CN113030026A - 一种lspr多波长窄带可调谐传感器 - Google Patents

一种lspr多波长窄带可调谐传感器 Download PDF

Info

Publication number
CN113030026A
CN113030026A CN202110248083.6A CN202110248083A CN113030026A CN 113030026 A CN113030026 A CN 113030026A CN 202110248083 A CN202110248083 A CN 202110248083A CN 113030026 A CN113030026 A CN 113030026A
Authority
CN
China
Prior art keywords
lspr
wavelength narrow
band
wavelength
narrow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110248083.6A
Other languages
English (en)
Other versions
CN113030026B (zh
Inventor
刘菲
秦璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of Technology filed Critical Tianjin University of Technology
Priority to CN202110248083.6A priority Critical patent/CN113030026B/zh
Publication of CN113030026A publication Critical patent/CN113030026A/zh
Application granted granted Critical
Publication of CN113030026B publication Critical patent/CN113030026B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Abstract

一种LSPR多波长窄带可调谐传感器,属于微纳光电子器件。在硅衬底上覆盖一层T2=1600nm的SiO2,在SiO2上覆盖一层厚度为T1=2200nm的氧化铝。将制备的石墨烯固定在Al2O3上,其上E字形金纳米颗粒周期排列。其周期P为1500nm,纳米颗粒长度和宽度t1=600nm,t2=120nm,t3=440nm,厚度h=30nm。本发明利用Au纳米颗粒有序阵列在非对称介质环境下与平板波导的耦合,产生Fano效应,得到多波长窄带反射谱。通过施加偏置电压或化学掺杂来改变石墨烯的费米能级,进而改变它的电导率,从而实现光谱的动态可调谐。

Description

一种LSPR多波长窄带可调谐传感器
技术领域
本发明属于微纳光电子器件。
背景技术
21世纪人类已进入以光通信和信息网络为主要特征的信息时代,与信息相关的光通信、光电子、光传感、光集成等各种技术正以空前的速度和规模迅猛发展。
传感器(Sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。光学传感器是依据光学原理进行测量的,它有许多优点,如非接触和非破坏性测量、几乎不受干扰、高速传输以及可遥测、遥控等。局域表面等离激元共振(Localized surface plasmon resonance,LSPR),入射光子频率和金属纳米粒子的振动频率相匹配,对光子能量产生很强的吸收作用,吸收率随着光子能量的减少呈指数衰减。LSPR对粒子结构和周围环境媒介等很多因素都非常敏感,[马文英,罗吉,许诚昕,凌味未,汪为民.金属纳米结构对光谱响应及折射率灵敏度的影响[J].光学学报,2012,32(12):261-266.],体积小、易集成、可应用于近场传感检测,因此得到了广泛研究。
但是,金属颗粒振荡过程中,其自身具有吸光损耗,加之LSPs产生的局部高强度电场使得其辐射阻尼更加明显,从而能量衰减快,共振峰谱线被展宽,因此检测品质因数(Figure of Merit,FOM)大大降低。如何设计得到具有窄带多波长光谱,在多样本传感检测中具有重要意义。
Fano共振是得到窄带多波长光谱的有效手段,其谱线带宽窄且陡峭,从而很好的提高了共振品质。对金属颗粒结构来说,Fano共振的实现一般由共振损耗较低的“暗模”与LSPs耦合得到。金属颗粒聚合体结构、法布里-珀罗共振腔等手段均已被广泛研究。
石墨烯以其优异的光电特性与金属纳米结构中的等离激元共振之间的协同作用促成了电调制等离激元共振的发展。通过施加偏置电压或化学掺杂来改变石墨烯的费米能级,进而改变它的电导率,随之改变器件的光学特性。石墨烯和金属纳米结构的相互作用及光学效应成为了研究的热点,可作为可调谐等离激元器件的平台[Emani NK,Chung T-F,NiX,Kildishev AV,Chen YP,Boltasseva A.Electrically tunable damping of plasmonicresonances with graphene.Nano Lett.2012;12(10):5202-6.]
发明内容
本发明的目的是,
利用金属纳米颗粒和光波导耦合效应,以及石墨烯的可调谐效应,设计得到一种多波长窄带可调谐传感器。
本发明提供的传感器,利用波导模式作为共振“暗模”,实现多波长窄带光谱的传感器。并且利用石墨烯,实现了可调谐光谱检测。
为了达到上述目的,本发明采用的技术方案是:
一种LSPR多波长窄带可调谐传感器,从下到上依次为硅衬底、SiO2膜、Al2O3膜、石墨烯薄膜,石墨烯薄膜上具有E字形金纳米颗粒周期排列。
进一步的,硅衬底上覆盖的SiO2层厚度为T2=1600nm。
进一步的,SiO2上覆盖的氧化铝(aluminium oxide,Al2O3)厚度为T1=2200nm。
进一步的,石墨烯固定在Al2O3上,其上E字形金纳米颗粒周期排列,周期P为1500nm。
进一步的,纳米颗粒长度t1=600nm,宽度t2=120nm,开口宽度t3=440nm,厚度h=30nm。
本发明的有益效果是:
1、利用Au纳米颗粒有序阵列在非对称介质环境下与平板波导的耦合,产生Fano效应,得到多波长窄带反射谱。
2、通过施加偏置电压或化学掺杂来改变石墨烯的费米能级,进而改变它的电导率,从而实现光谱的动态可调谐。
3、在波段2000~3000nm内,实现了多波长窄带反射/吸收谱,其中在2290nm处和2500nm处,共振带宽仅约为30nm和10nm。当载流子浓度从1×1013cm-2到9×1013cm-2,反射谱蓝移变窄,调谐范围可达27nm。
4、外部环境折射率增大时,共振波长红移,各共振峰传感广义品质因数FOM*最高可达6401。
附图说明
图1为本发明传感器结构示意图。
图2为本发明石墨烯可调谐传感器反射谱。
图3为本发明石墨烯可调谐传感器传感特性。
具体实施方式
本发明提供的LSPR多波长可调谐传感器,利用金属纳米颗粒激发波导模式,得到了多波长窄带反射谱。在平板波导两侧上光刻电极,施加偏置电压,可通过电压调谐改变石墨烯的费米能级,使传感器输出曲线的波长位置可调谐,调谐范围可达到27nm,广义品质因数FOM*最高可达6401。
所设计的传感器可采用超净室纳米加工与器件集成工艺进行制备(W.S.Chang,J.B.Lassiter,P.Swanglap,H.Sobhani,S.Khatua,P.Nordlander,N.J.Halas,S.Link,Aplasmonic Fano switch,Nano.Lett.,2012,12,4977-4982.)。其大概流程为:在Si衬底上用CVD(化学气相沉积)依次制备一定厚度的SiO2膜和Al2O3膜,将通过CVD(化学气相沉积)制备的石墨烯薄膜转移到平板波导上;采用电子束刻蚀技术制备金属纳米颗粒周期性阵列。所得传感器结构如图1所示:从下到上依次为硅衬底、SiO2膜、Al2O3膜、石墨烯薄膜,具体是在硅衬底上覆盖一层T2=1600nm的SiO2,在SiO2上覆盖一层厚度为T1=2200nm的氧化铝(aluminium oxide,Al2O3)。将制备的石墨烯固定在Al2O3上,其上E字形金(Au)纳米颗粒周期排列。其周期P为1500nm,纳米颗粒长度和宽度t1=600nm,t2=120nm,t3=440nm,厚度h=30nm。
本发明传感器采用COMSOL软件进行数值模拟,图2展示了光垂直于基底平面入射,该传感器在2000nm~3000nm波段利用石墨烯进行调谐的反射光谱。在此波段内实现了多波长窄带反射/吸收谱,其中在2290nm处和2500nm处,共振带宽仅约为30nm和10nm。当载流子浓度从1×1013cm-2到9×1013cm-2,反射谱蓝移变窄。图3展示了该传感器的传感特性,外部环境折射率增大时,共振波长红移,各共振峰传感广义品质因数FOM*最高可达6401。

Claims (8)

1.一种LSPR多波长窄带可调谐传感器,其特征是:从下到上依次为硅衬底、SiO2膜、Al2O3膜、石墨烯薄膜,石墨烯薄膜上具有E字形金纳米颗粒周期排列。
2.根据权利要求1所述的LSPR多波长窄带可调谐传感器,其特征是:硅衬底上覆盖的SiO2层厚度为T2=1600nm。
3.根据权利要求1所述的LSPR多波长窄带可调谐传感器,其特征是:SiO2上覆盖的氧化铝(aluminium oxide,Al2O3)厚度为T1=2200nm。
4.根据权利要求1所述的LSPR多波长窄带可调谐传感器,其特征是:石墨烯固定在Al2O3上,其上E字形金纳米颗粒周期排列,周期P为1500nm。
5.根据权利要求1或4所述的LSPR多波长窄带可调谐传感器,其特征是:纳米颗粒长度t1=600nm,宽度t2=120nm,开口宽度t3=440nm,厚度h=30nm。
6.根据权利要求1所述的LSPR多波长窄带可调谐传感器,其特征是:光垂直于基底平面入射,在波段2000~3000nm内,实现了多波长窄带反射/吸收谱,其中在2290nm处和2500nm处,共振带宽为30nm和10nm。
7.根据权利要求1所述的LSPR多波长窄带可调谐传感器,其特征是:载流子浓度从1×1013cm-2到9×1013cm-2,反射谱蓝移变窄。
8.根据权利要求1所述的LSPR多波长窄带可调谐传感器,其特征是:外部环境折射率增大时,共振波长红移,各共振峰传感广义品质因数FOM*最高为6401。
CN202110248083.6A 2021-03-07 2021-03-07 一种lspr多波长窄带可调谐传感器 Expired - Fee Related CN113030026B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110248083.6A CN113030026B (zh) 2021-03-07 2021-03-07 一种lspr多波长窄带可调谐传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110248083.6A CN113030026B (zh) 2021-03-07 2021-03-07 一种lspr多波长窄带可调谐传感器

Publications (2)

Publication Number Publication Date
CN113030026A true CN113030026A (zh) 2021-06-25
CN113030026B CN113030026B (zh) 2022-11-04

Family

ID=76468289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110248083.6A Expired - Fee Related CN113030026B (zh) 2021-03-07 2021-03-07 一种lspr多波长窄带可调谐传感器

Country Status (1)

Country Link
CN (1) CN113030026B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112933A (zh) * 2021-11-12 2022-03-01 西安邮电大学 一种动态可调的超窄带手性复合纳米装置
CN114918425A (zh) * 2022-06-20 2022-08-19 杭州电子科技大学富阳电子信息研究院有限公司 一种具有宽带可调吸收特性的金纳米棒及其制备方法

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110285999A1 (en) * 2010-05-20 2011-11-24 Sungkyunkwan University Foundation For Corporate Collaboration Surface plasmon resonance sensor using metallic graphene, reparing method of the same, and surface plasmon resonance sensor system
US20120188551A1 (en) * 2009-05-25 2012-07-26 Christoph Langhammar Sensor using localized surface plasmon resonance (lspr)
US20120281957A1 (en) * 2011-05-08 2012-11-08 Georgia Tech Research Corporation Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements
CN103267742A (zh) * 2013-04-19 2013-08-28 中国科学院半导体研究所 局域表面等离子体和波导模式耦合的结构
US20140004327A1 (en) * 2012-06-29 2014-01-02 The University Of Kentucky Research Foundation Few-layer graphene nanoribbon and a method of making the same
CN104634437A (zh) * 2015-01-27 2015-05-20 天津理工大学 对称型纳米棒三聚体的双Fano共振特性阵列及其传感应用
CN104851929A (zh) * 2015-04-02 2015-08-19 中国人民解放军国防科学技术大学 基于石墨烯表面等离激元的光电材料可调吸收增强层
CN105004698A (zh) * 2015-06-09 2015-10-28 安徽师范大学 一种新型表面等离激元共振生物传感器
CN105023969A (zh) * 2015-06-11 2015-11-04 上海电力学院 一种基于金属纳米结构的光吸收增强型石墨烯晶体管
JP2015212626A (ja) * 2014-05-01 2015-11-26 セイコーエプソン株式会社 電場増強素子、ラマン分光法、ラマン分光装置、および電子機器
US20150369735A1 (en) * 2014-06-24 2015-12-24 International Business Machines Corporation Chemical Sensors Based on Plasmon Resonance in Graphene
US20160033401A1 (en) * 2014-07-29 2016-02-04 International Business Machines Corporation Plasmonic structure with enhanced bandwidth
CN105699358A (zh) * 2016-04-29 2016-06-22 重庆大学 基于石墨烯与纳米金复合的表面拉曼及红外光谱双增强探测方法
CN105700266A (zh) * 2016-04-15 2016-06-22 浙江大学 一种基于石墨烯的表面等离子激元电吸收光调制器
CN106033829A (zh) * 2015-03-11 2016-10-19 中国科学院苏州纳米技术与纳米仿生研究所 等离激元窄带吸收薄膜
CN106200017A (zh) * 2016-08-25 2016-12-07 东南大学 一种基于超薄金属纳米粒子的超紧凑石墨烯电光调制器
CN107436192A (zh) * 2017-07-12 2017-12-05 电子科技大学 一种基于石墨烯/金属纳米带结构的近红外吸收体
US20170352492A1 (en) * 2016-06-07 2017-12-07 The University Of Hong Kong Graphene-semiconductor based wavelength selective photodetector for sub-bandgap photo detection
CN107768452A (zh) * 2017-10-19 2018-03-06 厦门大学 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法
CN108226079A (zh) * 2017-12-29 2018-06-29 重庆大学 金属石墨烯多层谐振结构增强拉曼红外双光谱器件及制备方法
CN108594502A (zh) * 2018-03-30 2018-09-28 天津理工大学 液晶调谐等离激元诱导透明与法布里腔杂化模式的滤波器
CN109721026A (zh) * 2017-10-27 2019-05-07 湖北工业大学 一种激光脉冲辅助制备复合金属纳米颗粒阵列的方法
US20190219747A1 (en) * 2018-01-16 2019-07-18 National Technology & Engineering Solutions Of Sandia, Llc Tunable graphene-based infrared reflectance filter
US20190348564A1 (en) * 2018-05-14 2019-11-14 National Taiwan University Photodetector
CN110596790A (zh) * 2019-07-24 2019-12-20 华南师范大学 一种实现类电磁诱导透明效应的超材料及方法
CN110672564A (zh) * 2019-10-22 2020-01-10 重庆理工大学 氧化石墨烯光纤光栅的纳米金壳lspr光极生物传感器
US20200174166A1 (en) * 2017-08-11 2020-06-04 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Electromagnetic Absorption Metamaterial
US10725373B1 (en) * 2016-10-21 2020-07-28 Iowa State University Research Foundation, Inc. Nano-patterning methods including: (1) patterning of nanophotonic structures at optical fiber tip for refractive index sensing and (2) plasmonic crystal incorporating graphene oxide gas sensor for detection of volatile organic compounds
US20200285043A1 (en) * 2019-02-19 2020-09-10 Purdue Research Foundation Optical device, method of using the same, and method of making the same

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120188551A1 (en) * 2009-05-25 2012-07-26 Christoph Langhammar Sensor using localized surface plasmon resonance (lspr)
US20110285999A1 (en) * 2010-05-20 2011-11-24 Sungkyunkwan University Foundation For Corporate Collaboration Surface plasmon resonance sensor using metallic graphene, reparing method of the same, and surface plasmon resonance sensor system
US20120281957A1 (en) * 2011-05-08 2012-11-08 Georgia Tech Research Corporation Plasmonic and photonic resonator structures and methods for large electromagnetic field enhancements
US20140004327A1 (en) * 2012-06-29 2014-01-02 The University Of Kentucky Research Foundation Few-layer graphene nanoribbon and a method of making the same
CN103267742A (zh) * 2013-04-19 2013-08-28 中国科学院半导体研究所 局域表面等离子体和波导模式耦合的结构
JP2015212626A (ja) * 2014-05-01 2015-11-26 セイコーエプソン株式会社 電場増強素子、ラマン分光法、ラマン分光装置、および電子機器
US20150369735A1 (en) * 2014-06-24 2015-12-24 International Business Machines Corporation Chemical Sensors Based on Plasmon Resonance in Graphene
US20160033401A1 (en) * 2014-07-29 2016-02-04 International Business Machines Corporation Plasmonic structure with enhanced bandwidth
CN104634437A (zh) * 2015-01-27 2015-05-20 天津理工大学 对称型纳米棒三聚体的双Fano共振特性阵列及其传感应用
CN106033829A (zh) * 2015-03-11 2016-10-19 中国科学院苏州纳米技术与纳米仿生研究所 等离激元窄带吸收薄膜
CN104851929A (zh) * 2015-04-02 2015-08-19 中国人民解放军国防科学技术大学 基于石墨烯表面等离激元的光电材料可调吸收增强层
CN105004698A (zh) * 2015-06-09 2015-10-28 安徽师范大学 一种新型表面等离激元共振生物传感器
CN105023969A (zh) * 2015-06-11 2015-11-04 上海电力学院 一种基于金属纳米结构的光吸收增强型石墨烯晶体管
CN105700266A (zh) * 2016-04-15 2016-06-22 浙江大学 一种基于石墨烯的表面等离子激元电吸收光调制器
CN105699358A (zh) * 2016-04-29 2016-06-22 重庆大学 基于石墨烯与纳米金复合的表面拉曼及红外光谱双增强探测方法
US20170352492A1 (en) * 2016-06-07 2017-12-07 The University Of Hong Kong Graphene-semiconductor based wavelength selective photodetector for sub-bandgap photo detection
CN106200017A (zh) * 2016-08-25 2016-12-07 东南大学 一种基于超薄金属纳米粒子的超紧凑石墨烯电光调制器
US10725373B1 (en) * 2016-10-21 2020-07-28 Iowa State University Research Foundation, Inc. Nano-patterning methods including: (1) patterning of nanophotonic structures at optical fiber tip for refractive index sensing and (2) plasmonic crystal incorporating graphene oxide gas sensor for detection of volatile organic compounds
CN107436192A (zh) * 2017-07-12 2017-12-05 电子科技大学 一种基于石墨烯/金属纳米带结构的近红外吸收体
US20200174166A1 (en) * 2017-08-11 2020-06-04 Shanghai Institute Of Microsystem And Information Technology, Chinese Academy Of Sciences Electromagnetic Absorption Metamaterial
CN107768452A (zh) * 2017-10-19 2018-03-06 厦门大学 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法
CN109721026A (zh) * 2017-10-27 2019-05-07 湖北工业大学 一种激光脉冲辅助制备复合金属纳米颗粒阵列的方法
CN108226079A (zh) * 2017-12-29 2018-06-29 重庆大学 金属石墨烯多层谐振结构增强拉曼红外双光谱器件及制备方法
US20190219747A1 (en) * 2018-01-16 2019-07-18 National Technology & Engineering Solutions Of Sandia, Llc Tunable graphene-based infrared reflectance filter
CN108594502A (zh) * 2018-03-30 2018-09-28 天津理工大学 液晶调谐等离激元诱导透明与法布里腔杂化模式的滤波器
US20190348564A1 (en) * 2018-05-14 2019-11-14 National Taiwan University Photodetector
US20200285043A1 (en) * 2019-02-19 2020-09-10 Purdue Research Foundation Optical device, method of using the same, and method of making the same
CN110596790A (zh) * 2019-07-24 2019-12-20 华南师范大学 一种实现类电磁诱导透明效应的超材料及方法
CN110672564A (zh) * 2019-10-22 2020-01-10 重庆理工大学 氧化石墨烯光纤光栅的纳米金壳lspr光极生物传感器

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
任益弘等: "纳米颗粒局域表面等离激元共振的光谱特性研究进展", 《激光杂志》 *
孔令超等: "嵌入式纳米金阵列的表面等离子共振传感特性研究", 《量子电子学报》 *
孙琛: "基于石墨烯等离子体的多窗口类电磁诱导透明效应及纳米天线研究", 《中国优秀博硕士学位论文全文数据库(博士) 工程科技Ⅰ辑》 *
屈炜等: "等离激元Fano共振纳米结构及其应用", 《新技术新工艺》 *
方佳文等: "基于Fano共振的等离子体共振传感器", 《光电工程》 *
李伟等: "金属/化合物/石墨烯复合纳米阵列结构的LSPR特性", 《激光与光电子学进展》 *
独涛等: "石墨烯/金属复合材料的研究进展", 《材料导报》 *
白静等: "等离激元表面晶格共振研究进展", 《化学研究》 *
赵元等: "基于石墨烯复合薄膜的等离激元传感研究进展", 《科技导报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112933A (zh) * 2021-11-12 2022-03-01 西安邮电大学 一种动态可调的超窄带手性复合纳米装置
CN114112933B (zh) * 2021-11-12 2023-10-10 西安邮电大学 一种动态可调的超窄带手性复合纳米装置
CN114918425A (zh) * 2022-06-20 2022-08-19 杭州电子科技大学富阳电子信息研究院有限公司 一种具有宽带可调吸收特性的金纳米棒及其制备方法
CN114918425B (zh) * 2022-06-20 2023-07-14 杭州电子科技大学富阳电子信息研究院有限公司 一种具有宽带可调吸收特性的金纳米棒及其制备方法

Also Published As

Publication number Publication date
CN113030026B (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
CN104374745B (zh) 一种基于介质纳米结构Fano共振特性的传感器
CN108519352B (zh) 一种基于金属-介质-金属波导布拉格光栅的折射率传感器
CN113030026B (zh) 一种lspr多波长窄带可调谐传感器
Zaky et al. Plasma cell sensor using photonic crystal cavity
CN109030415B (zh) 一种基于双Fano共振的折射率传感器
Zaky et al. Highly sensitive salinity and temperature sensor using Tamm resonance
Butt et al. Sensitivity enhancement of silicon strip waveguide ring resonator by incorporating a thin metal film
CN111426450B (zh) 一种谐振腔增强的单片集成传感器及测量方法
Yang et al. Sensing mechanism of an Au-TiO 2-Ag nanograting based on Fano resonance effects
Xi et al. Internal high-reflectivity omni-directional reflectors
US20050094150A1 (en) Method and apparatus for ultra-high sensitivity optical detection of biological and chemical agents
Rodriguez et al. Bloch surface wave ring resonator based on porous silicon
JP2010145399A (ja) ショートレンジ表面プラズモンポラリトンと一般誘電体導波路との混合結合構造、ロングレンジ表面プラズモンポラリトンと誘電体導波路との結合構造、およびその応用
Wei et al. Optimization of tapered optical fiber sensor based on SPR for high sensitivity salinity measurement
CN111122517A (zh) 一种基于非对称纳米粒子二聚体微纳结构传感器
Cheng et al. Simultaneous measurement of ultraviolet irradiance and temperature by employing optical fiber SPR sensor with Ag/ZnO/PDMS coating
Yin et al. Modulation of the sensing bandwidth of dual-channel SPR sensors by TiO2 film
Yin et al. Cascaded dual-channel broadband SPR fiber optic sensor based on Ag/ZnO and Ag/TiO2/PDMS films structure
Lim et al. Ultrahigh index and low-loss silicon rich nitride thin film for NIR HAMR optics
Kapoor et al. Effect of oxide layer on the performance of silver based fiber optic surface plasmon resonance sensor
Dixit et al. Analysis of photonic crystal cavity based temperature biosensor using indirect bandgap materials
Xia et al. Study of surface plasmon resonance sensor based on polymer-tipped optical fiber with barium titanate layer
Xue et al. Ultrahigh-sensitivity SPR fiber temperature sensor based Ge2Sb2Te5 and cyclohexane
Fantoni et al. Theory and FDTD simulations of an amorphous silicon planar waveguide structure suitable to be used as a surface plasmon resonance biosensor.
Ansari et al. The adjustable and tunable narrowband optical absorber by insertion of the WSe2 and WS2 monolayer in symmetric and asymmetric defective photonic crystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221104

CF01 Termination of patent right due to non-payment of annual fee