CN111624687B - 基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法 - Google Patents

基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法 Download PDF

Info

Publication number
CN111624687B
CN111624687B CN202010305577.9A CN202010305577A CN111624687B CN 111624687 B CN111624687 B CN 111624687B CN 202010305577 A CN202010305577 A CN 202010305577A CN 111624687 B CN111624687 B CN 111624687B
Authority
CN
China
Prior art keywords
graphene
metal
cavity
etching
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010305577.9A
Other languages
English (en)
Other versions
CN111624687A (zh
Inventor
胡国华
陈博宇
黄磊
恽斌峰
张若虎
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010305577.9A priority Critical patent/CN111624687B/zh
Publication of CN111624687A publication Critical patent/CN111624687A/zh
Application granted granted Critical
Publication of CN111624687B publication Critical patent/CN111624687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法;该方法以二氧化硅作为衬底,金属作为椭圆腔体外壳,二氧化硅作为椭圆腔体内的填充物,石墨烯条带作为光吸收层。通过金属介质椭圆腔结构激发腔体模式,通过石墨烯条带阵列激发石墨烯表面等离子体模式,利用二者之间的强耦合效应来实现单层石墨烯在中红外波段中的宽谱光吸收。本发明实现的石墨烯条带的吸收具有宽谱、强吸收等特性,可以应用在中红外波段中的高性能石墨烯光电器件中。

Description

基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法
技术领域
本发明涉及纳米光子学技术领域,尤其涉及基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法。
背景技术
随着微纳光子学以及集成光子学的迅猛发展,光学薄膜材料被广泛应用在光电器件的应用中。比如,将薄膜材料作为光吸收层或者透明电极层等。然而,传统薄膜材料目前仍存在光吸收效率低、集成困难等问题。因此,探寻一种高性能的薄膜材料对于光电器件的发展来说具有重要意义。
目前,作为二维材料中的佼佼者,单层石墨烯薄膜的制备及转移技术已经日渐成熟。由于其优异的电子和光学特性,例如超大的比表面积、超高载流子迁移率以及费米可调性能等,石墨烯在光电器件应用中引起了越来越多的关注。另外,石墨烯可以被图形化成微盘、条带阵列等,以此激发出石墨烯等离子体共振。与传统的金属等离子体共振相比,它具有较强的光场局域性,超快的光学可调性和相对较低的损耗,这使得石墨烯在生物传感和光电器件中具有广阔的应用前景。
然而,单层石墨烯在可见及红外波段呈现出光透明现象,较低的光吸收极大地限制了其在许多光电器件中的应用。例如石墨烯光电探测器响应度低,石墨烯调制器调制效率低等。尽管一些研究被提出用来促进石墨烯的光吸收,如将石墨烯引入波导光栅阵列结构、光子晶体结构以及法布里-珀罗微腔结构中。但这些设计并不能使得单层石墨烯获得一个宽谱的同时伴随高吸收强度的光谱,这是未来设计出高性能石墨烯基光电器件的关键。
发明内容
本发明提出基于金属介质椭圆腔增强石墨烯吸收结构,所述金属介质椭圆腔为阵列结构,金属介质椭圆腔顶部与底部呈平坦状,顶部间距与底部间距相等,椭圆腔内设有填充介质二氧化硅,石墨烯纳米条带阵列平铺在填充介质的顶部。
本发明所述的金属介质椭圆腔,其中构建金属椭圆腔外壳的材料可选金、银、铂、钛中的其中一种;与此同时,所述的金属介质椭圆腔结构可由其他具有相同物理效应的类似结构代替。椭圆腔结构的选取是由于该结构能激发更强的局域电场,这促进了腔体模式和石墨烯表面等离子体模式之间的强耦合,导致较宽的拉比劈裂,进而使得石墨烯条带获得一个宽谱同时伴随高吸收强度的光谱。
其中增强后的石墨烯条带光吸收谱覆盖在中红外波段,其中光谱范围为:17~23微米实现的带宽为6微米。与此同时,所述增强后的石墨烯条带光吸收谱可以通过调节几何尺寸拓宽至远红外波段。
本发明的椭圆腔结构中的填充介质为二氧化硅,其折射率范围为1.4~1.6。与此同时,本发明的椭圆腔结构中的填充介质可由其他具有类似光学参数的材料代替。
所述填充介质由二氧化硅构成,其折射率范围为1.4~1.6。
本发明公开了基于金属介质椭圆腔增强石墨烯吸收结构的制备方法,具体的制备方法如下:
第1步:在二氧化硅衬底上镀一层金属膜;
第2步:对金属膜进行紫外光刻,通过刻蚀构造出金属椭圆腔壳阵列结构;
第3步:使用沉积法在样品上沉积生长二氧化硅;
第4步:经过套刻或抛光,去掉原子层沉积后样品表面多余的二氧化硅;
第5步:使用湿法转移将石墨烯转移到经后处理的样品的上表面;
第6步:通过电子束光刻以及刻蚀方法形成石墨烯条带阵列。
本发明的步骤1中采用的金属镀膜方法为电子束蒸镀法EBE、磁控溅射法和热蒸镀法中的一种。
本发明的步骤2中采用的光刻方法为正性紫外光刻及负性紫外光刻中的一种。
本发明的步骤3中采用的沉积方法为等离子体增强原子层沉积PEALD、等离子体增强化学气相沉积PECVD的一种。
本发明的步骤6中采用的刻蚀方法感应耦合等离子体刻蚀ICP、反应离子刻蚀技术IRE和干法刻蚀中的一种。
本发明的基于周期性金属介质椭圆腔增强单层石墨烯条带吸收的方法可在中红外光探测器、传感器以及调制器中获得应用。
本发明的优点在于:本发明使用了二维薄膜材料石墨烯,具有响应快、响应可调等特点,可以在微纳光学和集成光学中获得应用,光响应在中红外波段,具有宽谱吸收,高吸收强度优点,可以在中红外光探测器、传感器以及调制器中获得应用。
附图说明
图1为本发明基于金属介质椭圆腔增强石墨烯吸收结构的正交平面示意图;
图2为本发明基于金属介质椭圆腔增强石墨烯吸收的结果图;
图3为本发明的金属介质椭圆腔激发的腔体模式与石墨烯条带激发的石墨 烯等离子体模式的色散关系图;
图4为本发明实施例构造该吸收结构的工艺流程图。
具体实施方式
下面结合附图说明和具体实施方式对本发明作进一步详细的描述。
实施例1:如图1所示,基于金属介质椭圆腔增强石墨烯吸收结构,包括二氧化硅作为衬底,金属介质作为椭圆腔体外壳,二氧化硅作为椭圆腔体内的填充介质,石墨烯条带作为光吸收层。
其中,石墨烯条带宽度为180 nm,金属介质椭圆腔墙体高度为3 um,腔体短轴为0.3 um,椭圆腔顶部宽度以及底部宽度均为250 nm。选用金属材料银作为椭圆腔体外壳。
实施例2:如图2所示,该设计所产生的石墨烯条带宽光谱吸收图。当横磁波(TM)波垂直入射到石墨烯条带时,金属介质椭圆腔结构激发出本征腔体模式,石墨烯条带阵列激发出石墨烯表面等离子体模式; 二者之间的强耦合效应实现了单层石墨烯在中红外波段中的宽谱光吸收。
从图2中可以看出利用该结构可使石墨烯条带获得一个吸收谱宽为6µm的超宽谱光吸收,且伴随一个平均吸收为78.8%的高吸收强度。
图3给出了金属介质椭圆腔激发的腔体模式与石墨烯条带激发的石墨烯等离子体模式的色散关系图,通过该曲线中出现的反交叉现象可以证明该发明核心思想——强耦合效应的存在。
实施例3:如图4所示,选用的基于金属介质椭圆腔增强石墨烯吸收结构的具体制备流程图,包括以下步骤:
1)镀膜:在二氧化硅衬底上镀一层金属银薄膜;
2)刻蚀:对金属膜进行紫外光刻,通过刻蚀构造出金属椭圆腔壳阵列结构;
3)沉积:使用沉积法在样品上沉积生长二氧化硅;
4)后处理:经过套刻或抛光,去掉原子层沉积后样品表面多余的二氧化硅;
5)转移:使用湿法转移将石墨烯转移到经后处理的样品的上表面;
6)完成制备:通过电子束光刻以及刻蚀方法形成石墨烯条带阵列。
本实施例的步骤1)中采用的镀膜方法为电子束蒸镀法EBE;步骤2)中采用的光刻方法为正性紫外光刻;步骤3)中采用的沉积方法为等离子体增强原子层沉积PEALD;步骤6)中采用的刻蚀方法感应耦合等离子体刻蚀ICP。
此外,本发明制备方法可涉及多种方法,在实施例3中仅仅采用了其中一种方法,当采用其它制备工艺制备的产品,其实施效果与实施例3非常接近。
需要说明的是,上述仅仅是本发明的较佳实施例,并非用来限定本发明的保护范围,在上述实施例的基础上所做出的任意组合或等同变换均属于本发明的保护范围。

Claims (8)

1.基于金属介质椭圆腔增强石墨烯吸收结构,其特征在于:包括金属介质椭圆腔、石墨烯条带和填充介质;金属介质椭圆腔为阵列结构;所述金属介质椭圆腔顶部与底部呈平坦状且顶部间距与底部间距相等;其中所述金属介质椭圆腔内设有填充介质,石墨烯纳米条带阵列平铺在填充介质的顶部;
通过金属介质椭圆腔结构激发腔体模式,通过石墨烯条带阵列激发石墨烯表面等离子体模式,利用二者之间的耦合效应来实现单层石墨烯在中红外波段中的宽谱光吸收;
所述石墨烯条带光吸收谱覆盖在中红外波段,其中光谱范围为:17~23微米;
所述金属介质椭圆腔由金属腔体外壳构成;所述金属腔体外壳的构造材料选自金、银、铂、钛中的其中一种;所述填充介质由二氧化硅构成,其折射率范围为1.4~1.6。
2.一种制备如权利要求1所述的基于金属介质椭圆腔增强石墨烯吸收结构的方法,其特征在于,包括如下步骤:
1)在二氧化硅衬底上镀一层金属膜;
2)对金属膜进行紫外光刻蚀,通过刻蚀构造出金属介质椭圆腔壳阵列结构;
3)使用沉积法在样品上沉积生长二氧化硅;
4)经过套刻或抛光,去掉原子层沉积后样品表面多余的二氧化硅;
5)使用湿法转移将石墨烯转移到经后处理的样品的上表面;
6)通过电子束光刻以及刻蚀方法形成石墨烯条带阵列。
3.根据权利要求2所述的方法,其特征在于:所述步骤1)中采用的金属镀膜方法为电子束蒸镀法、磁控溅射法和热蒸镀法中的其中一种。
4.根据权利要求2所述的方法,其特征在于:所述步骤2)中采用的光刻方法为正性紫外光刻及负性紫外光刻中的其中一种。
5.根据权利要求2所述的方法,其特征在于:所述步骤3)中采用的沉积方法为等离子体增强原子层沉积、等离子体增强化学气相沉积的其中一种。
6.根据权利要求2所述的方法,其特征在于:所述步骤6)中采用的刻蚀方法为感应耦合等离子体刻蚀。
7.根据权利要求2所述的方法,其特征在于:所述步骤6)中采用的刻蚀方法为反应离子刻蚀。
8.根据权利要求2所述的方法,其特征在于:所述步骤6)中采用的刻蚀方法为干法刻蚀。
CN202010305577.9A 2020-04-17 2020-04-17 基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法 Active CN111624687B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010305577.9A CN111624687B (zh) 2020-04-17 2020-04-17 基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010305577.9A CN111624687B (zh) 2020-04-17 2020-04-17 基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法

Publications (2)

Publication Number Publication Date
CN111624687A CN111624687A (zh) 2020-09-04
CN111624687B true CN111624687B (zh) 2022-05-17

Family

ID=72258997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010305577.9A Active CN111624687B (zh) 2020-04-17 2020-04-17 基于金属介质椭圆腔增强石墨烯吸收结构及其制备方法

Country Status (1)

Country Link
CN (1) CN111624687B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851929A (zh) * 2015-04-02 2015-08-19 中国人民解放军国防科学技术大学 基于石墨烯表面等离激元的光电材料可调吸收增强层
CN107482072A (zh) * 2016-06-07 2017-12-15 香港大学 具有亚带隙探测能力的石墨烯基波长选择光探测器
CN109254337A (zh) * 2018-11-30 2019-01-22 东南大学 一种基于强耦合效应增强单层石墨烯宽带吸收的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104851929A (zh) * 2015-04-02 2015-08-19 中国人民解放军国防科学技术大学 基于石墨烯表面等离激元的光电材料可调吸收增强层
CN107482072A (zh) * 2016-06-07 2017-12-15 香港大学 具有亚带隙探测能力的石墨烯基波长选择光探测器
CN109254337A (zh) * 2018-11-30 2019-01-22 东南大学 一种基于强耦合效应增强单层石墨烯宽带吸收的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"High bandwidth and responsivity mid-infrared graphene photodetector based on a modified metal-dielectric-graphene architecture";Behnam Hafari;《Applied Optics》;20190810;第58卷(第23期);全文 *
"Plasmonic Absorption Enhancement in Elliptical Graphene Arrays";Jiajia Chen;《nanomaterials》;20180319;全文 *
"Realization of mid-infrared broadband absorption in monolayer graphene based on strong coupling between graphene nanoribbons and metal tapered grooves";Lei Huang;《Optics Express》;20181029;第26卷(第22期);全文 *

Also Published As

Publication number Publication date
CN111624687A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
US11042073B2 (en) Tunable graphene metamaterials for beam steering and tunable flat lenses
Lepeshov et al. Hybrid nanophotonics
Mousavi et al. Inductive tuning of Fano-resonant metasurfaces using plasmonic response of graphene in the mid-infrared
Cordaro et al. Antireflection high-index metasurfaces combining Mie and Fabry-Pérot resonances
Cen et al. Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays
Chen et al. Dual-band ultrasensitive terahertz sensor based on tunable graphene metamaterial absorber
Khosravian et al. Tunable plasmonics photodetector in near-infrared wavelengths using graphene chemical doping method
Moradiani et al. A multimode graphene plasmonic perfect absorber at terahertz frequencies
Cen et al. Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays
Liu et al. A review of graphene plasmons and its combination with metasurface
Ke et al. Dual-band tunable perfect absorber based on monolayer graphene pattern
Areed et al. Broadband omnidirectional nearly perfect plasmonic absorber for solar energy harvesting
Lin et al. Graphene multilayer photonic metamaterials: fundamentals and applications
Qi et al. Withdrawn: Tunable plasmonic absorber in THz-band range based on graphene “arrow” shaped metamaterial
Gan et al. Controlled light–matter interaction in graphene electrooptic devices using nanophotonic cavities and waveguides
CN110441859B (zh) 一种光波单向传输的二维六方氮化硼光子晶体异质结构
Shen et al. Tuning the plasmon resonance of a nano-mouth array
Li et al. Polarization-sensitive multi-frequency switches and high-performance slow light based on quadruple plasmon-induced transparency in a patterned graphene-based terahertz metamaterial
Yu et al. High-Q absorption in all-dielectric photonics assisted by metamirrors
Rahmanshahi et al. A tunable perfect THz metamaterial absorber with three absorption peaks based on nonstructured graphene
Liu et al. Design of a type of broadband metamaterial absorber based on metal and graphene
Beiranvand et al. A proposal for a dual-band tunable plasmonic absorber using concentric-rings resonators and mono-layer graphene
Dhindsa et al. Adjustable optical response of amorphous silicon nanowires integrated with thin films
Chang et al. Wavelength tunable infrared perfect absorption in plasmonic nanocrystal monolayers
CN109254337B (zh) 一种基于强耦合效应增强单层石墨烯宽带吸收的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant