CN107482072B - 具有亚带隙探测能力的石墨烯基波长选择光探测器 - Google Patents

具有亚带隙探测能力的石墨烯基波长选择光探测器 Download PDF

Info

Publication number
CN107482072B
CN107482072B CN201710426252.4A CN201710426252A CN107482072B CN 107482072 B CN107482072 B CN 107482072B CN 201710426252 A CN201710426252 A CN 201710426252A CN 107482072 B CN107482072 B CN 107482072B
Authority
CN
China
Prior art keywords
graphene
photodetector
layer
silver
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710426252.4A
Other languages
English (en)
Other versions
CN107482072A (zh
Inventor
唐晋尧
熊泽
陈佳蔚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Hong Kong HKU
Original Assignee
University of Hong Kong HKU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Hong Kong HKU filed Critical University of Hong Kong HKU
Publication of CN107482072A publication Critical patent/CN107482072A/zh
Application granted granted Critical
Publication of CN107482072B publication Critical patent/CN107482072B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0042Photosensitive materials with inorganic or organometallic light-sensitive compounds not otherwise provided for, e.g. inorganic resists
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2059Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a scanning corpuscular radiation beam, e.g. an electron beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2045Light-sensitive devices comprising a semiconductor electrode comprising elements of the fourth group of the Periodic System (C, Si, Ge, Sn, Pb) with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/209Light trapping arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2095Light-sensitive devices comprising a flexible sustrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • H10K30/35Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains comprising inorganic nanostructures, e.g. CdSe nanoparticles
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • H10K30/65Light-sensitive field-effect devices, e.g. phototransistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/87Light-trapping means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Composite Materials (AREA)
  • Light Receiving Elements (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

由于其独特的能带结构和优异的电子学性质,石墨烯被认为是有潜在光电应用前景的材料。然而,由于其超快的激子弛豫过程和低吸收系数,石墨烯的本征的光响应率低于100mA·W‑1,限制了其实际应用。通过在石墨烯表面结合超薄的半导体点层可以创造出全新的石墨烯量子点复合系统,使得其对远超出半导体吸收材料光吸收边的长波长光子具有高光响应率。

Description

具有亚带隙探测能力的石墨烯基波长选择光探测器
发明领域
本发明涉及一种能在半导体纳米颗粒带隙对应亚带隙范围内操作的光探测器。详细地说,本发明涉及使用一种石墨烯-半导体复合结构用于在超出半导体带隙对应的波长范围进行光探测。
发明背景
受益于其高载流子迁移率,无带隙等优越的电学和光学性能,石墨烯被认为是现有半导体感光材料的有力竞争者,在高速、高灵敏度、宽吸收带宽光探测器件中有着广阔的应用前景。参见Xia FN,Mueller T,Lin YM,Valdes-Garcia A,Avouris P.Ultrafastgraphene photodetector.Nat Nanotechnol4,839-843(2009)(″Xia″)and Nair RR,etal.Fine structure constant defines visual transparency of graphene.Science320,1308-1308(2008)(″Nair″)。目前,石墨烯基光探测器主要基于三种机制:(1)光伏效应,(2)光热电效应,(3)光栅极效应。参见Lemme MC,et al.Gate-ActivatedPhotoresponse in a Graphene p-n Junction./Vano Lett11,4134-4137(2011)(″Lemme″);Mueller T,Xia FNA,Avouris P.Graphene photodetectors for high-speedoptical communications.Nat Photonics4,297-301(2010)(″Mueller″);Gabor NM,etal.Hot Carrier-Assisted Intrinsic Photoresponse in Graphene.Science 334,648-652(2011)(″Gabor″);Sun D,et al.Ultrafast hot-carrier-dominated photocurrentin graphene.Nat Nanotechnol 7,114-118(2012)(″Sun″);Tielrooij KJ,etal.Generation of photovoltage in graphene on a femtosecond timescale throughefficient carrier heating.Nat Nano 10,437-443(2015)(″Tielrooij″);KonstantatosG,et al.Hybrid graphene-quantum dot phototransistors with ultrahigh gain.NatNanotechno/7,363-368(2012)(″Konstantatos″);and Zhang DY,Gan L,Cao Y,Wang Q QiLM,Guo XF.Understanding Charge Transfer at PbS-Decorated Graphene Surfacestoward a Tunable Photosensor(″Zhang″)。但是,由于石墨烯无带隙,导致光生激子速度在亚皮秒内发生复合1。参见Xia。因此,为了得到显著的光伏效应,需要利用内建电场分离电子空穴对。通常可以通过化学掺杂,静电栅极效应或者与功函数不同的金属接触获得这一内建电场。参见Kim CO,et al.High photoresponsivity in an all-graphene p-nvertical junction photodetector.Nat Commun 5,(2014)(″CO″)。
当光照射在石墨烯p-n结附近时,光热电效应通常会伴随光伏效应同时产生。然而,由于有限的感光面积、较小的塞贝克系数加上石墨烯较弱的光吸收(~2.3%),石墨烯光探测器的光响应通常难以超过100mA.W-1。参见Xiaand Nair.与光伏效应和光栅极效应形成对比的是,通过利用光栅极效应,在石墨烯复合光晶体管中能够得到超高的光增益数值。See Konstantatos,Zhang and Klekachev AV,Cantoro M,van der Veen MH,StesmansAL,Heyns MM,De Gendt S.Electron accumulation in graphene by interaction withoptically excited quantum dots.Physica E:Low-dimensionalSystems andNanostructures 43,1046-1049(2011)(″Klekachev″)。
为了实现光栅极效应,通常采用半导体量子点或有机染料分子作为产生光生载流子的光吸收层。当收到光照后,光生载流子会被注入到近邻的石墨烯中,而剩下的异种电荷会被束缚在量子点或染料层内并通过电容耦合效应改变石墨烯的电导。得益于量子点内束缚载流子的长寿命(τlifetime),在这种复合结构光探测器中能够实现超高的光响应(~107A·W-1)。如前所述,这种复合结构晶体管内的光响应源于其中感光材料的光激发而非石墨烯本身。因此这种复合光探测器的波长响应范围通常会受到其包含的量子点或染料的限制。这种限制被广泛地在硫化铅-石墨烯,氧化锌-石墨烯,钙钛矿-石墨烯和叶绿素-石墨烯复合结构中观测到。参见Konstantatos,Shao D,et al.Organic-InorganicHeterointerfaces for Ultrasensitive Detection of Ultraviolet Light.Nano Lett15,3787-3792(2015)(″Shao″);Dang VQ,et al.Ultrahigh Responsivity in Graphene-ZnO Nanorod Hybrid UV Photodetector.Small11,3054-3065(2015)(″Dang″);Lee Y,etal.High-Performance Perovskite-Graphene Hybrid Photodetector.Adv Mater 27,41-46(2015)(″Lee″);and Chen S-Y,et al.,Biologically inspired graphene-chlorophyllphototransistors with high gain.Carbon 63,23-29(2013)(″Chen″)。
为了充分发挥石墨烯宽吸收带宽的优势,具有电解质隔离层的双侧石墨烯结构被提出并研究。参见Liu CH,Chang YC,Norris TB,Zhong ZH.Graphene photodetectorswith ultra-broadband and high responsivity at room temperature.NatNanotechnol9,273-278(2014)(″Liu″)。在顶层石墨烯中被束缚的电荷能够对底层石墨烯施加光栅极效应,进而产生532nm处~1000A·W-1及红外范围~1A·W-1的光响应。然而,复杂的器件结构和重置需要的与外加光信号同步的栅极电压脉冲使得其应用受到了极大限制。
在提高探测器灵敏度的同时,波长选择性作为探测器的另一个性能指标,对某些应用领域具有特殊重要性。波长选择性通常通过集成微腔、波导或金属等离子结构实现。参见Furchi M,et al.Microcavity-Integrated Graphene Photodetector./Vano Lett12,2773-2777(2012)(″Furchi″);Gan XT,et al.Chip-integrated ultrafast graphenephotodetector with high responsivity.Nat Photonics 7,883-887(2013)(″Gan″);andEchtermeyer TJ,et al.Strong plasmonic enhancement of photovoltage ingraphene.Nat Commun 2,(2011)(″Echtemeyer″)。虽然石墨烯纳米结构中的本征等离子吸收和金属等离子结构中一样主要由其几何外观决定,石墨烯中的低能态密度使得石墨烯的光吸收性能可以很容易地被静电栅极调控。参见Freitag M,Low T,Zhu WJ,Yan HG,XiaFN,Avouris P.Photocurrent in graphene harnessed by tunable intrinsicplasmons.Nat Commun 4,(2013)(″Freitag″)and Chen JN,et al.Optical nano-imagingof gate-tunable graphene plasmons.Nature 487,77-81(2012)(″Chen 2″)。但是,除开纳米加工的高昂费用,上述光探测器都依赖石墨烯的本征光响应,从而导致了极低的光响应值(<1A·W-1)并限制了其实际应用。与之相比,硅衬底表面的氧化硅层被广泛用于构造法布里-珀罗腔,以增强单层石墨烯的可见度。Abergel DSL,Russell A,Fal′koVI.Visibility of graphene flakes on a dielectric substrate.Applied PhysicsLetters 91,063125(2007)(″Abergel″)and Roddaro S,Pingue P,Piazza V,PellegriniV,Beltram F.The Optical Visibility of Graphene:Interference Colors ofUltrathin Graphite on SiO2.Nano Lett7,2707-2710(2007)(″Roddaro″)。
发明总结
本发明涉及一种新的器件及其制备方法,和传统半导体光探测器不同,利用石墨烯而非半导体作为有效的光吸收介质。当前发明涉及的光探测器件借鉴了卤化银照相技术,使得在亚带隙范围进行光探测成为可能。在本发明中,石墨烯作为主要的光吸收材料。光激发热载流子能够被传输到卤化银纳米颗粒的导带上并引发阴离子还原的光电化学半反应。该可逆半反应能够作为化学电子储存池,增加被束缚带电载流子的寿命,这能有效提高光探测器的光响应性能。由于石墨烯的低吸收,使得这种新的器件能够被用于新颖的透明可见光探测器。
本发明的光探测器结构通常包括由石墨烯组成的沟道,一层半导体纳米颗粒,一种支持介质和一层封装层。半导体纳米颗粒作为储存池可以储存从石墨烯激发出来的光生载流子并通过光栅效应改变石墨烯的电导性。在部分器件中,亚带隙光吸收也可以通过结合石墨烯和诸如半导体薄膜等其他形式的半导体材料来实现。
本发明通过基于已报道过的设计原则Lien DH,et al.Engineering LightOutcoupling in 2D Materials.Nano Lett 15,1356-1361(2015)(″Lien″),使用简单的波长选择增强技术实现大面积调制从而避免使用复杂的亚微米加工技术。
在本发明中的半导体纳米颗粒能够通过化学修饰或染料敏化的方法改变其吸收性质。半导体纳米颗粒的位置并不限于石墨烯的上表面。也可以通过石墨烯覆盖纳米颗粒或混合液体剥离的石墨烯片和纳米颗粒实现。
示意图的简单描述
为了更清晰地说明本发明上述及其他的特征和优点,以下将提供详细描述和附图以及注释:
图1展示了一种当前发明的器件制备方法。图1(a)为转移到衬底上(硅片或石英)的CVD生长的石墨烯,并利用电子束曝光和氧气等离子体刻蚀制备成带状石墨烯;图1(b)为热蒸发法在石墨烯带中间区域沉积的0.5纳米金属银;图1(c)为使用二氯乙烷和丙酮混合溶剂除去四周多余PMMA;图1(d)为使用氯气和金属银反应制得氯化银纳米颗粒;图1(e)为使用原子层沉积法镀5纳米厚的氧化铝薄膜;图1(f)显示在使用缓冲氢氟酸溶液除去电极区氧化铝后蒸镀镍电极;图1(g)为使用二氯乙烷和丙酮混合溶剂除去四周多余PMMA;图1(h)给出了制备完成的光探测器的顶视图。
图二为根据当前发明及相关概念给出的器件概要图。图2(a)是氯化银/石墨烯光探测器的示意图;图2(b)为器件展开图;图2(c)为出了光生载流子产生机制示意图;图2(d)给出了根据当前发明制备的实际器件随时间的光电流曲线;图2(e)给出了在空气中储存6个月后光探测器12小时光响应曲线;图2(f)给出了光探测器的光电流随栅极电压在-200至200V范围变化时的变化情况。
图3展示了根据当前发明在透明衬底上制备氯化银/石墨烯器件的光响应。图3(a)给出了在1V偏压条件下石英衬底上氯化银/石墨烯器件随激发光波长变化的光电转化效率曲线;图(b)给出了在PET膜上柔性氯化银/石墨烯光探测器的实物图;图(c)为透过柔性透明氯化银/石墨烯器件显示的学校主教学楼照片。
图4为器件的波长分辨光响应性能。图4(a)给出了在470纳米氧化硅衬底上氯化银/石墨烯器件随激发光波长变化的光响应率;图4(b)为在470纳米氧化硅衬底上氯化银/石墨烯器件在不同功率400纳米波长光照条件下光响应率随偏压变化;图4(c)为在470纳米氧化硅衬底上氯化银/石墨烯器件在不同功率500纳米波长光照条件下光响应率随偏压变化。
图5给出了波长选择增强的FDTD模拟结果。图5(a)为归一化后随波长和SiO2厚度变化而变化的氯化银/石墨烯吸收截面强度图;图5(b)为470纳米SiO2衬底上氯化银/石墨烯和石墨烯吸收截面对比图;图5(c)为470纳米SiO2衬底上氯化银/石墨烯各单位面积功率吸收分布图。
图6为不同波长下碘化银/石墨烯(圆圈)和溴化银/石墨烯(倒三角)的光响应率。
发明详细描述
当前发明涉及一种新的能够用于探测低于半导体带隙能量的光子能量的光探测器设计。通过合理设计石墨烯和宽带隙半导体量子点间的异质结结构和能带结构实现亚带隙光探测的能力。光激发产生的电子能够越过结注入到半导体纳米颗粒中,石墨烯沟道内剩下的空穴将改变石墨烯的电导从而产生响应信号。
这种新型设计使得亚带隙光探测成为可能,从而弥补基于纯半导体光探测的不足。此外,本设计能够利用介电工程手段实现大面积波长选择增强,进而作为关键部件应用于柔性、透明光电器件中,为成像、谱学、传感和光通信提供了新的功能选择。
当前发明涉及的光探测器由石墨烯层,半导体纳米颗粒层,支持介质和封装层组成。其新颖性在于(a)亚带隙吸收;(b)探测波长选择增强;(c)具有柔性;(d)具有高透明性。该光探测器可以由卤化银/石墨烯组成,其中卤化银可以是氯化银、溴化银或碘化银。但是以使用氯化银为佳。
光探测器制备。
如图1所示,旋涂(4,000rpm,1min)以苯甲醚为溶剂的7wt.%甲基丙烯酸甲酯(PMMA)于铜箔制备的化学气相沉积(CVD)单层石墨烯(Graphene Laboratories Inc.)上并让其自然干燥。铜箔背面的石墨烯被氧气等离子刻蚀(RIE)2min后,浸没于0.1M(NH4)2S2O8水溶液中一晚时间以除去铜箔。石墨烯连同附着在其上的PMMA一起被捞出并用去离子水(DI)清洗几次。最终,石墨烯转移到带470nm或200nm氧化层的硅片或石英衬底或聚对苯二甲酸乙二醇酯(PET)薄膜上并自然干燥。使用丙酮除去PMMA后,使用电子束曝光及氧气反应离子刻蚀将石墨烯制备成微米带。从图1(a)和(b)可以看出,0.5纳米银金属通过热蒸发法沉积在电子束曝光定义的石墨烯带中心区域。图1(c)为使用二氯乙烷和丙酮混合溶液除去周围PMMA后的石墨烯和银纳米颗粒。
气-固反应被用来合成氯化银颗粒。图1(d)显示了使用氯气将银金属转化成氯化银的反应。具体过程如下,盛有石墨烯和银样品的5mL玻璃药瓶在使用硅胶粒覆盖瓶口后一同放入有0.05g高氯酸钾的25mL玻璃药瓶中。然后0.15mL的浓盐酸(37%)被加入25mL药瓶中以产生氯气(KClO3+6HCl=KCl+5Cl2+3H2O)并与金属银在室温下反应10min。反应结束后在70℃使用三甲基铝为前驱物的原子层沉积(ALD)蒸镀5纳米氧化铝于样品上。
为了制备溴化银/石墨烯光探测器,溴化银也同样使用气-固反应制备。具体过程如下,盛有石墨烯和银样品的5mL玻璃药瓶在使用硅胶粒覆盖瓶口后一同放入有0.05g溴化钾的25mL玻璃药瓶中。然后0.15g高锰酸钾和98%浓硫酸的混合溶液被加入25mL药瓶中以产生溴气(2KMnO4+8H2SO4+10KBr=6K2SO4+5Br2+2MnSO4+8H2O)并与金属银在室温下反应10min。反应结束后在70℃使用三甲基铝为前驱物的原子层沉积(ALD)蒸镀5纳米氧化铝于样品上。
为了制备碘化银/石墨烯光探测器,碘化银也同样使用气-固反应制备。具体过程如下,石墨烯和银样品放入有0.05g碘单质的35mL玻璃药瓶中。密封的玻璃瓶加热到105℃使碘蒸汽与金属银在室温下反应10min。反应结束后在70℃使用三甲基铝为前驱物的原子层沉积(ALD)蒸镀5纳米氧化铝于样品上。
图1(e)为蒸镀5纳米氧化铝后样品示意图。电极接触区域的氧化铝使用5∶1缓冲氢氟酸(BHF)除去后(1s),使用磁控溅射制备100纳米镍电极于电子书曝光法定义的区域。图1(f)为BHF除去氧化铝并制备镍电极后样品示意图。图1(g)为使用二氯乙烷和丙酮除去四周多余PMMA。图1(h)为完成器件的光学照片。
石墨烯光探测器机理
对于石墨烯光探测器而言,众多拥有不同带隙的半导体材料(氧化锌,带隙~3.3eV;有机卤化铅钙钛矿,带隙~1.5eV;硫化铅,带隙~0.37eV)被用于复合石墨烯并显示出了较未复合石墨烯极佳的光敏增强效应。参见Lee article and Wang Y,et al.HybridGraphene-Perovskite Phototransistors with Ultrahigh Responsivity andGain.Advanced Optical Materials 3,1389-1396(2015)(″Wang″)。在这类设计中,由于半导体材料主导着光吸收过程,探测器的光响应率谱与探测器包含的半导体材料一致。与此不同的是,在本发明中,通过使用卤化银-石墨烯复合结构,这种探测光谱范围的限制能够被克服。由于石墨烯本身作为光敏材料能够将其中光激发热载流子注入到卤化银的导带中并存储在可逆Ag+/Ag0氧化还原对中,使探测器对远超半导体带边吸收位置的长波长光子的光响应得以极大提高。
图2(a)和图2(b)给出了卤化银-石墨烯光探测器示意图。化学气相沉积法生长的单层石墨烯和高度分散的氯化银颗粒接触。由于氯化银的功函数(ΦAgCl=4.8eV)和能带结构(Eg=3.25eV,Ec=4.3eV andEv=7.55eV)特征,在氯化银-石墨烯界面处会形成肖特基势垒。参见Seiichi Sumi TW,Akira Fujishima,Kenichi Honda.Effect of Cl-and Br-Ions and pH on the Flatband Potentials of Silver Halide Sheet CrystalElectrodes.B Chem Soc Jpn 53,2742-2747(″Sumi″);Bose DN,GovindacharyuluPA.Physics of silver halides and their applications.BullMater Sci 2,221-231(1980)(″Bose″);and Bauer RS,Spicer WE,Silver-halide valence and conductionstates:Temperature-dependent ultraviolet-photoemission studies.Phys Rev B14,4539-4550(1976)(″Bauer″)。
制备的器件会显示p型掺杂特征(费米面相对狄拉克点
Figure BDA0001315537150000121
有的位移),并在光激发后产生电子空穴对。光激发产生的电子会越过肖特基势垒注入到氯化银纳米颗粒内并储存在阴离子中,将其还原为银原子。遗留在石墨烯内的空穴将增加ΔEF使得石墨烯中的费米面到达更p型掺杂的位置,从而通过光栅极效应改变石墨烯沟道的电导。由于氯化银较大的带隙(3.25eV)可见光无法直接激发氯化银颗粒并产生光生载流子,这进一步凸显了在石墨烯-氯化银异质结构中亚带隙吸收的作用。
由于光子被石墨烯吸收,热电子空穴对被产生并在石墨烯-半导体界面处肖特基势垒内建电势的作用下分离(图2c),极大地保留了未复合石墨烯无带隙和栅极电压可调的性质。参见Knight MW,Sobhani H,Nordlander P,HalasNJ.Photodetection with ActiveOptical Antennas.Science 332,702-704(2011)(″Knight″);and Zheng BY,Zhao H,Manjavacas A,McClain M,Nordlander P,Halas NJ,Distinguishing between plasmon-induced and photoexcited carriers in a device geometry.Nat Commun 6,(2015)(″Zheng″)。由于石墨烯无带隙及超快的带内光生电子复合过程,可以预期光激发后热载流子的注入效率极低。参见Breusing M,Ropers C,Elsaesser T.Ultrafast Carrier Dynamicsin Graphite.Phys Rev Lett 102,086809(2009)(″Breusing″)。然而,小部分具有足够能量的热电子能够被注入氯化银的导带进而使银离子(Ag+)还原成银原子(Ag0)(氧化还原电位E(Ag+/Ag0)=4.66eV)。
Figure BDA0001315537150000131
P.CRC Handbook of Chemistry and Physics,96thed.CRC Press(2015)(
Figure BDA0001315537150000132
)。带负电的氯化银层能够改变通过光栅极效应改变石墨烯沟道的电导。在这过程中,Ag+/Ag0氧化还原电对作为可逆化学电子储存池能够将电子储存在在空间上与石墨烯分离的氯化银中。与之前硫化铅或氧化锌复合的石墨烯体系相比,空间上分离的化学电子储存池极大地稳定了注入的电子促进了对能量低于半导体带隙的低能量光子的敏感性。这些结果不但提供了在低肖特基势垒石墨烯-半导体异质结中亚带隙吸收的新范例,而且为开发基于其他二维材料化学可调光电体系奠定了坚实基础。可以预见这种石墨烯基复合器件可以成为柔性透明光电器件的重要组成部分用于成像、谱学、传感和光通讯等领域。
图2(d)显示了470纳米氧化硅衬底上制备的卤化银(AgX,X=Cl,Br,I)/石墨烯光探测器对白光的的时间响应曲线。在22×16μm2石墨烯沟道面积上白光功率为~54.9μW。为了清楚地显示,碘化银/石墨烯的光电流被增加了5倍。光电流为扣除了暗电流之后的数值。同等光照条件下,氯化银、溴化银、碘化银的光电流数值依次降低。从氯化银到碘化银逐渐降低的光响应率可以被归结为导带升高导致肖特基势垒的提高或者由于溴化银和碘化银中减小的光电子漂移速率导致的较低的Ag+/Ag0还原效率。参见Dong H,et al.Highly-effective photocatalytic properties and interfacial transfer efficiencies ofcharge carriers for the novel Ag2CO3/AgX heterojunctions achieved by surfacemodification,Da/ton Trans 43,7282-7289(2014)(″Dong″)and Tani T.,Explanationof Photocatalytic Water Splitting by Silver Chloride from Viewpoint of SolidState Physics and Photographic Sensitivity of Silver Halides,Journa/of TheSociety ofPhotographic Science and Technology of Japan 72,88-94(2009)(″Tani″)。
为了评估当前发明器件的稳定性,470纳米氧化硅衬底上制备的氯化银/石墨烯样品被保存在大气中非暗处6个月,然后进行12个小时的光响应测试,如图2(e)。在22×16μm2石墨烯沟道面积上白光功率为~54.9μW。结果显示,在6个月的放置后光电流未显示明显衰减。值得注意的是石墨烯光探测器的光响应可以通过栅极电压调节。如图2(f)给出了栅极电压从-200V到200V变化时光电流变化。负栅极电压可以产生较高的光电流,这可以归结于石墨烯内较低的费米面和较高的肖特基势垒导致的束缚电荷的长寿命。
透明衬底上的氯化银/石墨烯
为了展示氯化银/石墨烯的波长分辨光响应特征,使用超连续激光测量了在石英衬底上制备的氯化银/石墨烯器件。图3(a)给出了光子-电流转换效率η,代表乘以增益值后越过肖特基势垒的电子数和入射光子数的比值。随波长变化的η可以用Fowler理论解释。根据Fowler理论,由于光子能量的变化光电子越过半导体-金属界面肖特基势垒的几率会随之变化,类似本发明中氯化银-石墨烯界面的情况。Knight的文章提为Fowler理论提供了支持,随能量变化的光发射几率可以用
Figure BDA0001315537150000151
描述,其中CF为器件相关的Fowler发射系数,hv是光子能量,qΦB是肖特基势垒能量。根据该公式,随波长变短,高能量光子会导致ηt的增加。ηi偏离二次方增长可能是由于石墨烯慢声学声子冷却(~10ns)导致的热载流子倍增造成的。参见Sun的文章。柔性可见光探测器可以制备到聚对苯二甲酸乙二醇酯衬底上(PET)。图3(b)给出了一个PET薄膜上的柔性氯化银/石墨烯器件。由于石墨烯的低光吸收和超薄的氯化银层,高至~92.8%的自然光透过率可以被记录到。图3(b)中的氯化银/石墨烯区域被虚线标识出来。
氧化层上波长分辨光响应
在具有合适氧化层厚度的硅片上单层石墨烯是可见的,这是由于在介电层中光散射效应的结果。由于在本发明的设计中,石墨烯本身对光吸收响应起到主要作用,石墨烯光探测器的波长响应可以通过调节介电层厚度被选择性增强,使得颜色敏感光探测器成为可能。图4(a)给出了1V偏压条件下测得的在200纳米和470纳米氧化硅上制备的氯化银/石墨烯光探测器的光响应随波长变化(圆圈代表470nm SiO2方块代表200nm SiO2,对应左侧坐标轴)和有限差分时域(FDTD)模拟的吸收谱(实线代表470nm SiO2虚线代表200nmSiO2,对应右侧坐标轴)。所有数值分别使用其400纳米处的数值归一化。从结果可以看出,不同的介电层会导致波长响应的极大差异。实验得到的响应峰和FDTD模拟的吸收峰结果能够很好地吻合。图5为FDTD波长选择增强的模拟结果。图5(a)是归一化后氯化银/石墨烯吸收截面随激发波长和氧化硅厚度变化图。图5(b)为在470纳米氧化层硅片上氯化银/石墨烯和纯石墨烯吸收截面对比图。图5(c)为在470纳米氧化层硅片上氯化银/石墨烯对400纳米波长单位面积吸收功率分布图。图6为溴化银/石墨烯(圆圈)和碘化银/石墨烯(倒三角)响应率随波长变化图。和氯化银/石墨烯样品不同,溴化银/石墨烯和碘化银/石墨烯在400纳米附近的光响应峰会和溴化银(Eg=2.69eV)和碘化银(Eg=2.83eV)的带边吸收部分重叠。这从侧面证实了在氯化银/石墨烯中超出400纳米部分的光吸收是由石墨烯而非氯化银(Eg=3.25eV)贡献的。参见Bose文章。
可以预见其他诸如光导和等离子增强等波长选择技术能够被用于本发明体系,这为设计颜色敏感光探测器提供了极大地灵活性。
图4(b)和(c)分别显示了在470纳米氧化硅衬底上制备的氯化银/石墨烯在400纳米和500纳米光照条件下随偏压变化的光响应率。对400纳米(22×16μm2区域上光功率1.46nW)和500纳米(区域上光功率0.94nW)。该光响应率值约为商用硅雪崩光电二极管的10倍,并且有可能随偏压增大继续提高。本发明的高光响应率可能来自在光生电子被Ag+/Ag0束缚期间在石墨烯沟道中循环流动的空穴带来的高光导增益。值得注意的是,当使用较低光照功率时,能够获得更高的光响应率,这是因为Ag+/Ag0的占据会减少其进一步捕获光电子的几率,因而过量的光生电子将和石墨稀沟道中的空穴复合,这将缩短束缚载流子的平均寿命(τlifetime)并减少增益和光响应率值。这一现象也可以在氧化锌-石墨烯体系中被观察到,参看Shao的文章。
需要澄清,所有这里描述的例子和具体对象只是为了达到说明的目的,对于拥有专业技能的人员,各种改进和变化都将受到启示,这些将被包含在本申请的精神范围和附录声明中。此外,任何在此披露的发明或具体对象的任何元素和限制条件都可以和任何和/或所有的其他元素或限制条件(单独或以任何组合形式)或任何在此披露的其他发明或其中的具体对象组合。所有这些组合将被考虑到本发明内吧,而不需要附加限制。

Claims (24)

1.光探测器由以下部分组成:
一层石墨烯,其中石墨烯是主要的光吸收材料;
一层半导体卤化银纳米颗粒;
一层支撑介质;和
一层封装层。
2.根据权利要求1所述的光探测器,卤化银选自氯化银、溴化银或碘化银。
3.根据权利要求1所述的光探测器,其中石墨烯是由化学气相沉积法、液相剥离法或机械剥离法制备得到。
4.根据权利要求1所述的光探测器,其中半导体纳米颗粒的直径为从纳米到微米范围。
5.根据权利要求1所述的光探测器,其中半导体纳米颗粒为具有大于目标光子能量带隙的半导体。
6.根据权利要求5所述的光探测器,其中具有Eg=3.25eV的氯化银纳米颗粒被用来探测具有<3.25eV能量的光子。
7.根据权利要求5所述的光探测器,其中半导体纳米颗粒被有机或无机染料敏化以调节其性质。
8.根据权利要求1所述的光探测器,其中支撑介质是石英、热氧化硅片、蓝宝石、碳化硅、氮化铝、聚二甲基硅氧烷和柔性塑料衬底中的一种或多种。
9.根据权利要求1所述的光探测器,其中支撑介质是聚酯、聚酰亚胺、聚萘二甲酸乙二醇酯、聚醚酰亚胺和含氟聚合物中的一种或多种。
10.根据权利要求7所述的光探测器,其中支撑介质集成到光子学结构中以调节器件性能。
11.根据权利要求7所述的光探测器,其中支撑介质集成到微腔、波导或金属等离子结构中以调节器件性能。
12.根据权利要求7所述的光探测器,其中封装层是在目标探测范围具有足够透过率的有机或无机层。
13.根据权利要求1所述的光探测器,其中支撑介质或封装层的厚度被调节以实现选择性增强光探测。
14.根据权利要求1所述的光探测器,其在柔性和透明光电器件中,用于成像、光谱、传感和光通讯领域。
15.一种制备石墨烯半导体光探测器的方法,包括以下步骤:
提供铜箔上化学气相沉积法生长的单层石墨烯;
旋涂以苯甲醚为溶剂的聚甲基丙烯酸甲酯(PMMA)于石墨烯层上并于空气中干燥;
使用刻蚀除去铜箔背面石墨烯;
捞出附于PMMA上的石墨烯薄膜并用去离子水反复润洗;
将薄膜置于干净衬底上并在空气中自然干燥;
使用丙酮溶解掉PMMA;
使用电子束曝光和氧气定义带状石墨烯;
在电子束曝光定义的石墨烯带中心区域沉积金属银(Ag);
通过和Cl2,Br2或I2反应将Ag分别转变成AgCl,AgBr或AgI;
反应后,使用原子层沉积蒸镀氧化铝(Al2O3)于结构上;
通过浸入缓冲氢氟酸溶液(BHF)除去电极接触区域的Al2O3并使用磁控溅射在电子束曝光定义的区域镀镍电极;和
使用二氯乙烷和丙酮混合溶剂除去PMMA,
其中石墨烯是主要的光吸收材料。
16.根据权利要求15所述的制备石墨烯半导体光探测器的方法,其中旋涂采用4,000rpm转速1min时间,PMMA溶液浓度为7wt.%。
17.根据权利要求15所述的制备石墨烯半导体光探测器的方法,其中去除铜箔背面石墨烯使用氧气反应离子刻蚀(RIE)2min,并在0.1M(NH4)2S2O8水溶液中浸泡过夜。
18.根据权利要求15所述的制备石墨烯半导体光探测器的方法,薄膜置于一个或多个具有470纳米或200纳米氧化层的干净硅衬底、石英衬底或对本二甲酸乙二醇酯膜上。
19.根据权利要求15所述的制备石墨烯半导体光探测器的方法,其中蒸镀银厚度为0.5纳米。
20.根据权利要求15所述的制备石墨烯半导体光探测器的方法,其中溶解PMMA使用二氯乙烷和丙酮的混合溶剂。
21.根据权利要求15所述的制备石墨烯半导体光探测器的方法,其中通过和Cl2反应将Ag转化成AgCl由以下步骤组成:
使用一层硅胶覆盖样品衬底并置于有固体KClO3的密封药瓶中;
添加盐酸溶液于固体KClO3中以通过KCIO3+6HCl=KCl+5Cl2+3H2O这个反应产生Cl2;和
使其和Ag金属纳米颗粒反应。
22.根据权利要求15所述的制备石墨烯半导体光探测器的方法,其中通过和Br2反应将Ag转化成AgBr由以下步骤组成:
使用一层硅胶覆盖样品衬底并置于有固体KBr的密封药瓶中;
添加KMnO4和H2SO4的混合溶液到固体中以通过2KMnO4+8H2SO4+10KBr=6K2SO4+5Br2+2MnSO4+8H2O这个反应产生Br2;和
使其和Ag金属纳米颗粒反应。
23.根据权利要求15所述的制备石墨烯半导体光探测器的方法,其中通过和I2反应将Ag转化成AgI由以下步骤组成:
将样品衬底并置于有固体碘的密封药瓶中;
并加热药瓶使碘蒸汽和Ag金属纳米颗粒反应。
24.根据权利要求15所述的制备石墨烯半导体光探测器的方法,其中镀Al2O3使用三甲基铝作为反应前驱物。
CN201710426252.4A 2016-06-07 2017-06-07 具有亚带隙探测能力的石墨烯基波长选择光探测器 Active CN107482072B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662346706P 2016-06-07 2016-06-07
US62/346706 2016-06-07

Publications (2)

Publication Number Publication Date
CN107482072A CN107482072A (zh) 2017-12-15
CN107482072B true CN107482072B (zh) 2021-07-30

Family

ID=60483434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710426252.4A Active CN107482072B (zh) 2016-06-07 2017-06-07 具有亚带隙探测能力的石墨烯基波长选择光探测器

Country Status (2)

Country Link
US (2) US10755866B2 (zh)
CN (1) CN107482072B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10755866B2 (en) * 2016-06-07 2020-08-25 The University Of Hong Kong Graphene-semiconductor based wavelength selective photodetector for sub-bandgap photo detection
EP3340492B1 (en) * 2016-12-23 2019-10-30 Vestel Elektronik Sanayi ve Ticaret A.S. Visible light communication using colour shift keying
US11099136B2 (en) * 2017-12-22 2021-08-24 Regents Of The University Of Minnesota 3D graphene optical sensors and methods of manufacture
CN108363221B (zh) * 2018-01-22 2020-04-03 北京大学 基于石墨烯的可调节长波通型滤光器
CN108490647B (zh) * 2018-03-13 2020-06-23 清华大学 基于石墨烯与纳米天线阵列的可调谐定向波导信号探测器
CN108445570B (zh) * 2018-03-20 2019-08-20 厦门大学 一种基于表面等离极化激元与光学腔强耦合的波长选择器
CN109087849A (zh) * 2018-08-06 2018-12-25 合肥工业大学 一种石墨烯辅助的定位生长钙钛矿薄膜的方法
CN110137301A (zh) * 2019-04-25 2019-08-16 淮阴工学院 基于金属阵列结构的石墨烯光电探测器及其制备方法
US11056602B2 (en) 2019-06-20 2021-07-06 United States Of America As Represented By The Secretary Of The Navy Device, system, and method for selectively tuning nanoparticles with graphene
CN110233182B (zh) * 2019-06-28 2020-11-10 西安交通大学 一种复合结构双吸收层石墨烯探测器及其制备工艺
CN114041210A (zh) * 2019-07-04 2022-02-11 三菱电机株式会社 电磁波检测器
CN110444632A (zh) * 2019-07-08 2019-11-12 绵阳金能移动能源有限公司 一种采用石墨烯导电膜制备柔性太阳电池前电极的方法
CN111223943A (zh) * 2020-01-17 2020-06-02 中国科学院上海技术物理研究所 一种基于碳量子点和石墨烯的光电探测器及制备方法
CN111624687B (zh) * 2020-04-17 2022-05-17 东南大学 基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法
CN111525040B (zh) * 2020-04-30 2021-12-03 电子科技大学 一种红外调控仿生叠层器件
CN111952402B (zh) * 2020-08-26 2023-04-25 合肥工业大学 一种基于石墨烯/超薄硅/石墨烯异质结的颜色探测器及其制备方法
CN111883667B (zh) * 2020-08-28 2022-06-10 电子科技大学 一种基于负热膨胀效应的柔性光电探测器及其制备方法
CN113030026B (zh) * 2021-03-07 2022-11-04 天津理工大学 一种lspr多波长窄带可调谐传感器
CN113401893A (zh) * 2021-05-24 2021-09-17 广西师范大学 一种基于金属银牺牲层的石墨烯转移方法
CN114486802A (zh) * 2022-02-10 2022-05-13 国家纳米科学中心 一种探测水溶液中蛋白质二级结构的等离激元增强红外光谱传感器及其制备方法
JP7433533B1 (ja) 2022-04-22 2024-02-19 三菱電機株式会社 電磁波検出器および電磁波検出器アレイ
CN115020528B (zh) * 2022-05-06 2023-05-12 北京科技大学 一种石墨烯-氧化锌-石墨烯垂直光电探测器及构筑方法
CN114823950B (zh) * 2022-05-10 2024-06-07 云南师范大学 一种基于碳量子点和贵金属纳米颗粒的光电探测器
CN116137297B (zh) * 2023-04-18 2023-07-25 合肥工业大学 集成非对称F-P腔的GaSe基日盲紫外光电探测器
CN117293208B (zh) * 2023-09-07 2024-05-10 中国科学院重庆绿色智能技术研究院 基于硫化铅/硅复合结构的光电探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856423A (zh) * 2012-09-19 2013-01-02 合肥工业大学 一种以二氧化钛纳米管阵列为基体的紫外光探测器及其制备方法
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8580658B1 (en) * 2012-12-21 2013-11-12 Solan, LLC Methods for fabricating graphene device topography and devices formed therefrom
JP6602751B2 (ja) * 2013-05-22 2019-11-06 シー−ユアン ワン, マイクロストラクチャ向上型吸収感光装置
CN105428376A (zh) * 2014-09-12 2016-03-23 芯视达系统公司 具有可见光及紫外光探测功能的单芯片影像传感器及其探测方法
US10755866B2 (en) * 2016-06-07 2020-08-25 The University Of Hong Kong Graphene-semiconductor based wavelength selective photodetector for sub-bandgap photo detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102856423A (zh) * 2012-09-19 2013-01-02 合肥工业大学 一种以二氧化钛纳米管阵列为基体的紫外光探测器及其制备方法
CN103117316A (zh) * 2013-01-30 2013-05-22 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ultrahigh Responsivity in graphene-ZnO Nanorod Hybrid UV Photodetector;Vinh Quang Dang etc.;《small》;20150219;第11卷(第25期);第3054-3065页、附图1 *

Also Published As

Publication number Publication date
US11222756B2 (en) 2022-01-11
US20170352492A1 (en) 2017-12-07
US10755866B2 (en) 2020-08-25
CN107482072A (zh) 2017-12-15
US20210005398A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
CN107482072B (zh) 具有亚带隙探测能力的石墨烯基波长选择光探测器
Chen et al. Ultrasensitive self‐powered solar‐blind deep‐ultraviolet photodetector based on all‐solid‐state polyaniline/MgZnO bilayer
Zhang et al. Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact
Pal et al. High‐Sensitivity p–n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots
CN108281554B (zh) 一种量子点结构光电探测器及其制备方法
US8598567B2 (en) Color-selective quantum dot photodetectors
Chang et al. High‐responsivity near‐infrared photodetector using gate‐modulated graphene/germanium Schottky junction
Salim et al. Effect of silicon substrate type on Nb2O5/Si device performance: an answer depends on physical analysis
KR101558801B1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
JP2014042082A (ja) 固体ヘテロ接合および固体増感(感光性)光起電力セル
Hosseini et al. Photo-detector diode based on thermally oxidized TiO2 nanostructures/p-Si heterojunction
US20090217967A1 (en) Porous silicon quantum dot photodetector
KR20140095553A (ko) 전자기 에너지 수집 장치, 시스템 및 방법
Shinde et al. Sub-band gap photodetection from the titanium nitride/germanium heterostructure
Aliev et al. Stimulation of photoactive absorption of sunlight in thin layers of silicon structures by metal nanoparticles
JP2019036706A (ja) 二次元電子デバイスおよび関連する製造方法
Chen et al. Near full light absorption and full charge collection in 1-micron thick quantum dot photodetector using intercalated graphene monolayer electrodes
KR101598779B1 (ko) 그래핀 핫 전자 나노 다이오드
Wang et al. Temperature-dependence studies of organolead halide perovskite-based metal/semiconductor/metal photodetectors
Guo et al. Surface/interface carrier-transport modulation for constructing photon-alternative ultraviolet detectors based on self-bending-assembled ZnO nanowires
Ilican et al. Influence of Irradiation Time on Structural, Morphological Properties of ZnO‐NRs Films Deposited by MW‐CBD and Their Photodiode Applications
Nath et al. Silver nanoparticles textured oxide thin films for surface plasmon enhanced photovoltaic properties
Das et al. Photo sensing property of nanostructured CdS-porous silicon (PS): p-Si based MSM hetero-structure
US10529870B1 (en) Light trapping in hot-electron-based infrared photodetectors
KR101580740B1 (ko) 그래핀/다공성 실리콘 융복합 나노 구조체를 이용한 포토 다이오드 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant