (zh) * 2019-03-25 2019-07-09 北京三聚环保新材料股份有限公司 一种费托合成油加氢精制催化剂及其制备方法和应用
CN111644172A (zh) * 2019-09-09 2020-09-11 上海浦景化工技术股份有限公司 一种用于液相加氢的催化剂及其制备方法和应用
CN111644172B (zh) * 2019-09-09 2023-12-01 上海浦景化工技术股份有限公司 一种用于液相加氢的催化剂及其制备方法和应用
CN113996312A (zh) * 2020-07-27 2022-02-01 中国科学院大连化学物理研究所 一种铁掺杂镁铝尖晶石负载贵金属催化剂及制备和应用
CN113996312B (zh) * 2020-07-27 2023-02-28 中国科学院大连化学物理研究所 一种铁掺杂镁铝尖晶石负载贵金属催化剂及制备和应用
CN114618518A (zh) * 2020-12-10 2022-06-14 中国科学院大连化学物理研究所 一种负载型双金属催化剂及其制备和应用
CN114618518B (zh) * 2020-12-10 2023-01-17 中国科学院大连化学物理研究所 一种负载型双金属催化剂及其制备和应用

Also Published As

Publication number Publication date
CN107626304B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN107626304A (zh) 一种负载型贵金属催化剂及其制备和应用
Wang et al. MOF-derived CeO2 supported Ag catalysts for toluene oxidation: The effect of synthesis method
CN104588006B (zh) 一种用于炔烃选择加氢的含钯的合金单原子催化剂
CN111135840B (zh) 负载型单原子分散贵金属催化剂的制备方法
Nijhuis et al. Optimized palladium catalyst systems for the selective liquid-phase hydrogenation of functionalyzed alkynes
Sá et al. Catalytic hydrogenation of nitrates in water over a bimetallic catalyst
CN113398924B (zh) 一种金属催化剂及其制备和应用
CN110639548B (zh) 一种高效催化苯氧化的单原子钯钴双金属纳米催化剂
CN111215053A (zh) 负载型单原子分散贵金属催化剂及制备方法
Yang et al. Bimetallic Pd-M (M= Pt, Ni, Cu, Co) nanoparticles catalysts with strong electrostatic metal-support interaction for hydrogenation of toluene and benzene
CN108940346A (zh) 不饱和酮选择性加氢催化剂及其制备方法和应用
CN106964348A (zh) 一种甲醛污染物室温催化氧化催化剂及其制备方法和应用
CN113262781B (zh) 一种金属铂催化剂及其制备方法和应用
CN110270375B (zh) 一种不饱和碳-碳三键选择性加氢催化剂及其制备方法
Zhang et al. Combination of reduction-deposition Pd loading and zeolite dealumination as an effective route for promoting methane combustion over Pd/Beta
Tomkins et al. Increasing the activity of copper exchanged mordenite in the direct isothermal conversion of methane to methanol by Pt and Pd doping
Hu et al. Enhanced catalytic performance of a PdO catalyst prepared via a two-step method of in situ reduction–oxidation
Si et al. Boundary role of Nano-Pd catalyst supported on ceria and the approach of promoting the boundary effect
Liu et al. Au–Pt bimetallic nanoparticle catalysts supported on UiO-67 for selective 1, 3-butadiene hydrogenation
Zhang et al. Tuning the location of Pd on HY zeolite by a dual-solvent method for efficient deep hydrogenation saturation of naphthalene
CN112108145A (zh) 一种氧化铝负载铱团簇催化剂及其制备与应用
CN106824268A (zh) 一种提高负载型催化剂催化选择性的方法及其应用
CN111569867A (zh) 一种球磨法制备负载型贵金属VOCs降解催化剂的方法
CN113976176B (zh) 一种双活性位点铂基催化剂及其制备方法与应用
Wang et al. Insight into metal-support interactions from the hydrodesulfurization of dibenzothiophene over Pd catalysts supported on UiO-66 and its amino-functionalized analogues

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant