CN113030026B - 一种lspr多波长窄带可调谐传感器 - Google Patents

一种lspr多波长窄带可调谐传感器 Download PDF

Info

Publication number
CN113030026B
CN113030026B CN202110248083.6A CN202110248083A CN113030026B CN 113030026 B CN113030026 B CN 113030026B CN 202110248083 A CN202110248083 A CN 202110248083A CN 113030026 B CN113030026 B CN 113030026B
Authority
CN
China
Prior art keywords
graphene
film
lspr
sio
wavelength narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202110248083.6A
Other languages
English (en)
Other versions
CN113030026A (zh
Inventor
刘菲
秦璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN202110248083.6A priority Critical patent/CN113030026B/zh
Publication of CN113030026A publication Critical patent/CN113030026A/zh
Application granted granted Critical
Publication of CN113030026B publication Critical patent/CN113030026B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Abstract

一种LSPR多波长窄带可调谐传感器,属于微纳光电子器件。在硅衬底上覆盖一层T2=1600nm的SiO2,在SiO2上覆盖一层厚度为T1=2200nm的氧化铝。将制备的石墨烯固定在Al2O3上,其上E字形金纳米颗粒周期排列。其周期P为1500nm,纳米颗粒长度和宽度t1=600nm,t2=120nm,t3=440nm,厚度h=30nm。本发明利用Au纳米颗粒有序阵列在非对称介质环境下与平板波导的耦合,产生Fano效应,得到多波长窄带反射谱。通过施加偏置电压或化学掺杂来改变石墨烯的费米能级,进而改变它的电导率,从而实现光谱的动态可调谐。

Description

一种LSPR多波长窄带可调谐传感器
技术领域
本发明属于微纳光电子器件。
背景技术
21世纪人类已进入以光通信和信息网络为主要特征的信息时代,与信息相关的光通信、光电子、光传感、光集成等各种技术正以空前的速度和规模迅猛发展。
传感器(Sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。光学传感器是依据光学原理进行测量的,它有许多优点,如非接触和非破坏性测量、几乎不受干扰、高速传输以及可遥测、遥控等。局域表面等离激元共振(Localized surface plasmon resonance,LSPR),入射光子频率和金属纳米粒子的振动频率相匹配,对光子能量产生很强的吸收作用,吸收率随着光子能量的减少呈指数衰减。LSPR对粒子结构和周围环境媒介等很多因素都非常敏感,[马文英,罗吉,许诚昕,凌味未,汪为民.金属纳米结构对光谱响应及折射率灵敏度的影响[J].光学学报,2012,32(12):261-266.],体积小、易集成、可应用于近场传感检测,因此得到了广泛研究。
但是,金属颗粒振荡过程中,其自身具有吸光损耗,加之LSPs产生的局部高强度电场使得其辐射阻尼更加明显,从而能量衰减快,共振峰谱线被展宽,因此检测品质因数(Figure of Merit,FOM)大大降低。如何设计得到具有窄带多波长光谱,在多样本传感检测中具有重要意义。
Fano共振是得到窄带多波长光谱的有效手段,其谱线带宽窄且陡峭,从而很好的提高了共振品质。对金属颗粒结构来说,Fano共振的实现一般由共振损耗较低的“暗模”与LSPs耦合得到。金属颗粒聚合体结构、法布里-珀罗共振腔等手段均已被广泛研究。
石墨烯以其优异的光电特性与金属纳米结构中的等离激元共振之间的协同作用促成了电调制等离激元共振的发展。通过施加偏置电压或化学掺杂来改变石墨烯的费米能级,进而改变它的电导率,随之改变器件的光学特性。石墨烯和金属纳米结构的相互作用及光学效应成为了研究的热点,可作为可调谐等离激元器件的平台[Emani NK,Chung T-F,NiX,Kildishev AV,Chen YP,Boltasseva A.Electrically tunable damping of plasmonicresonances with graphene.Nano Lett.2012;12(10):5202-6.]
发明内容
本发明的目的是,
利用金属纳米颗粒和光波导耦合效应,以及石墨烯的可调谐效应,设计得到一种多波长窄带可调谐传感器。
本发明提供的传感器,利用波导模式作为共振“暗模”,实现多波长窄带光谱的传感器。并且利用石墨烯,实现了可调谐光谱检测。
为了达到上述目的,本发明采用的技术方案是:
一种LSPR多波长窄带可调谐传感器,从下到上依次为硅衬底、SiO2膜、Al2O3膜、石墨烯薄膜,石墨烯薄膜上具有E字形金纳米颗粒周期排列。
进一步的,硅衬底上覆盖的SiO2层厚度为T2=1600nm。
进一步的,SiO2上覆盖的氧化铝(aluminium oxide,Al2O3)厚度为T1=2200nm。
进一步的,石墨烯固定在Al2O3上,其上E字形金纳米颗粒周期排列,周期P为1500nm。
进一步的,纳米颗粒长度t1=600nm,宽度t2=120nm,开口宽度t3=440nm,厚度h=30nm。
本发明的有益效果是:
1、利用Au纳米颗粒有序阵列在非对称介质环境下与平板波导的耦合,产生Fano效应,得到多波长窄带反射谱。
2、通过施加偏置电压或化学掺杂来改变石墨烯的费米能级,进而改变它的电导率,从而实现光谱的动态可调谐。
3、在波段2000~3000nm内,实现了多波长窄带反射/吸收谱,其中在2290nm处和2500nm处,共振带宽仅约为30nm和10nm。当载流子浓度从1×1013cm-2到9×1013cm-2,反射谱蓝移变窄,调谐范围可达27nm。
4、外部环境折射率增大时,共振波长红移,各共振峰传感广义品质因数FOM*最高可达6401。
附图说明
图1为本发明传感器结构示意图。
图2为本发明石墨烯可调谐传感器反射谱。
图3为本发明石墨烯可调谐传感器传感特性。
具体实施方式
本发明提供的LSPR多波长可调谐传感器,利用金属纳米颗粒激发波导模式,得到了多波长窄带反射谱。在平板波导两侧上光刻电极,施加偏置电压,可通过电压调谐改变石墨烯的费米能级,使传感器输出曲线的波长位置可调谐,调谐范围可达到27nm,广义品质因数FOM*最高可达6401。
所设计的传感器可采用超净室纳米加工与器件集成工艺进行制备(W.S.Chang,J.B.Lassiter,P.Swanglap,H.Sobhani,S.Khatua,P.Nordlander,N.J.Halas,S.Link,Aplasmonic Fano switch,Nano.Lett.,2012,12,4977-4982.)。其大概流程为:在Si衬底上用CVD(化学气相沉积)依次制备一定厚度的SiO2膜和Al2O3膜,将通过CVD(化学气相沉积)制备的石墨烯薄膜转移到平板波导上;采用电子束刻蚀技术制备金属纳米颗粒周期性阵列。所得传感器结构如图1所示:从下到上依次为硅衬底、SiO2膜、Al2O3膜、石墨烯薄膜,具体是在硅衬底上覆盖一层T2=1600nm的SiO2,在SiO2上覆盖一层厚度为T1=2200nm的氧化铝(aluminium oxide,Al2O3)。将制备的石墨烯固定在Al2O3上,其上E字形金(Au)纳米颗粒周期排列。其周期P为1500nm,纳米颗粒长度和宽度t1=600nm,t2=120nm,t3=440nm,厚度h=30nm。
本发明传感器采用COMSOL软件进行数值模拟,图2展示了光垂直于基底平面入射,该传感器在2000nm~3000nm波段利用石墨烯进行调谐的反射光谱。在此波段内实现了多波长窄带反射/吸收谱,其中在2290nm处和2500nm处,共振带宽仅约为30nm和10nm。当载流子浓度从1×1013cm-2到9×1013cm-2,反射谱蓝移变窄。图3展示了该传感器的传感特性,外部环境折射率增大时,共振波长红移,各共振峰传感广义品质因数FOM*最高可达6401。

Claims (3)

1.一种LSPR多波长窄带可调谐传感器,其特征是:从下到上依次为硅衬底、SiO2膜、Al2O3膜、石墨烯薄膜,石墨烯薄膜上具有由金纳米颗粒组成的E字形周期排列,周期P为1500nm;
上述E字形外长度t1=600nm,两个开口之间的宽度t2=120nm,开口长度t3=440nm,厚度h=30nm;
通过施加偏置电压或化学掺杂来改变石墨烯的费米能级,进而改变它的电导率,从而实现光谱的动态可调谐。
2.根据权利要求1所述的LSPR多波长窄带可调谐传感器,其特征是:硅衬底上覆盖的SiO2膜厚度为T2=1600nm。
3.根据权利要求1所述的LSPR多波长窄带可调谐传感器,其特征是:SiO2膜上覆盖的Al2O3膜厚度为T1=2200nm。
CN202110248083.6A 2021-03-07 2021-03-07 一种lspr多波长窄带可调谐传感器 Expired - Fee Related CN113030026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110248083.6A CN113030026B (zh) 2021-03-07 2021-03-07 一种lspr多波长窄带可调谐传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110248083.6A CN113030026B (zh) 2021-03-07 2021-03-07 一种lspr多波长窄带可调谐传感器

Publications (2)

Publication Number Publication Date
CN113030026A CN113030026A (zh) 2021-06-25
CN113030026B true CN113030026B (zh) 2022-11-04

Family

ID=76468289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110248083.6A Expired - Fee Related CN113030026B (zh) 2021-03-07 2021-03-07 一种lspr多波长窄带可调谐传感器

Country Status (1)

Country Link
CN (1) CN113030026B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112933B (zh) * 2021-11-12 2023-10-10 西安邮电大学 一种动态可调的超窄带手性复合纳米装置
CN114918425B (zh) * 2022-06-20 2023-07-14 杭州电子科技大学富阳电子信息研究院有限公司 一种具有宽带可调吸收特性的金纳米棒及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267742A (zh) * 2013-04-19 2013-08-28 中国科学院半导体研究所 局域表面等离子体和波导模式耦合的结构
CN104851929A (zh) * 2015-04-02 2015-08-19 中国人民解放军国防科学技术大学 基于石墨烯表面等离激元的光电材料可调吸收增强层
CN105004698A (zh) * 2015-06-09 2015-10-28 安徽师范大学 一种新型表面等离激元共振生物传感器
CN105023969A (zh) * 2015-06-11 2015-11-04 上海电力学院 一种基于金属纳米结构的光吸收增强型石墨烯晶体管
JP2015212626A (ja) * 2014-05-01 2015-11-26 セイコーエプソン株式会社 電場増強素子、ラマン分光法、ラマン分光装置、および電子機器
CN105699358A (zh) * 2016-04-29 2016-06-22 重庆大学 基于石墨烯与纳米金复合的表面拉曼及红外光谱双增强探测方法
CN105700266A (zh) * 2016-04-15 2016-06-22 浙江大学 一种基于石墨烯的表面等离子激元电吸收光调制器
CN106033829A (zh) * 2015-03-11 2016-10-19 中国科学院苏州纳米技术与纳米仿生研究所 等离激元窄带吸收薄膜
CN106200017A (zh) * 2016-08-25 2016-12-07 东南大学 一种基于超薄金属纳米粒子的超紧凑石墨烯电光调制器
CN107436192A (zh) * 2017-07-12 2017-12-05 电子科技大学 一种基于石墨烯/金属纳米带结构的近红外吸收体
CN107768452A (zh) * 2017-10-19 2018-03-06 厦门大学 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法
CN108226079A (zh) * 2017-12-29 2018-06-29 重庆大学 金属石墨烯多层谐振结构增强拉曼红外双光谱器件及制备方法
CN108594502A (zh) * 2018-03-30 2018-09-28 天津理工大学 液晶调谐等离激元诱导透明与法布里腔杂化模式的滤波器
CN109721026A (zh) * 2017-10-27 2019-05-07 湖北工业大学 一种激光脉冲辅助制备复合金属纳米颗粒阵列的方法
CN110596790A (zh) * 2019-07-24 2019-12-20 华南师范大学 一种实现类电磁诱导透明效应的超材料及方法
CN110672564A (zh) * 2019-10-22 2020-01-10 重庆理工大学 氧化石墨烯光纤光栅的纳米金壳lspr光极生物传感器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671527B2 (ja) * 2009-05-25 2015-02-18 インスプリオン エービー 局在表面プラズモン共鳴(lspr)を使用するセンサ
US9075009B2 (en) * 2010-05-20 2015-07-07 Sungkyunkwan University Foundation For Corporation Collaboration Surface plasmon resonance sensor using metallic graphene, preparing method of the same, and surface plasmon resonance sensor system
US20120281957A1 (en) * 2011-05-08 2012-11-08 Georgia Tech Research Corporation Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements
US20140004327A1 (en) * 2012-06-29 2014-01-02 The University Of Kentucky Research Foundation Few-layer graphene nanoribbon and a method of making the same
US9423345B2 (en) * 2014-06-24 2016-08-23 International Business Machines Corporation Chemical sensors based on plasmon resonance in graphene
US9470632B2 (en) * 2014-07-29 2016-10-18 International Business Machines Corporation Plasmonic structure with enhanced bandwidth
CN104634437A (zh) * 2015-01-27 2015-05-20 天津理工大学 对称型纳米棒三聚体的双Fano共振特性阵列及其传感应用
US10755866B2 (en) * 2016-06-07 2020-08-25 The University Of Hong Kong Graphene-semiconductor based wavelength selective photodetector for sub-bandgap photo detection
US10725373B1 (en) * 2016-10-21 2020-07-28 Iowa State University Research Foundation, Inc. Nano-patterning methods including: (1) patterning of nanophotonic structures at optical fiber tip for refractive index sensing and (2) plasmonic crystal incorporating graphene oxide gas sensor for detection of volatile organic compounds
US20200174166A1 (en) * 2017-08-11 2020-06-04 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Electromagnetic Absorption Metamaterial
US10877194B2 (en) * 2018-01-16 2020-12-29 National Technology & Engineering Solutions Of Sandia, Llc Tunable graphene-based infrared reflectance filter having patterned nanoantenna layer and unpatterned graphene layer
TWI686936B (zh) * 2018-05-14 2020-03-01 國立臺灣大學 光偵測元件
US11733507B2 (en) * 2019-02-19 2023-08-22 Purdue Research Foundation Optical device, method of using the same, and method of making the same

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103267742A (zh) * 2013-04-19 2013-08-28 中国科学院半导体研究所 局域表面等离子体和波导模式耦合的结构
JP2015212626A (ja) * 2014-05-01 2015-11-26 セイコーエプソン株式会社 電場増強素子、ラマン分光法、ラマン分光装置、および電子機器
CN106033829A (zh) * 2015-03-11 2016-10-19 中国科学院苏州纳米技术与纳米仿生研究所 等离激元窄带吸收薄膜
CN104851929A (zh) * 2015-04-02 2015-08-19 中国人民解放军国防科学技术大学 基于石墨烯表面等离激元的光电材料可调吸收增强层
CN105004698A (zh) * 2015-06-09 2015-10-28 安徽师范大学 一种新型表面等离激元共振生物传感器
CN105023969A (zh) * 2015-06-11 2015-11-04 上海电力学院 一种基于金属纳米结构的光吸收增强型石墨烯晶体管
CN105700266A (zh) * 2016-04-15 2016-06-22 浙江大学 一种基于石墨烯的表面等离子激元电吸收光调制器
CN105699358A (zh) * 2016-04-29 2016-06-22 重庆大学 基于石墨烯与纳米金复合的表面拉曼及红外光谱双增强探测方法
CN106200017A (zh) * 2016-08-25 2016-12-07 东南大学 一种基于超薄金属纳米粒子的超紧凑石墨烯电光调制器
CN107436192A (zh) * 2017-07-12 2017-12-05 电子科技大学 一种基于石墨烯/金属纳米带结构的近红外吸收体
CN107768452A (zh) * 2017-10-19 2018-03-06 厦门大学 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法
CN109721026A (zh) * 2017-10-27 2019-05-07 湖北工业大学 一种激光脉冲辅助制备复合金属纳米颗粒阵列的方法
CN108226079A (zh) * 2017-12-29 2018-06-29 重庆大学 金属石墨烯多层谐振结构增强拉曼红外双光谱器件及制备方法
CN108594502A (zh) * 2018-03-30 2018-09-28 天津理工大学 液晶调谐等离激元诱导透明与法布里腔杂化模式的滤波器
CN110596790A (zh) * 2019-07-24 2019-12-20 华南师范大学 一种实现类电磁诱导透明效应的超材料及方法
CN110672564A (zh) * 2019-10-22 2020-01-10 重庆理工大学 氧化石墨烯光纤光栅的纳米金壳lspr光极生物传感器

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
基于石墨烯复合薄膜的等离激元传感研究进展;赵元等;《科技导报》;20150313(第05期);全文 *
基于石墨烯等离子体的多窗口类电磁诱导透明效应及纳米天线研究;孙琛;《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》;20190915(第09期);第55-71页、图4-1 *
石墨烯/金属复合材料的研究进展;独涛等;《材料导报》;20150210(第03期);全文 *
等离激元表面晶格共振研究进展;白静等;《化学研究》;20200125(第01期);全文 *
纳米颗粒局域表面等离激元共振的光谱特性研究进展;任益弘等;《激光杂志》;20200725(第07期);全文 *
金属/化合物/石墨烯复合纳米阵列结构的LSPR特性;李伟等;《激光与光电子学进展》;20180312(第08期);全文 *

Also Published As

Publication number Publication date
CN113030026A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
Ahmed et al. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region
US10801956B2 (en) Resonant periodic structures and methods of using them as filters and sensors
CN113030026B (zh) 一种lspr多波长窄带可调谐传感器
Kim et al. Plasmonic resonances in nanostructured transparent conducting oxide films
Zafar et al. Enhanced figure of merit in Fano resonance-based plasmonic refractive index sensor
CN109030415B (zh) 一种基于双Fano共振的折射率传感器
Butt et al. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film
Xi et al. Internal high-reflectivity omni-directional reflectors
Butt et al. Hybrid metasurface perfect absorbers for temperature and biosensing applications
Yang et al. Sensing mechanism of an Au-TiO 2-Ag nanograting based on Fano resonance effects
Hakami et al. Performance enhancement of surface plasmon resonance sensor based on Ag-TiO2-MAPbX3-graphene for the detection of glucose in water
Krayer et al. Optoelectronic devices on index-near-zero substrates
CN112013975A (zh) 一种小型化的上转换单光子探测器
CN111122517A (zh) 一种基于非对称纳米粒子二聚体微纳结构传感器
Ma et al. Graphene-coated two-layer dielectric loaded surface plasmon polariton rib waveguide with ultra-long propagation length and ultra-high electro-optic wavelength tuning
Kapoor et al. Effect of oxide layer on the performance of silver based fiber optic surface plasmon resonance sensor
Yin et al. Cascaded dual-channel broadband SPR fiber optic sensor based on Ag/ZnO and Ag/TiO2/PDMS films structure
Xia et al. Study of surface plasmon resonance sensor based on polymer-tipped optical fiber with barium titanate layer
Wang et al. TaSe 2/graphene biosensor based on LRSPR effect with enhanced sensitivity and FOM in near infrared region
CN111708111B (zh) 一种中红外波段可动态控制的多功能布拉格光栅结构
Zheng et al. Fano resonance and tunability of optical response in double-sided dielectric gratings
CN112414970A (zh) 表面等离激元的开口方环谐振腔的葡萄糖溶液测量装置
Vafaei et al. Highly sensitive refractive index sensing by epsilon near zero metamaterials
Huang et al. Theoretical investigation of broadband frequency conversion bridging the mid-infrared and telecom band through a chalcogenide/sio 2 hybrid waveguide
CN117309812B (zh) 一种双光子晶体光栅耦合共振传感器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221104

CF01 Termination of patent right due to non-payment of annual fee