WO2021046927A1 - 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法 - Google Patents

一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法 Download PDF

Info

Publication number
WO2021046927A1
WO2021046927A1 PCT/CN2019/108211 CN2019108211W WO2021046927A1 WO 2021046927 A1 WO2021046927 A1 WO 2021046927A1 CN 2019108211 W CN2019108211 W CN 2019108211W WO 2021046927 A1 WO2021046927 A1 WO 2021046927A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
temperature
rare earth
tubular target
earth elements
Prior art date
Application number
PCT/CN2019/108211
Other languages
English (en)
French (fr)
Inventor
吴宇宁
袁志钟
卿海标
Original Assignee
南京达迈科技实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京达迈科技实业有限公司 filed Critical 南京达迈科技实业有限公司
Publication of WO2021046927A1 publication Critical patent/WO2021046927A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the invention relates to a target material for magnetron sputtering equipment and a preparation method, in particular to a nickel-rhenium alloy rotating tubular target material containing trace rare earth elements for magnetron sputtering and a preparation method.
  • the sputtering method is one of the main techniques for preparing thin film materials, and the source material of the sputtering deposited thin film is the target material.
  • the film deposited by sputtering with the target material has high density and good adhesion. Since the 1990s, new devices and new materials in the microelectronics industry have developed rapidly. Electronics, magnetics, optics, optoelectronics, and superconducting thin films have been widely used in high-tech and industrial fields, which has promoted the increasing scale of sputtering target market.
  • the target material has flourished into a specialized industry.
  • Conventional targets are plane targets, which have the problem of low utilization rate; the emerging targets are all rotating tubular targets, and the utilization rate can be increased to more than 70%, which is the current development direction.
  • the target material affects the physical and mechanical properties of the sputtered film, and affects the quality of the coating. Therefore, the quality of the target material is more stringent, and the following requirements should be met: 1) Low impurity content and high purity, and the purity of the target material affects the uniformity of the film; 2) High density; high density target material has the advantages of electrical conductivity, good thermal conductivity, high strength, etc.
  • this target material for coating, low sputtering power, high film formation rate, the film is not easy to crack, the target material has a long service life, and The resistivity of the sputtered film is low, and the light transmittance is high; 3) Uniform composition and structure, and uniform target composition is an important guarantee for stable coating quality; 4) The smaller the grain size, the smaller the target grain size, the sputtering The more uniform the thickness distribution of the film, the faster the sputtering rate. It is precisely because the target material has the above-mentioned many special requirements in terms of performance, its preparation process is more complicated.
  • Re element is also used to refine grains, but this patent is a flat target, and it is directly processed by as-cast wire cutting, which has many defects in the as-cast structure, high gas content, and poor quality.
  • the preparation method of the alloy rotating tubular target material uses thermal processing and heat treatment to make the target material more uniform in structure and better performance.
  • the nickel-rhenium alloy rotating tubular target containing trace rare earth elements of the present invention has the following components in terms of mass percentage: Re 2 ⁇ 5%, Zr 0.02 ⁇ 0.1%, B 0.05 ⁇ 0.1%, Mg 0.01 ⁇ 0.05 % And the balance Ni and unavoidable impurities; the unavoidable impurities here are mainly gas impurities, gas impurities [carbon (C), oxygen (O), nitrogen (N), etc.], and the impurity content is less than 0.1%.
  • the invention also provides a method for preparing the nickel-rhenium alloy rotating tubular target material containing trace rare earth elements, including vacuum melting, atomization ingot casting, sintering, hot isostatic pressing, hot forging, hot rolling, cross-rolling piercing, and annealing , Machining and other technological processes; specifically include the following steps:
  • the melting temperature is 1600-1700° C.
  • the melting time is 70-90 min.
  • the vacuum degree in the vacuum melting process is less than 8Pa.
  • the atomization conditions of the step (2) are: a vacuum degree of 10-3 to 1 Pa, an atomizing temperature of 1500°C to 1750°C, and an atomizing pressure of 7 to 9 MPa.
  • the atomization process can make the particles uniform and more stable during sintering, and the proper atomization process parameters can make the product performance after atomization better.
  • the hot isostatic pressing sintering process in the step (3) is: the hot isostatic pressing temperature of the hot isostatic pressing sintering is 900-1000°C, the pressure is 130-150 MPa, and the time is 2 to 4 hours; the sintering temperature is 1100°C ⁇ 1400°C, sintering pressure 350bar ⁇ 450bar.
  • the process parameters make the target material have a more uniform fine grain structure, can avoid macro segregation, and make the material have higher process and mechanical properties.
  • the forging temperature T is forging ⁇ 1230°C
  • the forging temperature T is for final forging ⁇ 980°C
  • the rolling temperature is T for forging. ⁇ 1130°C
  • the processing performance of the nickel-rhenium target in the aforementioned temperature range is relatively good, which can reduce defects and improve the target structure.
  • the temperature of the perforation in the step (4) is 1140 ⁇ 5°C.
  • the annealing in the step (5) adopts the residual heat after perforation for annealing, and adopts the residual temperature after perforation for annealing at 500-600°C, the annealing temperature is 950-980°C, and the annealing time is 1 to 2 hours.
  • a box furnace is used to anneal the newly-pierced rotating tubular target material.
  • the piercing waste heat annealing treatment is compared with the cooling method that mostly uses stack cooling in factories. This method saves energy and reduces oxidation, and can refine the grains. The organization is more uniform.
  • Re element is added to nickel-based alloy.
  • the addition of Re element can refine and homogenize the grain of the target material, and at the same time can make the nickel-based target material have a single face-centered cubic (FCC) phase ( ⁇ matrix)
  • FCC face-centered cubic
  • ⁇ matrix The composition is such that the average crystal grain of the target material is less than 80 ⁇ m, and the crystal grain uniformity reaches 15% or less.
  • the ⁇ matrix is a nickel-based austenite phase with a continuously distributed face-centered cubic structure that usually contains a relatively large amount of solid solution elements (such as Co, Cr, Mo, Re, and W).
  • Zr and Mg are alloyed and optimized to improve the strength, electrical conductivity and thermal conductivity of the target.
  • zirconium can absorb a large amount of oxygen, hydrogen and other gases when heated. When the temperature exceeds nine hundred degrees Celsius, it can also absorb nitrogen violently and effectively desulfurize; zirconium is also an alloy modifier, which can refine crystals. To reduce the content of interstitial gases such as hydrogen, oxygen and nitrogen in the alloy, at the same time it removes harmful sulfur impurities and refines the grains.
  • the addition of Mg element can further deoxidize and desulfurize, thereby improving the quality of the alloy and optimizing the alloy composition. Adding a proper amount of B and Zr can significantly increase the alloy's endurance life, reduce the creep rate, and significantly improve the persistence notch sensitivity, and increase the alloy's plasticity and processing properties.
  • the alloy with B and Zr has the best performance.
  • Zr mainly exists on the grain boundaries, and its effect can be considered to improve the morphology of the grain boundaries.
  • B and Zr on the grain boundaries can inhibit the early accumulation of M23C6 carbides and delay the occurrence of grain boundary cracks.
  • B and Zr also reduce the segregation of C on the grain boundary and increase the number of intragranular carbides, which can also improve the creep resistance of the alloy.
  • the B and Zr on the grain boundary change the interface energy, which is beneficial to change the morphology of the second phase on the grain boundary, making it easier to spheroidize, improving the strength of the grain boundary, and also increasing the temperature at which the alloy transforms from transgranular to intergranular fracture.
  • the nickel-based alloy contains Mg, which can significantly improve the durability and plasticity of the alloy, reduce the number of grain boundary carbides, borides and sulfides, increase the intergranular bonding force, and improve processing plasticity.
  • the preparation process of the invention is more optimized than the traditional preparation process of the tube target, solves the problem of uneven crystal grain size caused by the common stack cooling method in the factory, removes impurities, and improves product quality.
  • most of the alloy tubular target materials are prepared by spraying technology.
  • the spraying technology prepares alloy targets with low density, high gas content, low utilization rate and low quality.
  • the rotating tubular target material of the invention has good quality, low impurity content and high utilization rate.
  • the present invention is a rotating tubular target material, which not only improves the utilization rate of materials, but also uses thermal processing and heat treatment to make the target material more uniform in structure and higher quality;
  • the present invention is an integral target material with low gas content and high purity. Even after use, it can be used as a return material and returned to the furnace, saving cost;
  • the design of the chemical composition of the present invention is unique, mainly adding Re element, adding Re element can make the target grain refinement and homogenization, and at the same time can make the nickel-based target material have a single face centered cubic (FCC) phase ( ⁇ matrix) composition, so that the average crystal grain of the target material is less than 80 ⁇ m, and the crystal grain uniformity is less than 15%; the uniformity of the target material is improved, and the sputtering effect is better;
  • FCC face centered cubic
  • trace elements such as Zr, B, Mg, etc. are added to a single nickel-rhenium target, which can refine grains, reduce the content of interstitial gases such as hydrogen, oxygen, and nitrogen in the alloy, and remove harmful impurities at the same time
  • Sulfur reduces the number of carbides, borides and sulfides at the grain boundary, improves the intergranular bonding force, and improves the processing plasticity.
  • the quality of the target material is further improved, with fewer defects and better sputtering effect.
  • Figure 1 is a schematic diagram of the process circuit of the present invention
  • Example 2 is a 100-fold metallographic photograph of the nickel-rhenium alloy rotating tubular target prepared in Example 1;
  • Example 3 is a 100 times metallographic photograph of the nickel-rhenium alloy rotating tubular target prepared in Example 2;
  • Example 4 is a 100-fold metallographic photograph of the nickel-rhenium alloy rotating tubular target prepared in Example 3;
  • FIG. 5 is a 100-fold metallographic photograph of the nickel-rhenium alloy rotating tubular target prepared in Example 4.
  • FIG. 5 is a 100-fold metallographic photograph of the nickel-rhenium alloy rotating tubular target prepared in Example 4.
  • the components and contents of the nickel-rhenium alloy rotating tubular target in this embodiment are respectively: Re 2%, Zr 0.05%, B 0.06%, Mg 0.03%, and the balance Ni and unavoidable impurities in terms of mass percentage.
  • the preparation process route of the nickel-rhenium alloy rotating tubular target is shown in Figure 1, and specifically includes the following steps:
  • (1) Preparation of raw materials Prepare raw materials for electrolytic nickel, rhenium particles, metallic chromium, metallic zirconium, and metallic magnesium according to the above-mentioned component content, wherein the purity of the raw materials is 99.95% electrolytic nickel, 99.99% rhenium particles, 99.11% metallic chromium, 99.36% metallic zirconium, 99.9% metallic magnesium;
  • Vacuum smelting of nickel ingots use industrial alcohol to remove dirt on the surface of electrolytic nickel, and use dilute nitric acid to remove oxides. After drying, put the treated electrolytic nickel into a smelting crucible and smelt with electricity at a smelting temperature of 1630°C. The time is 80min, and the vacuum is evacuated during the smelting process to make the vacuum degree less than 8Pa to obtain a nickel ingot;
  • the pre-alloyed powder is sintered by the hot isostatic pressing method, the hot isostatic pressing process parameters are 940°C, 140MPa, 3h; the sintering temperature is 1200°C, and the sintering pressure is 350bar.
  • Hot forging and hot rolling hot forging and hot rolling of the initial ingot, the forging temperature is 1300°C, the terminal temperature is 1000°C; the opening temperature is 1130°C, and the final rolling temperature is 1000°C;
  • Cross-rolling piercing The piercing temperature of the piercing treatment is set to 1140°C; it is heated to 1140°C in an inclined bottom heating furnace, and a two-roll cross-rolling piercing machine is used;
  • Annealing treatment use the residual temperature (500 ⁇ 600°C) after perforation for annealing, and use a box furnace to perform residual heat annealing treatment for the rotating tubular target that has just been perforated.
  • the annealing temperature is 950°C and the annealing time is 1h;
  • the nickel-rhenium alloy rotating tubular target prepared in this example has an average crystal grain size of 53.1-61.3 ⁇ m, and a crystal grain uniformity of 13.38%
  • the components and contents of the nickel-rhenium alloy rotating tubular target in this embodiment are as follows in terms of mass percentage: Re 4%, Zr 0.02%, B 0.05%, Mg 0.01%, the balance Ni and unavoidable impurities.
  • the preparation method of the nickel-rhenium alloy rotating tubular target of this embodiment is basically the same as that of embodiment 1, except that:
  • step (2) the melting temperature is 1700°C, and the melting time is 70 min;
  • step (3) the vacuum degree of atomization is 10 -3 Pa, the atomization temperature is 1700°C, and the atomization pressure is 8MPa;
  • step (4) the hot isostatic pressing process parameters are 900°C, 135MPa, 3.5h; the sintering temperature is 1300°C, and the sintering pressure is 400 bar;
  • step (5) hot forging is performed on the initial ingot, the forging temperature is 1300°C, and the terminal temperature is 1000°C;
  • step (6) the perforation temperature is set to 1100°C;
  • step (7) the annealing temperature is 960°C, and the annealing time is 2h.
  • the nickel-rhenium alloy rotating tubular target prepared in this embodiment has an average crystal grain size of 50.7-58.8 ⁇ m, and a crystal grain uniformity of 13.75%
  • the components and contents of the nickel-rhenium alloy rotating tubular target in this embodiment are respectively: Re 5%, Zr 0.03%, B 0.1%, Mg 0.04%, and the balance Ni and unavoidable impurities in terms of mass percentage.
  • the preparation method of the nickel-rhenium alloy rotating tubular target of this embodiment is basically the same as that of embodiment 1, except that:
  • step (2) the melting temperature is 1600°C, and the melting time is 90 minutes;
  • step (3) the vacuum degree of atomization is 1Pa, the atomization temperature is 1500°C, and the atomization pressure is 7MPa;
  • step (4) the hot isostatic pressing process parameters are 950°C, 130MPa, 2h; the sintering temperature is 1100°C, and the sintering pressure is 450 bar;
  • step (5) hot forging and hot rolling are performed on the initial ingot, the open forging temperature is 1230°C, the terminal temperature is 980°C; the open rolling temperature is 1130°C, and the final rolling temperature is 1000°C;
  • step (6) the perforation temperature is set to 1160°C;
  • step (7) the annealing temperature is 970°C, and the annealing time is 1.5h.
  • the nickel-rhenium alloy rotating tubular target prepared in this embodiment has an average crystal grain size of 55.1-63.4 ⁇ m, and a crystal grain uniformity of 13.09%.
  • the components and contents of the nickel-rhenium alloy rotating tubular target in this embodiment are respectively: Re 3%, Zr 0.1%, B 0.09%, Mg 0.05%, and the balance Ni and unavoidable impurities in terms of mass percentage.
  • the preparation method of the nickel-rhenium alloy rotating tubular target of this embodiment is basically the same as that of embodiment 1, except that:
  • step (2) the melting temperature is 1650°C, and the melting time is 85 min;
  • step (3) the vacuum degree of atomization is 10 Pa, the atomization temperature is 1750°C, and the atomization pressure is 9 MPa;
  • step (4) the hot isostatic pressing process parameters are 1000°C, 150MPa, 4h; the sintering temperature is 1400°C, and the sintering pressure is 400 bar;
  • step (5) hot forging and hot rolling are performed on the initial ingot, the open forging temperature is 1250°C, the terminal temperature is 1000°C; the open rolling temperature is 1200°C, and the final rolling temperature is 1050°C;
  • step (6) the perforation temperature is set to 1200°C;
  • step (7) the annealing temperature is 980°C, and the annealing time is 2h.
  • the nickel-rhenium alloy rotating tubular target prepared in this embodiment has an average crystal grain size of 52.8-60.9 m, and a crystal grain uniformity of 13.3%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种含微量稀土元素的镍铼合金旋转管状靶,包括按质量百分比计的如下组分:Re 2~5%,Zr 0.02~0.1%,B 0.05~0.1%,Mg 0.01~0.05%以及余量Ni和不可避免的杂质。还公开了一种含微量稀土元素的镍铼合金旋转管状靶的制备方法,包括真空熔炼、雾化铸锭、烧结、热等静压、热锻、热轧、斜轧穿孔、退火,和机加工的步骤。

Description

一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法 技术领域
本发明涉及磁控溅射设备的靶材及制备方法,特别是涉及一种磁控溅射用的含微量稀土元素的镍铼合金旋转管状靶材及制备方法。
背景技术
随着电子信息产业的飞速发展,薄膜科学应用日益广泛。溅射法是制备薄膜材料的主要技术之一,溅射沉积薄膜的源材料即为靶材。用靶材溅射沉积的薄膜致密度高,附着性好。20世纪90年代以来,微电子行业新器件和新材料发展迅速,电子、磁性、光学、光电和超导薄膜等已经广泛应用于高新技术和工业领域,促使溅射靶材市场规模日益扩大。如今,靶材已蓬勃发展成为一个专业化产业。
常规靶材都是平面靶材,存在利用率低的问题;现在新兴的靶材都是旋转管状靶材,其利用率可以提高到70%以上,是现在发展的方向。
靶材影响着溅镀薄膜的物理、力学性能,影响镀膜质量,因而靶材质量评价较为严格,主要应满足如下要求:1)杂质含量低、纯度高,靶材的纯度影响薄膜的均匀性;2)高致密度;高致密度靶材具有导电、导热性好、强度高等优点,使用这种靶材镀膜,溅射功率小,成膜速率高,薄膜不易开裂,靶材使用寿命长,而且溅镀薄膜的电阻率低,透光率高;3)成分与组织结构均匀,靶材成分均匀是镀膜质量稳定的重要保;4)晶粒尺寸细小,靶的晶粒尺寸越细小,溅镀薄膜的厚度分布越均匀,溅射速率越快。正因为靶材在性能上有上述诸多特殊要求,导致其制备工艺较为复杂。
专利TW105102091中,也采用了Re元素来细化晶粒,但是此专利为平面靶,且直接为铸态线切割加工而成,铸态组织缺陷多,气体含量多,质量差。
专利中CN201210553666.0中,采用等离子喷涂技术制备氧化铌旋转靶材,但是喷涂技术制备合金靶材的密度低,气体含量高,利用率、品质低。
发明内容
发明目的:本发明的目的之一是提供一种含微量稀土元素的镍铼合金旋转管状靶材,材料的利用率高,组织均匀,质量好;本发明的目的之二是提供一种镍铼合金旋转管状靶材的制备方法,利用热加工与热处理使得靶材组织细化均匀,性能更优。
技术方案:本发明的含微量稀土元素的镍铼合金旋转管状靶材,按质量百分比计的如下组分:Re 2~5%,Zr 0.02~0.1%,B 0.05~0.1%,Mg 0.01~0.05%以及余量Ni和不可避免的杂质;此处不可避免的杂质主要为气体杂质,气体杂质〔碳(C)、氧(O)、氮(N)等〕,杂质含量<0.1%。
本发明还提供了所述含微量稀土元素的镍铼合金旋转管状靶材的制备方法,包括真 空熔炼、雾化铸锭、烧结、热等静压、热锻、热轧、斜轧穿孔、退火、机加工等工艺过程;具体包括如下步骤:
(1)按各组分含量先将镍原料真空熔炼成镍铸锭;
(2)后雾化镍铸锭和其他原料,得到预合金粉;
(3)将预合金粉采用热等静压烧结,得到初锭;
(4)对初锭采用热锻+斜轧穿孔方法进行热加工,或采用热锻热轧+斜轧穿孔的方法进行加工成型;
(5)退火处理,精加工,得到成品旋转管状靶材。
优选地,所述步骤(1)中真空熔炼,熔炼温度为1600~1700℃,熔炼时间为70~90min。
进一步地,真空熔炼过程中的真空度小于8Pa。用工业酒精清除电解镍表面污垢,用稀硝酸去除氧化物,烘干后将处理过的电解镍放入熔炼坩埚中,通电熔炼;此步骤设置能够尽量使得杂质含量减少,使得靶材基体的纯度更高,废料也能够回炉重造,节约成本。
优选地,所述步骤(2)的雾化条件为:真空度为10-3~1Pa,雾化温度为1500℃~1750℃,雾化压力为7~9MPa。雾化工艺可以使得颗粒均匀,烧结时更加稳定,合适的雾化工艺参数使雾化后得到的产品性能更好。
优选地,所述步骤(3)中热等静压烧结工艺为:热等静压烧结的热等静压温度为900~1000℃,压力为130~150MPa,时间为2~4h;烧结温度为1100℃~1400℃,烧结压力350bar~450bar。该工艺参数使靶材具有更加均匀的细晶粒组织,能避免宏观偏析,使材料具有更高的工艺性能和机械性能。
优选地,所述步骤(4)中对初锭采用热锻热轧与斜轧穿孔处理,开锻温度T 开锻≥1230℃,终锻温度T 终锻≥980℃,开轧温度T开轧≥1130℃,终轧温度T 终锻≥1000℃。前述温度范围的镍铼靶材的加工性能比较好,能够减少缺陷,改善靶材组织。
优选地,所述步骤(4)的穿孔的温度为1140±5℃。
优选地,所述步骤(5)的退火采用穿孔后的余热进行退火,采用穿孔后的余温500~600℃进行退火,退火温度为950~980℃,退火时间1~2h。采用箱式炉对刚穿孔完成的旋转管状靶材进行余热退火处理,采用穿孔余热退火处理相对于工厂中大多使用堆冷的冷却方式,此方法升温节能、氧化少,能够细化晶粒,使得组织更加均匀。
发明原理:本发明在镍基合金中加入Re元素,加入Re元素能够使得靶材晶粒细化与均匀化,同时能够使得镍基靶材为单一的面心立方(FCC)相(γ基体)组成,使得该靶材的平均晶粒小于80μm,晶粒均匀度达到15%以下。γ基体是通常含有较大数量固溶元素(如Co、Cr、Mo、Re和W)的连续分布的面心立方结构的镍基奥氏体相。Zr、Mg进行合金化及成分优化,进而提高靶材的强度、导电性及导热性。其中,添加Zr元素, 锆在加热时能大量地吸收氧、氢等气体,当温度超过摄氏九百度,还能猛烈地吸收氮气,还能有效脱硫;锆还是合金的变质剂,能细化晶粒;从而降低合金中的氢、氧、氮等间隙气体含量,同时去除有害杂质硫与细化晶粒。添加Mg元素,能够进一步脱氧、去硫,从而提高合金的质量,优化合金成分。加入适量的B、Zr能显著提高合金的持久寿命,降低蠕变速率,并显著改善持久缺口敏感性,提高合金的塑性和加工性能,只加入其中一种时,B的作用比Zr显著,但同时加入B、Zr的合金的性能最好。Zr主要存在于晶界上,其作用可以认为是改善晶界形态,一种理论认为,晶界上的B、Zr能抑制M23C6碳化物早期聚集,延缓晶界裂纹的发生。此外,B、Zr也减少C向晶界上偏析,增加了晶内碳化物的数量,这也可以提高合金的蠕变抗力。晶界上的B、Zr改变了界面能量,有利于改变晶界上第二相的形态,使之更易于球化,提高晶界强度,也提高了合金穿晶转变为沿晶断裂的温度。镍基合金中含Mg,可显著地提高合金的持久性和塑性,减少晶界碳化物、硼化物和硫化物的数量,提高晶间结合力,改善加工塑性。
此发明的制备工艺比传统制备管靶工艺更加优化,解决了工厂中普遍堆冷的方式造成晶粒尺寸不均匀的问题,去除杂质,提高产品质量。目前以制备合金管状靶材多数是喷涂技术,喷涂技术制备合金靶材的密度低,气体含量高,利用率、品质低。此发明的旋转管状靶材质量好,杂质含量低,利用率高。
有益效果:与现有技术相比
(1)本发明为旋转管状靶材,不仅提高了材料的利用率,且利用热加工与热处理使得靶材组织细化均匀,质量更高;
(2)本发明为整体靶材,气体含量低,纯度高,即使用完也可作为返料回炉,节约成本;
(3)本发明化学成分设计与众不同,主要添加了Re元素,加入Re元素能够使得靶材晶粒细化与均匀化,同时能够使得镍基靶材为单一的面心立方(FCC)相(γ基体)组成,使得该靶材的平均晶粒小于80μm,晶粒均匀度达到15%以下;靶材的均匀性改善,溅射效果更佳;
(4)本发明在单一的镍铼靶材上还添加了Zr、B、Mg等微量元素元素,能细化晶粒,降低合金中的氢、氧、氮等间隙气体含量,同时去除有害杂质硫与减少晶界碳化物、硼化物和硫化物的数量,提高晶间结合力,改善加工塑性。靶材的质量得到进一步的提高,缺陷更少,溅射效果更佳。
附图说明
图1是本发明的工艺线路示意图;
图2是实施例1制备的镍铼合金旋转管状靶材的100倍金相照片;
图3是实施例2制备的镍铼合金旋转管状靶材的100倍金相照片;
图4是实施例3制备的镍铼合金旋转管状靶材的100倍金相照片;
图5是实施例4制备的镍铼合金旋转管状靶材的100倍金相照片。
具体实施方式
实施例1:
本实施例中镍铼合金旋转管状靶材组分及含量,按质量百分比计分别为:Re 2%,Zr 0.05%,B 0.06%,Mg 0.03%以及余量Ni和不可避免的杂质。
该镍铼合金旋转管状靶材的制备工艺路线如图1所示,具体包括如下步骤:
(1)原料准备:按照上述组分含量准备原料电解镍、铼粒、金属铬、金属锆、金属镁,其中原料的纯度为99.95%的电解镍、99.99%铼粒、99.11%的金属铬、99.36%金属锆、99.9%的金属镁;
(2)真空熔炼镍铸锭:用工业酒精清除电解镍表面污垢,用稀硝酸去除氧化物,烘干后将处理过的电解镍放入熔炼坩埚中,通电熔炼,熔炼温度为1630℃,熔炼时间为80min,熔炼过程中抽真空使其真空度小于8Pa,得到镍铸锭;
(3)制备预合金粉:将其他原料与镍铸锭混合,进行雾化;其中雾化的真空度为10 -2Pa,雾化温度为1600℃,雾化压力为8MPa;
(4)制造初锭:采用热等静压烧结的方法对预合金粉进行烧结,热等静压工艺参数为940℃,140MPa,3h;烧结温度为1200℃,烧结压力为350bar。
(5)热锻热轧:对初锭进行热锻热轧成型,开锻温度为1300℃,终端温度为1000℃;开轧温度为1130℃,终轧温度为1000℃;
(6)斜轧穿孔:穿孔处理的穿孔温度设为1140℃;采用斜底式加热炉加热到1140℃,采用二辊斜轧穿孔机;
(7)退火处理:采用穿孔后的余温(500~600℃)进行退火,采用箱式炉对刚穿孔完成的旋转管状靶材进行余热退火处理,退火温度为950℃,退火时间为1h;
(8)最后对管状靶材进行数控机床精加工,得到成品。
本实施例制备得到的镍铼合金旋转管状靶材,晶粒大小平均在53.1~61.3μm之间,晶粒均匀度达到13.38%
实施例2:
本实施例中镍铼合金旋转管状靶材组分及含量,按质量百分比计分别为:Re 4%,Zr 0.02%,B 0.05%,Mg 0.01%以及余量Ni和不可避免的杂质。
本实施例的镍铼合金旋转管状靶材的制备方法与实施例1基本相同,不同之处在于:
步骤(2)中,熔炼温度为1700℃,熔炼时间为70min;
步骤(3)中,雾化的真空度为10 -3Pa,雾化温度为1700℃,雾化压力为8MPa;
步骤(4)中,热等静压工艺参数为900℃,135MPa,3.5h;烧结温度为1300℃, 烧结压力为400bar;
步骤(5)中,对初锭进行热锻成型,开锻温度为1300℃,终端温度为1000℃;
步骤(6)中,穿孔温度设为1100℃;
步骤(7)中,退火温度为960℃,退火时间2h。
本实施例制备得到的镍铼合金旋转管状靶材,晶粒大小平均在50.7~58.8μm之间,晶粒均匀度达到13.75%
实施例3:
本实施例中镍铼合金旋转管状靶材组分及含量,按质量百分比计分别为:Re 5%,Zr 0.03%,B 0.1%,Mg 0.04%以及余量Ni和不可避免的杂质。
本实施例的镍铼合金旋转管状靶材的制备方法与实施例1基本相同,不同之处在于:
步骤(2)中,熔炼温度为1600℃,熔炼时间为90min;
步骤(3)中,雾化的真空度为1Pa,雾化温度为1500℃,雾化压力为7MPa;
步骤(4)中,热等静压工艺参数为950℃,130MPa,2h;烧结温度为1100℃,烧结压力为450bar;
步骤(5)中,对初锭进行热锻热轧成型,开锻温度为1230℃,终端温度为980℃;开轧温度为1130℃,终轧温度为1000℃;
步骤(6)中,穿孔温度设为1160℃;
步骤(7)中,退火温度为970℃,退火时间1.5h。
本实施例制备得到的镍铼合金旋转管状靶材,晶粒大小平均在55.1~63.4μm之间,晶粒均匀度达到13.09%。
实施例4:
本实施例中镍铼合金旋转管状靶材组分及含量,按质量百分比计分别为:Re 3%,Zr 0.1%,B 0.09%,Mg 0.05%以及余量Ni和不可避免的杂质。
本实施例的镍铼合金旋转管状靶材的制备方法与实施例1基本相同,不同之处在于:
步骤(2)中,熔炼温度为1650℃,熔炼时间为85min;
步骤(3)中,雾化的真空度为10Pa,雾化温度为1750℃,雾化压力为9MPa;
步骤(4)中,热等静压工艺参数为1000℃,150MPa,4h;烧结温度为1400℃,烧结压力为400bar;
步骤(5)中,对初锭进行热锻热轧成型,开锻温度为1250℃,终端温度为1000℃;开轧温度为1200℃,终轧温度为1050℃;
步骤(6)中,穿孔温度设为1200℃;
步骤(7)中,退火温度为980℃,退火时间2h。
本实施例制备得到的镍铼合金旋转管状靶材,晶粒大小平均在52.8~60.9μm之间,晶 粒均匀度达到13.3%。

Claims (9)

  1. 一种含微量稀土元素的镍铼合金旋转管状靶材,其特征在于包括按质量百分比计的如下组分:Re 2~5%,Zr 0.02~0.1%,B 0.05~0.1%,Mg 0.01~0.05%以及余量Ni和不可避免的杂质。
  2. 根据权利要求1所述的含微量稀土元素的镍铼合金旋转管状靶材的制备方法,其特征在于包括如下步骤:
    (1)按各组分含量,先将原料镍真空熔炼成镍铸锭;
    (2)后雾化镍铸锭和其他原料,得到预合金粉;
    (3)将预合金粉采用热等静压烧结,得到初锭;
    (4)对初锭进行加工成型,加工成型工艺采用热锻和斜轧穿孔,或采用热锻热轧和斜轧穿孔;
    (5)退火处理,精加工,得到成品旋转管状靶材。
  3. 根据权利要求2所述的含微量稀土元素的镍铼合金旋转管状靶材的制备方法,其特征在于:所述步骤(1)中真空熔炼,熔炼温度为1600~1700℃,熔炼时间为70~90min。
  4. 根据权利要求2所述的含微量稀土元素的镍铼合金旋转管状靶材的制备方法,其特征在于所述步骤(2)的雾化条件为:真空度为10 -3~1Pa,雾化温度为1500℃~1750℃,雾化压力为7~9MPa。
  5. 根据权利要求2所述的含微量稀土元素的镍铼合金旋转管状靶材的制备方法,其特征在于所述步骤(3)中热等静压烧结的热等静压温度为900~1000℃,压力为130~150MPa,时间为2~4h;烧结温度为1100℃~1400℃,烧结压力350bar~450bar。
  6. 根据权利要求2所述的含微量稀土元素的镍铼合金旋转管状靶材的制备方法,其特征在于:所述步骤(4)中对初锭采用热锻热轧与斜轧穿孔处理,开锻温度T 开锻≥1230℃,终锻温度T 终锻≥980℃,开轧温度T 开轧≥1130℃,终轧温度T 终锻≥1000℃。
  7. 根据权利要求2所述的含微量稀土元素的镍铼合金旋转管状靶材的制备方法,其特征在于:所述步骤(4)的斜轧穿孔的温度为1100~1200℃。
  8. 根据权利要求2所述的含微量稀土元素的镍铼合金旋转管状靶材的制备方法,其特征在于:所述步骤(5)的退火采用穿孔后的余热进行退火,采用穿孔后的余温进行退火,退火温度为950~980℃。
  9. 根据权利要求3所述的含微量稀土元素的镍铼合金旋转管状靶材的制备方法,其特征在于:所述真空熔炼过程中的真空度小于8Pa。
PCT/CN2019/108211 2019-09-12 2019-09-26 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法 WO2021046927A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910869345.3A CN110484886B (zh) 2019-09-12 2019-09-12 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法
CN201910869345.3 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021046927A1 true WO2021046927A1 (zh) 2021-03-18

Family

ID=68558111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108211 WO2021046927A1 (zh) 2019-09-12 2019-09-26 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法

Country Status (2)

Country Link
CN (1) CN110484886B (zh)
WO (1) WO2021046927A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657345A (zh) * 2022-03-31 2022-06-24 先导薄膜材料(广东)有限公司 铁靶材、铁镍合金靶材以及靶材的晶粒细化方法
CN116752104A (zh) * 2023-06-16 2023-09-15 基迈克材料科技(苏州)有限公司 一种半导体用的高纯低氧细晶Ag旋转管靶的制作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996503A (zh) * 2019-12-30 2020-11-27 宁夏东方钽业股份有限公司 铌旋转靶材的成型方法
CN111304606A (zh) * 2020-03-30 2020-06-19 宁波江丰电子材料股份有限公司 无缺陷高纯镍钒靶坯的制备方法及利用其制备得到的靶材
CN111876737A (zh) * 2020-07-24 2020-11-03 宁波江丰电子材料股份有限公司 一种镍铬合金溅射靶材及其制备方法
CN113151760A (zh) * 2020-12-18 2021-07-23 贵州航天精工制造有限公司 一种保证gh738托板自锁螺母晶粒度的余温热处理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069873A (en) * 1989-08-14 1991-12-03 Cannon-Muskegon Corporation Low carbon directional solidification alloy
CN1995427A (zh) * 2003-01-13 2007-07-11 杰出金属实业公司 硬质合金组合物
CN107130140A (zh) * 2017-05-08 2017-09-05 大连理工大学 一类镍基单晶高温合金的成分及其应用
CN107460419A (zh) * 2017-06-30 2017-12-12 江苏大学 一种低铼单晶铸件的组织及性能优化新工艺
CN107904447A (zh) * 2017-12-05 2018-04-13 大连理工大学 一种镍基单晶高温合金系列Nideal2合金系列及其应用
CN109423615A (zh) * 2017-08-30 2019-03-05 光洋应用材料科技股份有限公司 镍铼合金靶材及其制法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1121507C (zh) * 1999-08-06 2003-09-17 上海交通大学 含混合稀土元素的高阻溅射靶材及其生产工艺
US8123919B2 (en) * 2005-09-20 2012-02-28 Guardian Industries Corp. Sputtering target with bonding layer of varying thickness under target material
CN102352483A (zh) * 2011-11-15 2012-02-15 江苏美特林科特殊合金有限公司 一种真空溅射镀膜用硅铝合金中空旋转靶材的制备方法
CN104018120B (zh) * 2014-06-24 2016-05-25 昆山海普电子材料有限公司 镍铂合金靶材及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069873A (en) * 1989-08-14 1991-12-03 Cannon-Muskegon Corporation Low carbon directional solidification alloy
CN1995427A (zh) * 2003-01-13 2007-07-11 杰出金属实业公司 硬质合金组合物
CN107130140A (zh) * 2017-05-08 2017-09-05 大连理工大学 一类镍基单晶高温合金的成分及其应用
CN107460419A (zh) * 2017-06-30 2017-12-12 江苏大学 一种低铼单晶铸件的组织及性能优化新工艺
CN109423615A (zh) * 2017-08-30 2019-03-05 光洋应用材料科技股份有限公司 镍铼合金靶材及其制法
CN107904447A (zh) * 2017-12-05 2018-04-13 大连理工大学 一种镍基单晶高温合金系列Nideal2合金系列及其应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657345A (zh) * 2022-03-31 2022-06-24 先导薄膜材料(广东)有限公司 铁靶材、铁镍合金靶材以及靶材的晶粒细化方法
CN114657345B (zh) * 2022-03-31 2024-04-09 先导薄膜材料(广东)有限公司 铁靶材、铁镍合金靶材以及靶材的晶粒细化方法
CN116752104A (zh) * 2023-06-16 2023-09-15 基迈克材料科技(苏州)有限公司 一种半导体用的高纯低氧细晶Ag旋转管靶的制作方法

Also Published As

Publication number Publication date
CN110484886B (zh) 2021-09-17
CN110484886A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2021046927A1 (zh) 一种含微量稀土元素的镍铼合金旋转管状靶材及制备方法
CN100469923C (zh) 耐高温软化引线框架用铜合金及其制造方法
CN105478772B (zh) 一种钼平面靶材的制造方法
US20220228240A1 (en) Aluminum-scandium alloy target with high scandium content, and preparation method thereof
CN114395717B (zh) 一种Co-Ni-Cr-Fe-W系高密度高塑性的高熵合金及其制备方法
CN114934205B (zh) 一种镍基高温合金高纯净度化的熔炼方法
CN102337462B (zh) 一种GCr15轴承钢管的生产方法
CN112916870B (zh) 一种中高熵合金材料的制备方法
CN1940104A (zh) 引线框架用铜合金及其制造方法
WO2021046928A1 (zh) 一种含微量元素的大管径Ni-V旋转靶材及其制备方法
CN103710577A (zh) 含微量稀土元素的镍钒合金磁控溅射旋转靶材及制备方法
CN113215494B (zh) 一种航空用因瓦合金板材的制备方法
CN102398035B (zh) 镍靶坯及靶材的制造方法
CN108866378A (zh) 一种高温环境用高强高导电率铜合金及其制备方法
WO2021046929A1 (zh) 一种含微量元素的大管径Ni-Cr旋转靶材及其制备方法
CN114934261B (zh) 铁靶、铁镍合金靶及其制造方法
CN109439955B (zh) 一种采用定向凝固制备高强度、高导电性超细丝合金材料的方法
CN115261806B (zh) 一种镍铝合金溅射靶材及其热等静压制备方法
CN111441020A (zh) 一种低成本制备tc4钛合金溅射靶材的方法
TWI387497B (zh) Manufacturing method of nickel alloy target
KR101560455B1 (ko) 방전 플라즈마 소결을 이용한 LCD Glass 제조용 산화물 분산 강화형 백금­로듐 합금의 제조 방법
CN110527856B (zh) 一种高表面质量、高强度镍合金带材的制备方法
CN111266586A (zh) 一种制备大尺寸高致密度含稀土ito铝靶材的方法
JP2018145518A (ja) Cu−Ni合金スパッタリングターゲット
CN114959595B (zh) 溅射用高纯铝钕合金靶材及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945219

Country of ref document: EP

Kind code of ref document: A1