CN107486651B - 一种低温焊料片的制备方法 - Google Patents

一种低温焊料片的制备方法 Download PDF

Info

Publication number
CN107486651B
CN107486651B CN201710650891.9A CN201710650891A CN107486651B CN 107486651 B CN107486651 B CN 107486651B CN 201710650891 A CN201710650891 A CN 201710650891A CN 107486651 B CN107486651 B CN 107486651B
Authority
CN
China
Prior art keywords
low
foam
melting
metal
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710650891.9A
Other languages
English (en)
Other versions
CN107486651A (zh
Inventor
王玲
万超
符永高
肖勇
曹诺
刘阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Electric Apparatus Research Institute Co Ltd
Original Assignee
China National Electric Apparatus Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Electric Apparatus Research Institute Co Ltd filed Critical China National Electric Apparatus Research Institute Co Ltd
Priority to CN201710650891.9A priority Critical patent/CN107486651B/zh
Publication of CN107486651A publication Critical patent/CN107486651A/zh
Application granted granted Critical
Publication of CN107486651B publication Critical patent/CN107486651B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

本发明公开了一种低温焊料片的制备方法,该方法首先对泡沫金属骨架表面的污渍及氧化膜进行化学清理,然后通过浸渗的方式在金属泡沫内填充低熔点焊料,最后将填充有低熔点焊料的金属泡沫加热至固液混合态并轧制得到一定厚度的复合焊料片。本发明在固液混合态对泡沫金属增强焊料进行轧制,可有效解决常温轧制中泡沫金属骨架拉伸形成细条形纤维结构并断裂的问题;同时固液混合态轧制中,低熔点金属处于液态,流动性好,有利于其在泡沫金属骨架中均匀填充,可提高泡沫金属骨架的质量百分比,降低泡沫金属的孔隙率,从而提高泡沫金属增强低熔点焊料的均匀性及强度。

Description

一种低温焊料片的制备方法
技术领域
本发明涉及焊接技术领域,特别涉及一种低温焊料片的制备方法。
背景技术
随着3D封装技术的兴起,更小、更薄、更轻、更可靠、多功能、低功耗和低成本的材料在电子封装领域的应用越来越重要。焊料作为二级封装中主要连接方式,其尺寸和性能也成为影响电子器件的关键因素。泡沫金属增强低熔点复合焊料熔点低,能够获得可靠冶金接头,在电子封装领域有广阔的应用前景。
传统生产焊料片的主要方法有铸造拉拔法、电镀沉积法和冷轧复合法。在铸造拉拔法中,冷却速度和铸造辊表面粗糙度对焊料微观组织有重要影响,且焊料中易带进杂质,焊料性能不佳,生产的焊料片偏厚。而电镀沉积法制得的焊料,镀层厚度难以精确控制,且镀层金属与镀件金属间的结合强度也不是很高。冷轧复合法中,不恰当的冷轧工艺会导致焊片与所需焊料成分有偏差,影响焊接性能。叠轧—扩散合金化法虽然对冷轧复合法进行了完善,如专利(ZL201710149734X)公开了一种泡沫金属复合焊料片的制备方法,它采用了常温轧制的方法,但常温轧制过程中焊料片中有残余应力,泡沫金属骨架变形大易断裂,且低熔点金属处于固态填充性差,孔隙率较大,焊料片难以达到预期强度;且需要经过电镀步骤,电镀液会对环境造成较大的负面影响。
发明内容
本发明所要解决的技术问题,就是提供一种低温焊料片的制备方法。
解决上述技术问题,本发明所采用的技术方案是:
一种低温焊料片的制备方法,包括以下步骤:
1)泡沫金属表面预处理:
对泡沫金属骨架表面进行酸洗和超声清洗处理,其中酸洗使用体积浓度为1%-5%的盐酸;超声清洗使用丙酮或无水乙醇作为溶剂清洗30-90秒;
2)填充低熔点焊料:
将已处理好的泡沫金属骨架浸入熔融态的焊料金属中,待泡沫金属骨架完全被低熔点焊料金属填充后将其取出,其中低熔点焊料镀层厚度为5-15μm,填充时间为1-30秒;
3)固液混合态轧制:
填充后将泡沫金属加热至固液混合态,即加热温度为低熔点焊料金属熔点上,泡沫金属熔点下,轧制得到厚度为0.05-0.3mm的低温焊料片。
优选的,泡沫金属为开孔泡沫金属,具体选自泡沫铝、泡沫铜、泡沫钛、泡沫镍或泡沫镁中的一种。
优选的,低熔点金属为纯Sn、Sn-Bi合金、Sn-Ag合金、Sn-Pb合金、Sn-Zn合金、Sn-Cu合金、Sn-Ag-Cu合金、Zn-Al合金、Zn-Al-Cu合金或Al-Si合金中的一种。
优选的,采用双辊轧机、平板式楔横轧机、热压机中的任意一种将填充低熔点焊料后的泡沫金属在固液混合态轧制成形。
优选的,轧制成形时在氩气氛围或真空状态下进行。
优选的,轧制成形时使用超声波震动或电磁搅拌。
本发明的有益效果是:
1)通过浸渗方式对泡沫金属进行低熔点焊料填充,有利于后续固液混合态轧制成形的装配和低熔点焊料的再填充。
2)在固液混合态对泡沫金属增强低熔点焊料进行轧制,低熔点金属处于液态,流动性好,有利于低熔点焊料在泡沫金属骨架中均匀填充,提高了泡沫金属骨架的质量百分比,降低了泡沫金属的孔隙率。从而提高泡沫金属增强低熔点焊料的均匀性及强度,更大限度地发挥泡沫金属增强低熔点焊料在电子封装领域的应用优势。
3)在固液混合态对泡沫金属增强低熔点焊料进行轧制,有利于降低焊料片中残余应力,减小轧制中泡沫金属骨架断裂的可能性,提高焊料片强度。可有效解决传统工艺中泡沫金属骨架拉伸形成细条形纤维结构易断裂的问题。
附图说明
图1为本发明实施例一的泡沫铜浸渗纯锡280℃轧至200μm焊料片200倍金相图片;
图2为本发明实施例二的泡沫镍250℃浸渗纯锡轧至120μm焊料片200倍金相图片;
图3a为本发明实施例三的60%泡沫镍浸渗纯锡轧至120μm焊料片200倍金相图片;
图3b为本发明实施例三的60%泡沫镍浸渗纯锡轧制120μm铜钎焊接头400倍金相图片;
图4为Ni-Sn复合钎料钎焊T2紫铜钎焊接头SEM图片。
具体实施方式
下面体实施例对本发明作进一步说明,以使本领域技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例一
本实施例中选用泡沫金属骨架为开孔泡沫铜,孔隙率为98%,低熔点焊料为纯Sn,采用双辊轧机进行轧制,具体操作步骤如下:
将尺寸为60mm×40mm×0.5mm的泡沫铜在体积分数为1%的稀盐酸中清洗5s,然后在无水乙醇中超声清洗30s,在250℃对处理后的泡沫铜浸渗锡5s,得到表面有一定厚度的泡沫铜增强锡焊料,选择表面锡层厚度为8μm,且厚度均匀的泡沫铜增强锡加热至280℃,即达到固液混合态利用双辊轧机对所得焊料进行轧制,并用氩气进行保护,防止锡氧化,轧制厚度为200μm(0.2mm),选择表面平整,厚度均匀,成形良好的焊料片进行焊接实验。
焊料片显微形貌如图1所示。通过金相图片可发现,锡在泡沫铜中均匀分布,且泡沫金属中的孔隙明显减少,铜骨架分布均匀,未发现断裂。采用固液混合态轧制有效解决了常温轧制中锡填充性不好的问题,提高了泡沫铜增强锡焊料的强度。利用该方法制得的焊料片在焊接中也表现出较优异的焊接性能
实施例二
本实施例中选用泡沫金属基体为开孔泡沫镍,孔隙率为80%,低熔点焊料为纯锡,采用平板式楔横轧机进行轧制,具体操作步骤如下:
将尺寸为80mm×60mm×0.5mm的泡沫镍在体积分数为2%的稀盐酸中清洗5s,然后在无水乙醇中超声清洗30s,在240℃对处理后的泡沫镍浸渗锡2s,得到表面有一定厚度的泡沫镍增强锡金属,选择表面锡层厚度为5μm,且厚度均匀的泡沫镍增强锡加热至290℃,利用平板式楔横轧机对所得焊料进行轧制,并用氩气进行保护,防止锡氧化,再辅以超声波振动,轧制厚度为120μm,选择表面平整,厚度均匀,成形良好的焊料片进行焊接实验。
焊料片显微形貌如图2所示。通过金相图片可以发现,钎料中锡分布较均匀,有少量气孔,未发现镍骨架断裂,且镍骨架的质量百分数也明显提高。固液混合态轧制有效解决了常温轧制中泡沫镍变形断裂的问题,提高了泡沫镍增强锡焊料的强度。利用该方法制得的焊料片在焊接中也表现出较优异的焊接性能,制得的接头强度也较高。
实施例三
本实施例中选用泡沫金属基体为开孔泡镍,孔隙率为60%,低熔点焊料为纯锡,采用热压机进行轧制,具体操作步骤如下:
将尺寸为60mm×40mm×0.2mm的泡沫镍在体积分数为2%的稀盐酸中清洗5s,然后在无水乙醇中超声清洗40s,在250℃对处理后的泡沫镍浸渗锡1s,得到表面有一定厚度的泡沫镍增强锡焊料,选择表面镀层厚度为5μm,且厚度均匀的泡沫镍增强锡焊料加热至300℃,真空状态下,利用双辊轧机对所得焊料进行轧制,轧制厚度为120μm,选择表面平整,厚度均匀,成形良好的焊料片进行焊接实验。
焊料片显微形貌如图3a随所示。通过金相图片可以发现,锡在泡沫金属中分布较均匀,气孔较少,未发现杂质等其他缺陷,镍骨架未发生断裂且质量分数显著提高。图3b为通过Ni-Sn复合钎料钎焊T2紫铜得到的接头金相图片。所述Ni-Sn复合钎料钎焊T2紫铜钎焊接头的SEM(扫描电镜)效果如图4所示;接头中镍的百分比得到了提高,金属间化合物百分比下降,提高了接头的韧性。固液混合态轧制有效解决了常温轧制中低熔点焊料分布不均的问题,提高了泡沫镍增强锡焊料的强度和力学性能。利用该方法制得的焊料片在焊接中也表现出较优异的焊接性能,制得的接头力学性能也有一定提高。
若采用常温轧制,则轧制过程中焊料片中有残余应力,泡沫金属骨架变形大易断裂,且低熔点金属处于固态(结晶态)填充性差,孔隙率较大,焊料片难以达到预期强度,若想需要提高其强度需要采用电镀或化学镀的方法在填充焊料金属前在泡沫金属上镀上一层活性金属,但电镀、化学镀过程会大量、多种不同的试剂,这些试剂若工作人员在作业时疏忽时则会对人体产生危害,且作业后产生的含有多种试剂的废液对环境具有严重的负面影响;且电镀后需要对其进行除氢、醇洗、吹干以及退火等多个步骤才能填充其焊料金属,步骤繁琐,环境污染大。
本发明采用加热至固液混合态后轧制,是利用低熔点焊料金属处于液态,流动性好的特点,有利于其在泡沫金属骨架中均匀填充,可提高泡沫金属骨架的质量百分比,降低泡沫金属的孔隙率,从而提高泡沫金属增强低熔点焊料的均匀性及强度。因此相比于常温轧制,本发明步骤简单,对环境十分友好,泡沫金属骨架变形小,孔隙率低,焊料金属填充完整、均匀。
以上内容是结合具体实施例对本发明所作的进一步说明,不能认定本发明的范围只局限于这些说明。上述实施例中还可以改变泡沫金属的材质组成和孔形状,也能改变固液混合态轧制方式和加热方式及轧制振动方式,在不脱离本发明构思的前提下,所做出若干推演或替换,都应当视为属于本发明的保护范围。

Claims (6)

1.一种低温焊料片的制备方法,其特征在于,包括以下步骤:
1)泡沫金属表面预处理:
对泡沫金属骨架表面进行酸洗和超声清洗处理,其中酸洗使用体积浓度为1%-5%的盐酸;超声清洗使用丙酮或无水乙醇作为溶剂清洗30-90秒;
2)填充低熔点焊料:
将已处理好的泡沫金属骨架浸入熔融态的焊料金属中,待泡沫金属骨架完全被低熔点焊料金属填充后将其取出,其中低熔点焊料镀层厚度为5-15μm,填充时间为1-30秒;
3)固液混合态轧制:
填充后将泡沫金属加热至固液混合态,即加热温度为低熔点焊料金属熔点上,泡沫金属熔点下,轧制得到厚度为0.05-0.3mm的低温焊料片。
2.根据权利要求1所述的低温焊料片的制备方法,其特征在于:所述泡沫金属为开孔泡沫金属,具体选自泡沫铝、泡沫铜、泡沫钛、泡沫镍或泡沫镁中的一种。
3.根据权利要求1所述的低温焊料片的制备方法,其特征在于:所述低熔点金属为纯Sn、Sn-Bi合金、Sn-Ag合金、Sn-Pb合金、Sn-Zn合金、Sn-Cu合金、Sn-Ag-Cu合金、Zn-Al合金、Zn-Al-Cu合金或Al-Si合金中的一种。
4.根据权利要求1所述的一种低温焊料片的制备方法,其特征在于:采用双辊轧机、平板式楔横轧机、热压机中的任意一种将填充低熔点焊料后的泡沫金属在固液混合态轧制成形。
5.根据权利要求4所述的低温焊料片的制备方法,其特征在于:轧制成形时在氩气氛围或真空状态下进行。
6.根据权利要求4所述的低温焊料片的制备方法,其特征在于:轧制成形时使用超声波震动或电磁搅拌。
CN201710650891.9A 2017-08-02 2017-08-02 一种低温焊料片的制备方法 Active CN107486651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710650891.9A CN107486651B (zh) 2017-08-02 2017-08-02 一种低温焊料片的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710650891.9A CN107486651B (zh) 2017-08-02 2017-08-02 一种低温焊料片的制备方法

Publications (2)

Publication Number Publication Date
CN107486651A CN107486651A (zh) 2017-12-19
CN107486651B true CN107486651B (zh) 2020-10-23

Family

ID=60644116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710650891.9A Active CN107486651B (zh) 2017-08-02 2017-08-02 一种低温焊料片的制备方法

Country Status (1)

Country Link
CN (1) CN107486651B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108453414A (zh) * 2018-03-28 2018-08-28 武汉理工大学 一种Sn基复合焊料片的制备方法
CN109848611B (zh) * 2019-02-01 2020-09-08 武汉理工大学 一种基于多孔Ni/Cu合金的Sn基复合焊料片的制备方法
CN110315161B (zh) * 2019-07-10 2021-03-26 哈尔滨理工大学 一种高温封装用Cu3Sn/泡沫铜复合接头的制备方法
CN110756938B (zh) * 2019-10-25 2021-07-23 安徽省新方尊自动化科技有限公司 基于铁基材料感应加热的快速钎焊复合工艺
CN111151915B (zh) * 2020-03-23 2021-08-24 东北石油大学 一种用于SiC陶瓷低应力钎焊的复合钎料及其制备方法
CN111151912B (zh) * 2020-03-23 2021-08-24 东北石油大学 一种用于SiC陶瓷钎焊的Sn基钎料及其制备方法
CN111468861B (zh) * 2020-04-17 2022-02-15 中车青岛四方机车车辆股份有限公司 一种铜磷钎料焊片及其制备方法
CN112091474B (zh) * 2020-09-07 2022-03-11 中国电子科技集团公司第三十八研究所 Ni合金泡沫强化Sn基复合焊料的制备方法及制得的复合焊料
CN112122804B (zh) * 2020-09-23 2021-06-11 厦门大学 一种功率芯片封装用耐高温接头的低温快速无压制造方法
CN112440029B (zh) * 2020-11-20 2022-06-17 云南锡业集团(控股)有限责任公司研发中心 一种低温复合焊料合金焊片及其制备方法和使用方法
CN112622365B (zh) * 2020-12-01 2022-08-30 无锡市世达精密焊管制造有限公司 一种采用铝合金的铝铜复合板及其制备方法
CN113977025B (zh) * 2020-12-04 2023-06-30 中国电器科学研究院股份有限公司 一种大间隙钎焊接头制备方法
CN112605486A (zh) * 2020-12-16 2021-04-06 宁波施捷电子有限公司 一种超薄焊接垫片及制备方法、焊接方法与半导体器件
CN113182733B (zh) * 2021-04-28 2022-08-02 武汉理工大学 一种低温活性焊料的制备及钎焊方法
CN115008060A (zh) * 2022-05-31 2022-09-06 深圳市兴鸿泰锡业有限公司 一种功率芯片封装用锡基复合材料预成型焊片及其制备方法
CN115106678B (zh) * 2022-07-13 2023-06-13 哈尔滨工业大学(深圳) 一种高温复合钎料及其制备方法和应用
CN115433552B (zh) * 2022-09-23 2024-03-29 云南科威液态金属谷研发有限公司 一种泡沫金属与低熔点合金复合的热界面材料及制备方法
CN116967658A (zh) * 2023-08-24 2023-10-31 广州汉源微电子封装材料有限公司 一种强化焊片及其制备方法与应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85108637A (zh) * 1984-10-05 1986-07-09 株式会社日立制作所 电子电路器件及其制造方法
CN1329951A (zh) * 2000-06-19 2002-01-09 东北大学 液-固相异种金属轧制复合方法及设备
CN1418739A (zh) * 2002-11-26 2003-05-21 昆明理工大学 泡沫金属夹层板及泡沫金属的铸轧连续生产方法
JP2006255920A (ja) * 2005-03-15 2006-09-28 Toray Ind Inc 耐熱性フレキシブル積層板の製造方法および製造装置
CN101683655A (zh) * 2008-09-26 2010-03-31 南京理工大学 近固相线温度轧制复合制备金属叠层复合材料的方法
CN102205359A (zh) * 2011-05-13 2011-10-05 北京科技大学 一种泡沫铝板的制造方法
CN104942476A (zh) * 2015-07-23 2015-09-30 徐鲁豫 一种自钎性钎料及其制备方法
CN106825999A (zh) * 2017-03-14 2017-06-13 武汉理工大学 一种泡沫金属复合焊料片的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53100152A (en) * 1977-02-15 1978-09-01 Hitachi Cable Ltd Composite soldering material and manufacture thereof
CN100463753C (zh) * 2008-01-25 2009-02-25 东南大学 泡沫铝夹芯复合板的焊接方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85108637A (zh) * 1984-10-05 1986-07-09 株式会社日立制作所 电子电路器件及其制造方法
CN1329951A (zh) * 2000-06-19 2002-01-09 东北大学 液-固相异种金属轧制复合方法及设备
CN1418739A (zh) * 2002-11-26 2003-05-21 昆明理工大学 泡沫金属夹层板及泡沫金属的铸轧连续生产方法
JP2006255920A (ja) * 2005-03-15 2006-09-28 Toray Ind Inc 耐熱性フレキシブル積層板の製造方法および製造装置
CN101683655A (zh) * 2008-09-26 2010-03-31 南京理工大学 近固相线温度轧制复合制备金属叠层复合材料的方法
CN102205359A (zh) * 2011-05-13 2011-10-05 北京科技大学 一种泡沫铝板的制造方法
CN104942476A (zh) * 2015-07-23 2015-09-30 徐鲁豫 一种自钎性钎料及其制备方法
CN106825999A (zh) * 2017-03-14 2017-06-13 武汉理工大学 一种泡沫金属复合焊料片的制备方法

Also Published As

Publication number Publication date
CN107486651A (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
CN107486651B (zh) 一种低温焊料片的制备方法
Sharma et al. Influence of La2O3 nanoparticle additions on microstructure, wetting, and tensile characteristics of Sn–Ag–Cu alloy
CN107009025B (zh) 一种提高钼及钼合金熔焊焊缝强韧性的微合金化方法
CN106825999A (zh) 一种泡沫金属复合焊料片的制备方法
CN106834849B (zh) 高强度耐热稀土镁合金
CN101985714A (zh) 一种高塑性镁合金及其制备方法
CN104722945A (zh) 一种超细晶铝合金焊丝及其制备方法
Ubertalli et al. Joining of AL-6016 to Al-foam using Zn-based joining materials
WO2021046927A1 (zh) 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法
CN102304653A (zh) 一种高塑性双相含钇的镁锂铝合金及其制备方法
Xiao et al. Ultrasound-assisted soldering of alumina using Ni-foam reinforced Sn-based composite solders
CN103801854A (zh) 一种碳化硅颗粒增强铝基复合材料箔状铝基纳米钎料的制备方法
CN103710601B (zh) 一种热轧镁锌合金薄板及其制备方法
CN105603258A (zh) 一种高强度锆合金及制备方法
CN113263052B (zh) 一种镁铝合金复合材料及其制备工艺
CN111945029A (zh) 一种利用石墨烯增强铝基复合材料废料制备团簇型铝基复合材料的方法
CN107164678B (zh) 一种高温化学容器用钽材料及其制备方法
Lai et al. Rapid formation, grain refinement and shear property of high-temperature-stable full IMC joints
CN111394665A (zh) 一种TiCuZrPdFe非晶合金及其制备方法
CN107855679B (zh) 一种真空电子器件封接用低银钎料及其制备方法
CN112046099B (zh) 一种高结合强度、低密度镁锂/钛复合板的制备方法
CN101824570B (zh) 一种az系列镁铍稀土合金材料及其制备方法
CN108588588A (zh) 金属/非晶合金扩散偶的制备方法
CN111633356B (zh) 适用于tc4钛合金薄壁蜂窝结构的钎焊钎料及其制备方法和钎焊方法
CN114369786A (zh) 一种铝-钢复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 510302 No. 204 Xingang West Road, Haizhu District, Guangzhou City, Guangdong Province

Applicant after: China Electrical Appliance Research Institute Co., Ltd.

Address before: 510000 Three Blocks, 204 Xingang West Road, Haizhu District, Guangzhou City, Guangdong Province

Applicant before: China National Electric Apparatus Research Institute Co., Ltd.

GR01 Patent grant
GR01 Patent grant