CN108588588A - 金属/非晶合金扩散偶的制备方法 - Google Patents

金属/非晶合金扩散偶的制备方法 Download PDF

Info

Publication number
CN108588588A
CN108588588A CN201810443266.1A CN201810443266A CN108588588A CN 108588588 A CN108588588 A CN 108588588A CN 201810443266 A CN201810443266 A CN 201810443266A CN 108588588 A CN108588588 A CN 108588588A
Authority
CN
China
Prior art keywords
sample
metal
crystaline amorphous
preparation
amorphous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810443266.1A
Other languages
English (en)
Inventor
孙琳琳
乔勋
赵巧绒
张莉
郝波涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xijing University
Original Assignee
Xijing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xijing University filed Critical Xijing University
Priority to CN201810443266.1A priority Critical patent/CN108588588A/zh
Publication of CN108588588A publication Critical patent/CN108588588A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

金属/非晶合金扩散偶的制备方法,包括块体非晶合金的制备,将步骤一中的得到的棒材切割成试样,在丙酮中进行超声波清洗和脱脂;将样品安放在磁控溅射室内的阴极靶位上开启磁控溅射设备中的离子清洗;镀膜后的样品密封在真空玻璃管内,最后通过扩散退火热处理之后,试样快速冷却至室温,得到金属/非晶合金扩散偶;本发明具有能够使得非晶基体组织基本无变化,仍然保持非晶态的优点。

Description

金属/非晶合金扩散偶的制备方法
技术领域
本发明涉及材料焊接领域,特别涉及金属/非晶合金扩散偶的制备方法。
背景技术
块体金属玻璃具有非常好的弹性极限和高的屈服强度,高硬度和强度,非常好的耐腐蚀性能,低的热导,能直接加工成型等优良特性,适合于制造军事产品,并有望在环保型动能穿甲弹,高性能复合装甲,高耐磨表面硬化和轻量化部件,抗腐蚀部件和电子器件保护套,轻量化和高强度结构部件等军事部件中进行应用。尽管非晶合金具有较好的应用前景,但是由于非晶合金本身尺寸效应以及室温塑性差等方面的限制,阻碍了非晶合金作为工程结构材料等方面的应用。为了解决非晶合金尺寸效应及室温塑性差的限制,拓宽非晶合金工程化应用,近几年一些新技术的发现,如:爆炸焊接、摩擦焊、电子束焊、共压及共挤等方法的引入成功实现了非晶合金/非晶合金,非晶合金/金属的连接,并具有良好的力学性能,进一步推进了非晶合金在工程方面的应用。比如说通过电子束方法将Zr41Ti14Cu12Ni10Be23非晶合金与纯Zr(Y.Kawamura,T.Shoji,Y.Ohno.Welding of bulkmetallic glasses.Journal of Non-Crystalline Solids.2003,317:152-157),Zr41Ti14Cu12Ni10Be23非晶合金与纯Ti(S.Kagao,Y.Kawamura,Y.Ohno.Electron-beamwelding of Zr-based bulk metallic glasses.Materials Science and Engineering:A.2004,375-377:312-316)进行焊接,两个界面呈现的结果差异很大,前者界面可以达到原子级别的冶金结合,并具有较好的力学性能(拉伸强度与纯Zr的相当);而后者在界面处形成了脆性相,导致无法施展力学性能测试。此后,Kim还发现通过此方法获得的Zr41Ti14Cu12Ni10Be23非晶合金/Ni界面状态与电子束辐照位置有关。
原子在非晶合金中的扩散距离较短(仅为20nm-100nm)并且扩散系数很低,很难采用传统的电子探针(EPMA)以及能谱(EDS)等方法来研究。此外,非晶合金的热稳定性对成分较为敏感,当焊接界面存在氧原子夹杂之后,将使界面处的热稳定性降低,形成纳米晶。同样,当界面有大量氧化膜存在时,也将进一步阻碍基体内原子的相互扩散,降低扩散系数,最终导致连接失败。因此,采用传统的焊接法制备金属/非晶合金扩散偶是不合理的。
发明内容
为了克服上述现有技术的不足,本发明提供了金属/非晶合金扩散偶的制备方法,能够清除非晶合金表面的杂质原子,进而使金属原子与非晶合金达到原子级别的结合,非晶基体组织基本无变化,仍然保持非晶态。
为了达到上述目的,本发明采用的技术方案为:
金属/非晶合金扩散偶的制备方法,其步骤为:
步骤一:块体非晶合金的制备
将母合金放入吸铸坩埚,用氩气洗炉,再将炉腔真空抽至3.0×10-3Pa,在氩气保护下采用感应熔炼的方法将母合金熔化并将熔体吸铸到模具中,获得棒材;
步骤二:预处理
将步骤一中的得到的棒材切割成试样,将试样用于镀膜的圆截面用砂纸依次打磨并且机械抛光,确保截面没有划痕后,在丙酮中进行超声波清洗和脱脂3~5min,放置于磁控溅射镀膜设备的真空炉中,进行抽真空,得到靶材;
步骤三:将步骤二中得到的靶材安放在磁控溅射室内的阴极靶位上,用机械泵及分子泵将溅射室抽到真空度为6×10-4Pa,开启磁控溅射设备中的离子清洗,将清洗好的靶材定在衬底托盘上放入过渡舱室,抽真空为3.4×10-4Pa,反溅射清洗样品3min;然后再送至溅射室,通入氩气后采用射频磁控溅射清洗靶材5min,然后对非晶态合金表面进行镀膜,得到镀膜样品;
步骤四:镀膜后的样品密封在真空玻璃管内,加热到非晶合金玻璃态/过冷液相区的温度值时进行保温,最后通过扩散退火热处理之后,试样快速冷却至室温,得到金属/非晶合金扩散偶。
所述的步骤一的棒材形状为Φ5×50mm。
所述的步骤二的试样的形状为Φ5×2mm。
所述的镀膜厚度为100nm。
所述的真空玻璃管内的真空度高于10-4Pa。
本发明的有益效果;
本发明采用磁控溅射设备中的离子清洗,清除非晶合金表面的杂质原子,进而使金属原子与非晶合金达到原子级别的结合,非晶基体组织基本无变化,仍然保持非晶态,然后封装热处理,进而获得理想状态的扩散偶。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1
Ni/Zr48Cu36Ag8Al8非晶合金扩散偶的制备方法,其步骤为:
步骤一:Zr48Cu36Ag8Al8非晶合金制备
将母合金放入吸铸坩埚,用氩气洗炉1次,再将炉腔真空抽至3.0×10-3Pa,在氩气保护下采用感应熔炼的方法将母合金熔化并将熔体吸铸到模具中,获得Φ5×50mm棒材;
步骤二:预处理
将步骤一中的得到的Φ5×50mm棒材切割成Φ5×2mm的试样,切割过程中要加大冷却水的流量以减小此过程对非晶结构的影响防止晶化,将试样用于镀膜的圆截面用砂纸依次打磨并且机械抛光,确保截面没有划痕后,在丙酮中进行超声波清洗和脱脂3~5min,共两次后,放置于磁控溅射镀膜设备的真空炉中,进行抽真空,得到靶材;
步骤三:将步骤二中得到的靶材安放在磁控溅射室内的阴极靶位上,用机械泵及分子泵将溅射室抽到真空度为6×10-4Pa,开启磁控溅射设备中的离子清洗,将清洗好的靶材定在衬底托盘上放入过渡舱室,并调整相应位置,抽真空为3.4×10-4Pa,反溅射清洗样品3min;然后再送至溅射室,通入氩气后采用射频磁控溅射清洗靶材5min,然后对非晶态Zr48Cu36Ag8Al8合金表面进行镀Ni,薄膜厚度约为100nm,得到镀膜样品;
步骤四:镀膜后的样品密封在真空玻璃管内,真空度高于10-4Pa,加热到非晶合金玻璃态/过冷液相区的温度值时进行保温,最后通过扩散退火热处理之后,试样快速冷却至室温,得到金属/非晶合金扩散偶。
实施例2
Ni/Zr41.2Ti13.8Ni10Cu12.5Be22.5非晶合金扩散偶的制备方法,其步骤为:
步骤一:Zr41.2Ti13.8Ni10Cu12.5Be22.5非晶合金制备
将母合金放入吸铸坩埚,用氩气洗炉1次,再将将炉腔真空抽至3.0×10-3Pa,在氩气保护下采用感应熔炼的方法将母合金熔化并将熔体吸铸到模具中,获得Φ9×50mm棒材;
步骤二:预处理
将步骤一中的得到Φ9×50mm棒材切割成Φ9×2mm的试样,将试样用于镀膜的圆截面用砂纸依次打磨并且机械抛光,确保截面没有划痕后,在丙酮中进行超声波清洗和脱脂3~5min共两次,放置于磁控溅射镀膜设备的真空炉中,进行抽真空,靶材;
步骤三:将步骤二中得到的靶材安放在磁控溅射室内的阴极靶位上,用机械泵及分子泵将溅射室抽到真空度为6×10-4Pa,开启磁控溅射设备中的离子清洗,将清洗好的靶材定在衬底托盘上放入过渡舱室,并调整相应位置,抽真空为3.4×10-4Pa,反溅射清洗样品3min;然后再送至溅射室,通入氩气后采用射频磁控溅射清洗靶材5min,然后对非晶态Zr41.2Ti13.8Ni10Cu12.5Be22.5合金表面进行镀Ni,薄膜厚度约为100nm,得到镀膜样品;
步骤四:镀膜后的样品密封在真空玻璃管内,真空度高于10-4Pa,加热到非晶合金玻璃态/过冷液相区的温度值时进行保温,最后通过扩散退火热处理之后,试样快速冷却至室温,得到金属/非晶合金扩散偶。

Claims (5)

1.金属/非晶合金扩散偶的制备方法,其特征在于,其步骤为:
步骤一:块体非晶合金的制备
将母合金放入吸铸坩埚,用氩气洗炉,再将将炉腔真空抽至3.0×10-3Pa,在氩气保护下采用感应熔炼的方法将母合金熔化并将熔体吸铸到模具中,获得棒材;
步骤二:预处理
将步骤一中的得到的棒材切割成试样,将试样用于镀膜的圆截面用砂纸依次打磨并且机械抛光,确保截面没有划痕后,在丙酮中进行超声波清洗和脱脂3~5min,放置于磁控溅射镀膜设备的真空炉中,进行抽真空,得到靶材;
步骤三:将步骤二中得到的靶材安放在磁控溅射室内的阴极靶位上,用机械泵及分子泵将溅射室抽到真空度为6×10-4Pa,开启磁控溅射设备中的离子清洗,将清洗好的靶材定在衬底托盘上放入过渡舱室,抽真空为3.4×10-4Pa,反溅射清洗样品3min;然后再送至溅射室,通入氩气后采用射频磁控溅射清洗靶材5min,然后对非晶态合金表面进行镀膜,得到镀膜样品;
步骤四:镀膜后的样品密封在真空玻璃管内,加热到非晶合金玻璃态/过冷液相区的温度值时进行保温,最后通过扩散退火热处理之后,试样快速冷却至室温,得到金属/非晶合金扩散偶。
2.根据权利要求1所述的金属/非晶合金扩散偶的制备方法,其特征在于,所述的步骤一的棒材形状为Φ5×50mm。
3.根据权利要求1所述的金属/非晶合金扩散偶的制备方法,其特征在于,所述的步骤二的试样的形状为Φ5×2mm。
4.根据权利要求1所述的金属/非晶合金扩散偶的制备方法,其特征在于,所述的镀膜厚度为100nm。
5.根据权利要求1所述的金属/非晶合金扩散偶的制备方法,其特征在于,所述的真空玻璃管内的真空度高于10-4Pa。
CN201810443266.1A 2018-05-10 2018-05-10 金属/非晶合金扩散偶的制备方法 Pending CN108588588A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810443266.1A CN108588588A (zh) 2018-05-10 2018-05-10 金属/非晶合金扩散偶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810443266.1A CN108588588A (zh) 2018-05-10 2018-05-10 金属/非晶合金扩散偶的制备方法

Publications (1)

Publication Number Publication Date
CN108588588A true CN108588588A (zh) 2018-09-28

Family

ID=63637044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810443266.1A Pending CN108588588A (zh) 2018-05-10 2018-05-10 金属/非晶合金扩散偶的制备方法

Country Status (1)

Country Link
CN (1) CN108588588A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109707776A (zh) * 2018-12-14 2019-05-03 深圳大学 压缩弹簧及其制备方法和机械锁件
CN110846617A (zh) * 2019-10-31 2020-02-28 同济大学 一种铜锆铝三元非晶合金薄膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805601B2 (ja) * 2000-04-20 2006-08-02 独立行政法人科学技術振興機構 高耐蝕性・高強度Fe−Cr基バルクアモルファス合金
CN103215528A (zh) * 2013-03-20 2013-07-24 华中科技大学 镁基金属玻璃薄膜及其制备方法和应用
CN104233119A (zh) * 2014-09-15 2014-12-24 华中科技大学 一种防腐耐磨铁基非晶薄膜及其制备方法
CN106939378A (zh) * 2017-03-10 2017-07-11 西京学院 非晶合金/纯铜层状复合材料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3805601B2 (ja) * 2000-04-20 2006-08-02 独立行政法人科学技術振興機構 高耐蝕性・高強度Fe−Cr基バルクアモルファス合金
CN103215528A (zh) * 2013-03-20 2013-07-24 华中科技大学 镁基金属玻璃薄膜及其制备方法和应用
CN104233119A (zh) * 2014-09-15 2014-12-24 华中科技大学 一种防腐耐磨铁基非晶薄膜及其制备方法
CN106939378A (zh) * 2017-03-10 2017-07-11 西京学院 非晶合金/纯铜层状复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LINLIN SUN等: "Correlation between diffusion and crystallization behaviors in Ni/Zr48Cu36Ag8Al8 diffusion couple", 《JOURNAL OF NON-CRYSTALLINE SOLIDS》 *
LIN-LIN SUN等: "Relationship between grain boundary diffusion in nanocrystals and amorphous microstructure", 《SURFACE AND INTERFACE ANALYSIS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109707776A (zh) * 2018-12-14 2019-05-03 深圳大学 压缩弹簧及其制备方法和机械锁件
CN110846617A (zh) * 2019-10-31 2020-02-28 同济大学 一种铜锆铝三元非晶合金薄膜及其制备方法

Similar Documents

Publication Publication Date Title
Shang et al. Eliminating the crack of laser 3D printed functionally graded material from TA15 to Inconel718 by base preheating
CN104988454A (zh) 一种抗熔融cmas腐蚀的稀土铝酸盐热障涂层及其制备方法
Jiang et al. Oxidation resistant FeCoNiCrAl high entropy alloy/AlSi12 composite coatings with excellent adhesion on Ti-6Al-4 V alloy substrate via mechanical alloying and subsequent laser cladding
CN106811724A (zh) 一种镁合金表面耐腐蚀高熵合金涂层及其制备方法
CN112501569B (zh) 一种表面梯度高熵合金层及其制备方法
KR102110462B1 (ko) 비정질상을 갖는 내식성 합금박막의 형성방법
TW201020332A (en) Sputter target assembly having a low-temperature high-strength bond
CN113718206B (zh) 一种具有三明治结构的TaTiN多层薄膜的制备方法以及薄膜
Li et al. Effect of different Ni interlayers on interfacial microstructure and bonding properties of Al/Mg bimetal using a novel compound casting
CN108588588A (zh) 金属/非晶合金扩散偶的制备方法
TW201219590A (en) Sputtering target and/or coil and process for producing same
Bai et al. Rhenium used as an interlayer between carbon–carbon composites and iridium coating: Adhesion and wettability
CN110872692B (zh) 一种钼银层状复合材料、其制备方法及应用
Wu et al. Interface microstructure and bond strength of 1420/7B04 composite sheets prepared by diffusion bonding
Peng et al. Study on the interface reaction behavior of NiCrAlY coating on titanium alloy
CN114921757A (zh) 一种非晶态高熵合金厚膜制备设备及制备方法
CN105862003A (zh) 一种钼合金基体上FeCrAl镀层的制备方法
KR20120079587A (ko) 비정질의 스퍼터 코팅층을 삽입재로 이용한 브레이징 접합방법 및 이에 사용되는 비정질 브레이징 삽입재
CN105925948B (zh) 一种铝合金表面活化连接方法
Wang et al. Microstructural evolution and mechanical properties of intermetallics at the CuW/Al interface with a Ni interlayer
CN107186373A (zh) 一种钛基多层膜钎料及其制备方法
CN109252137B (zh) 锆合金表面涂层的制备方法
CN107164678B (zh) 一种高温化学容器用钽材料及其制备方法
Yan et al. Effect of nitrogen/argon ratios on structures and properties of high-entropy (ZrTiNbV) N nitride films by multi-arc ion plating
CN113061859B (zh) 一种用于x射线管阳极靶的金属涂层及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180928

WD01 Invention patent application deemed withdrawn after publication