CN107768452A - 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法 - Google Patents

一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法 Download PDF

Info

Publication number
CN107768452A
CN107768452A CN201710976199.5A CN201710976199A CN107768452A CN 107768452 A CN107768452 A CN 107768452A CN 201710976199 A CN201710976199 A CN 201710976199A CN 107768452 A CN107768452 A CN 107768452A
Authority
CN
China
Prior art keywords
silicon
graphene
chip
layer
metal nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710976199.5A
Other languages
English (en)
Inventor
尹君
李静
应安妮
刘恋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201710976199.5A priority Critical patent/CN107768452A/zh
Publication of CN107768452A publication Critical patent/CN107768452A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了石墨烯‑硅异质结光电探测芯片及其制备方法,探测芯片包括:硅衬底;框形SiO2绝缘层,位于硅衬底周围边界;界面钝化层,位于硅衬底之上;石墨烯层,位于界面钝化层之上;金属纳米结构层,位于石墨烯层之上。通过在芯片结构中引入金属纳米结构,一方面,利用金属纳米结构的局域表面等离激元共振特性,可显著提升石墨烯/硅异质结的光吸收效率,提升器件的光响应度和线性光响应范围;另一方面,利用金属纳米结构在光激发下超快的光电转换过程,可显著提升芯片的光谱响应速率和频率特性;此外,利用不同材质、尺寸金属纳米颗粒具有的不同光谱共振特性,可显著改善探测芯片的特定光谱增强特性。

Description

一种增强型石墨烯-硅异质结光电探测芯片及其制备方法
技术领域
本发明属于光电技术领域,具体涉及石墨烯-硅异质结型光电探测芯片及其制作方法。
背景技术
光电探测芯片是一种通过将光信号转换为电信号从而获取光信息的媒介。由于具有体积小、功耗低、灵敏度高等优点,光电探测芯片已经遍布人们生活中的各个领域,尤其是近些年来智能家电及智能穿戴设备的飞速发展,使得这种基础信息交换元件成为当今应用最为广泛的一类电子器件。
传统光电探测芯片主要是以硅、锗、砷化镓等半导体材料的PN或PIN结构为主,探测光谱波段可覆盖紫外至远红外波段。随着电子信息领域的快速发展,这类材料在制备高性能探测芯片方面面临着诸多的限制问题:如单质半导体中掺杂浓度受材料本身固溶度的限制,而多元化合物半导体中元素种类及含量的调控局限性大,工艺复杂,且难以与硅基进行集成化等。
石墨烯-硅异质结探测芯片是近年来发展起来的新型光伏型光电探测器件。在光照情况下,该型探测芯片利用石墨烯与N型硅接触时形成的肖特基异质结可有效将光生载流子分离,结合石墨烯材料本身低电导率(<10-6Ωcm)和常温下高电子迁移率(>1.5×104cm2V-1s-1),可实现高效的光电转换和电流响应。相比于当前应用较多的硅基PIN结构光电探测芯片,石墨烯/硅异质结光电探测芯片具有低成本、高灵敏、超低暗电流和宽光谱响应等一系列优势,且易于集成,制备工艺兼容现有的微电子制备工艺,在低功耗和高灵敏光电传感领域具有极大的应用前景,如智能触控、光电互联等。然而,当前石墨烯-硅异质结型光电探测芯片在光响应度方面的优势并不明显(一般为0.5A/W量级),响应速率提升和特定光谱增强方面还缺乏有效的调控手段。
发明内容
本发明的目的在于:提供一种增强型石墨烯-硅异质结光电探测芯片的制作方法,解决目前石墨烯-硅异质结光电探测芯片在光响应度、响应速率、特定光谱响应增强等方面性能有待提升的问题。
增强型石墨烯-硅异质结光电探测芯片的制作方法,包括步骤:
S1.提供具有N型掺杂的硅衬底;
S2.在所述的N型硅衬底表面生长一层SiO2层;
S3.通过光刻方法和刻蚀液腐蚀,在衬底上表面腐蚀部分SiO2层,制备出具有窗口区域裸露的N型硅;
S4.在衬底上表面生长或转移界面钝化层;
S5.在衬底上表面转移具有金属纳米结构修饰的石墨烯层;
S6.在衬底下表面和衬底上表面未刻蚀SiO2层的区域蒸镀金属电极。
优选的,所述的衬底为N型衬底,电阻率为0.01~10Ω·cm;
优选的,所述的SiO2绝缘层制备方法可采用热氧化、PECVD、LPCVD、磁控溅射、ALD沉积方法中的一种制备;
优选的,所述的SiO2绝缘层厚度可为100-1000nm;
优选的,所述的界面钝化层材料可为SiO2、Si3N4、hBN、AlN中的一种;
优选的,所述的界面钝化层材料厚度可为0.1nm-5nm;
优选的,所述的石墨烯层的层数为1-10层;
优选的,所述的金属纳米结构材料为Ag、Au、Al、Rh、Ni、Pt或任意组合或类金属材料如TiN等;
优选的,所述的金属纳米结构尺寸20-1000nm;
优选的,所述的金属纳米结构,是通过包括纳米球刻蚀技术、光刻、纳米压印、金属薄膜退火技术、旋涂合成的金属纳米粒子在内的方法对石墨烯层进行修饰得到。
优选的,所述的转移具有金属纳米结构修饰的石墨烯层,转移方法可采用湿法转移或干法转移中的一种。
一种石墨烯-硅异质结光电探测芯片,所述的探测芯片包括硅衬底;还包括SiO2绝缘层,位于硅衬底周围边界;界面钝化层,位于硅衬底之上;石墨烯层,位于界面钝化层之上;金属纳米结构层,位于石墨烯层之上,所述的金属纳米结构尺寸为20-1000nm。
与现有的技术相比,本发明的石墨烯-硅异质结光电探测芯片的制作方法,至少包括以下技术效果:本发明提出的具有表面等离激元共振特性的金属纳米结构的引入,一方面可利用表面等离激元共振的散射效应,有效提升石墨烯-硅异质界面的局域光场密度、显著提升石墨烯-硅异质结的光吸收效率,从而提升探测芯片的光响应度;另一方面,利用等离激元共振与异质结光生载流子的耦合效应,可显著提升探测芯片光响应速率。此外,通过调控金属纳米粒子的尺寸等参数,可实现不同频率波段的共振,进而实现特定波段光谱光响应度的提升,扩展探测芯片的光谱选择特性。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1:实施例剖面示意图;
图2:实施例平面示意图;
图3:实施例到步骤S2的剖面示意图;
图4:实施例到步骤S3的剖面示意图;
图5:实施例到步骤S6的剖面示意图;
图6:实施例到步骤S8的剖面示意图;
图7:实施例具有金属纳米颗粒修饰的石墨烯表面SEM形貌图;
图8:采用FDTD模拟的有无金属纳米颗粒修饰时,石墨烯/硅异质界面区域的光吸收对比图;
图9:实施例与对比例随时间变化光照开关时的光电流响应曲线,其中光源为850nm LED,光强度为1mW/cm2;横坐标为时间,纵坐标为电流
图10:实施例与对比例随入射光功率强度连续变化时的光电流响应;横坐标为光强度,纵坐标为电流强度;
图11:实施例与对比例随入射光功率强度连续变化时的光响应度;横坐标为光强度,纵坐标为光响应度。
图中各标号标示:1.硅衬底;2.二氧化硅层;3.石墨烯;4.界面钝化层;5.金属纳米结构;6.上电极;7.背电极
具体实施方式
为了能彻底了解本发明,将在下列的描述中提出详尽的步骤及组成,另外,众所皆知的组成或步骤并未描述与细节中,以避免造成本发明不必要的限制。本发明的较好实施例详细描述如下,然而除了这些详细描述外,本发明还可广泛地施行在其他实施例中,且本发明的范围不受限定,以权利要求书范围为准。
本发明提出一种适用于石墨烯-硅异质结型光电探测芯片的制作方法,通过优化器件结构、引入表面等离激元共振效应来提升石墨烯-硅异质结界面的光吸收效率,进而提升器件光响应度、线性响应范围、响应速率等性能参数。
实施例:制备增强型石墨烯-硅异质结光电探测芯片:
S1.首先将4寸N型硅衬底进行RCA标准清洗,然后在热氧化炉中对硅片表面进行氧化,氧化层的厚度为300nm;之后将氧化后的硅片在丙酮、酒精、去离子水中各超声清洗20分钟;
S2.将清洗后的硅片进行光刻作业,在硅片正表面制备出阵列型的窗口图形区域;显影后,窗口区域露出;将显影、后烘后的晶片在BOE溶液中腐蚀2分钟,去除窗口区域和背面的SiO2层;去胶后在晶片正面窗口区域露出N型硅,该区域即为后续光电探测芯片的光吸收有源区,如图3所示,其中窗口区周围为未腐蚀的SiO2层;
S3.将完成上述步骤的晶片放置在湿度约为20%的干燥柜中5天,在暴露的硅窗口区自然氧化生成1-2nm后的界面钝化层SiO2,如图4所示的芯片单元;
S4.选用铜基CVD生长的3-6层的石墨烯薄膜,裁剪成7cm*7cm大小的片;将裁剪的铜基石墨烯固定在玻璃基板上;采用旋涂的方法在铜基石墨烯片表面旋涂合成的金纳米颗粒溶液,平均直径约为200nm,溶剂为氯苯,质量分数约为5%,旋涂速度为低速500rpm,5s,高速3000rpm,30s;之后将铜基石墨烯片在热板上干燥5分钟,温度为40℃;
S5.在上述干燥后的铜基石墨烯片表面再次旋涂PMMA溶液,浓度为10mg/ml,旋涂速度为5000rpm,时间为30s,旋涂完成后在热板上40℃干燥5分钟;
S6.采用湿法转移技术将石墨烯层转移至上述步骤S3制备的晶片上,制备出如图5所示的芯片单元。其中刻蚀液选用Marble's Reagent(CuSO4/HCl/H2O:10g/50mL/50mL);
S7.将转移石墨烯后的晶片放置在干燥柜中自然干燥8小时;之后将干燥后的晶片在丙酮溶液中浸泡2小时去除PMMA,溶液温度为40℃,接下来采用酒精和去离子水清洗晶片,并采用氮气吹干;
S8.将上述晶片采用光刻的方法结合磁控溅射,在晶片上下表面蒸镀Ti/Au电极,厚度为Ti/Au:5nm/100nm,在晶片上制备出如图6的芯片单元;
S9.采用激光划片,在晶片上分离单个探测芯片单元。
对比例:制备方法和实施例基本相同,所不同的是步骤S4中未旋涂金纳米粒子。
从图8的理论模拟可以看出,在石墨烯-硅异质界面的表面引入金属纳米结构修饰后,得益于金属纳米结构表面等离激元共振的局域场增强特性,显著提升了异质结界面的光子吸收强度,理论上可显著提升石墨烯-硅异质结光电探测芯片的光响应电流。图9显示了增强型石墨烯-硅异质结光电探测芯片实施例与对比例的开关光响应电流,可以看出,相比于对比例,引入表面等离激元共振特性的实施例显著提升了器件的光电流响应。从图10中还可以看出,引入等离激元共振后,器件不光在光响应强度方面有显著的提升,线性响应区间也有进一步的扩大。通过测试光电流响应,计算所得的光响应度如图11所示,相比于对比例,引入等离激元共振的实施例在光响应度上有超过20%的性能提升。

Claims (10)

1.增强型石墨烯硅-异质结光电探测芯片的制作方法,包括步骤:
S1.提供具有N型掺杂的硅衬底;
S2.在所述的N型硅衬底表面生长一层SiO2绝缘层;
S3.通过光刻方法和刻蚀液体,在衬底上表面腐蚀部分SiO2绝缘层,制备出具有窗口区域裸露的N型硅;
S4.在衬底上表面生长或转移界面钝化层;
S5.在衬底上表面转移具有金属纳米结构修饰的石墨烯层;
S6.在衬底下表面和衬底上表面未刻蚀SiO2层的区域蒸镀金属电极。
2.根据权利要求1所述的增强型石墨烯硅-异质结光电探测芯片的制备方法,其特征在于所述的衬底为N型衬底,电阻率为0.01~10Ω·cm。
3.根据权利要求1所述的增强型石墨烯硅-异质结光电探测芯片的制备方法,其特征在于:所述的界面钝化层材料包括但不限于SiO2、Si3N4、hBN、AlN中的一种;所述的界面钝化层材料厚度为0.1nm-5nm。
4.根据权利要求1所述的增强型石墨烯-硅异质结光电探测芯片的制备方法,其特征在于:所述的具有金属纳米结构修饰的石墨烯层,石墨烯的层数为1-10层。
5.根据权利要求1所述的增强型石墨烯硅-异质结光电探测芯片的制备方法,其特征在于:所述的金属纳米结构,是通过包括纳米球刻蚀技术、光刻、纳米压印、金属薄膜退火技术、旋涂合成的金属纳米粒子在内的方法对石墨烯层进行修饰得到。
6.据权利要求1所述的增强型石墨烯硅-异质结光电探测芯片的制备方法,其特征在于:所述的金属纳米材料为Ag、Au、Al、Rh、Ni、Pt中的一种或任意组合或类金属材料。
7.据权利要求1所述的增强型石墨烯硅-异质结光电探测芯片的制备方法,其特征在于:所述的金属纳米结构尺寸为20-1000nm。
8.据权利要求1所述的增强型石墨烯硅-异质结光电探测芯片的制备方法,其特征在于:所述的转移具有金属纳米结构修饰的石墨烯层,转移方法可采用湿法转移或干法转移中的一种。
9.一种石墨烯-硅异质结光电探测芯片,所述的探测芯片包括硅衬底;其特征在于:还包括SiO2绝缘层,位于硅衬底周围边界;界面钝化层,位于硅衬底之上;石墨烯层,位于界面钝化层之上;金属纳米结构层,位于石墨烯层之上,所述的金属纳米结构尺寸为20-1000nm。
10.如权利要求9所述的一种石墨烯-硅异质结光电探测芯片,其特征在于:所述的金属为Ag、Au、Al、Rh、Ni、Pt中的一种或任意组合或类金属材料。
CN201710976199.5A 2017-10-19 2017-10-19 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法 Pending CN107768452A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710976199.5A CN107768452A (zh) 2017-10-19 2017-10-19 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710976199.5A CN107768452A (zh) 2017-10-19 2017-10-19 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法

Publications (1)

Publication Number Publication Date
CN107768452A true CN107768452A (zh) 2018-03-06

Family

ID=61269097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710976199.5A Pending CN107768452A (zh) 2017-10-19 2017-10-19 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN107768452A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630782A (zh) * 2018-05-14 2018-10-09 合肥工业大学 一种宽探测波段双重等离子工作光电探测器及其制备方法
CN109768114A (zh) * 2018-12-04 2019-05-17 东南大学 一种基于石墨烯-半导体异质结的位敏感光电探测器
CN110137301A (zh) * 2019-04-25 2019-08-16 淮阴工学院 基于金属阵列结构的石墨烯光电探测器及其制备方法
CN110514307A (zh) * 2019-08-30 2019-11-29 金华伏安光电科技有限公司 基于二维材料光热电效应的红外探测器及系统
CN111146299A (zh) * 2019-12-17 2020-05-12 五邑大学 一种p型AlN薄膜及其制备方法与应用
CN112002785A (zh) * 2020-09-09 2020-11-27 合肥工业大学 一种硅基微腔窄带近红外光电探测器
CN113030026A (zh) * 2021-03-07 2021-06-25 天津理工大学 一种lspr多波长窄带可调谐传感器
CN113410317A (zh) * 2021-06-22 2021-09-17 电子科技大学 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN115172511A (zh) * 2022-07-18 2022-10-11 西安电子科技大学 一种具有石墨烯和极性j-tmd插入层的氧化镓日盲紫外探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201221A (zh) * 2014-08-28 2014-12-10 中国科学院半导体研究所 基于石墨烯-金属纳米颗粒复合材料的太阳能电池
CN104600131A (zh) * 2015-01-16 2015-05-06 浙江大学 一种界面钝化的石墨烯/硅光电探测器及其制备方法
CN104851929A (zh) * 2015-04-02 2015-08-19 中国人民解放军国防科学技术大学 基于石墨烯表面等离激元的光电材料可调吸收增强层
CN105206689A (zh) * 2015-09-18 2015-12-30 中国科学院上海微系统与信息技术研究所 一种基于薄膜半导体-石墨烯异质结的光电探测器制备方法
CN106684199A (zh) * 2017-02-13 2017-05-17 中北大学 金属微纳超结构表面等离激元超快探测结构

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201221A (zh) * 2014-08-28 2014-12-10 中国科学院半导体研究所 基于石墨烯-金属纳米颗粒复合材料的太阳能电池
CN104600131A (zh) * 2015-01-16 2015-05-06 浙江大学 一种界面钝化的石墨烯/硅光电探测器及其制备方法
CN104851929A (zh) * 2015-04-02 2015-08-19 中国人民解放军国防科学技术大学 基于石墨烯表面等离激元的光电材料可调吸收增强层
CN105206689A (zh) * 2015-09-18 2015-12-30 中国科学院上海微系统与信息技术研究所 一种基于薄膜半导体-石墨烯异质结的光电探测器制备方法
CN106684199A (zh) * 2017-02-13 2017-05-17 中北大学 金属微纳超结构表面等离激元超快探测结构

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108630782A (zh) * 2018-05-14 2018-10-09 合肥工业大学 一种宽探测波段双重等离子工作光电探测器及其制备方法
CN109768114A (zh) * 2018-12-04 2019-05-17 东南大学 一种基于石墨烯-半导体异质结的位敏感光电探测器
CN110137301A (zh) * 2019-04-25 2019-08-16 淮阴工学院 基于金属阵列结构的石墨烯光电探测器及其制备方法
CN110514307A (zh) * 2019-08-30 2019-11-29 金华伏安光电科技有限公司 基于二维材料光热电效应的红外探测器及系统
CN110514307B (zh) * 2019-08-30 2020-11-06 河南三元光电科技有限公司 基于二维材料光热电效应的红外探测器及系统
CN111146299A (zh) * 2019-12-17 2020-05-12 五邑大学 一种p型AlN薄膜及其制备方法与应用
CN112002785A (zh) * 2020-09-09 2020-11-27 合肥工业大学 一种硅基微腔窄带近红外光电探测器
CN113030026A (zh) * 2021-03-07 2021-06-25 天津理工大学 一种lspr多波长窄带可调谐传感器
CN113030026B (zh) * 2021-03-07 2022-11-04 天津理工大学 一种lspr多波长窄带可调谐传感器
CN113410317A (zh) * 2021-06-22 2021-09-17 电子科技大学 一种具有表面等离激元的二维材料异质结光电探测器及其制备方法
CN115172511A (zh) * 2022-07-18 2022-10-11 西安电子科技大学 一种具有石墨烯和极性j-tmd插入层的氧化镓日盲紫外探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN107768452A (zh) 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法
Luo et al. Near‐infrared light photovoltaic detector based on GaAs nanocone array/monolayer graphene schottky junction
CN106169516B (zh) 一种基于石墨烯的硅基紫外光电探测器及其制备方法
CN107316915B (zh) 可见光波段的集成石墨烯二硫化钼的光电探测器及其制备方法
Bae et al. Si nanowire metal–insulator–semiconductor photodetectors as efficient light harvesters
CN107452823B (zh) 一种微米线阵列光探测器及其制备方法
CN107221575B (zh) 基于二维材料垂直肖特基结近红外探测器及制备方法
CN102509743B (zh) 基于二氧化钛/钛酸锶异质结的紫外光探测器及制备方法
CN111613691B (zh) 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN102163639A (zh) TiO2-ZrO2复合氧化物薄膜紫外光探测器及其制备方法
WO2012055302A1 (zh) 电极及其制造方法
Sgrignuoli et al. Purcell effect and luminescent downshifting in silicon nanocrystals coated back-contact solar cells
Sarkar et al. Enhanced UV–visible photodetection characteristics of a flexible Si membrane-ZnO heterojunction utilizing piezo-phototronic effect
CN111341875A (zh) 一种石墨烯/二硒化钯/硅异质结自驱动光电探测器
CN110289335A (zh) 基于In2Se3/Si垂直结构异质结的自驱动近红外长波光电探测器及其制作方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
Ferhati et al. Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector
CN107810560A (zh) 用于太阳能电池的材料结构体、太阳能电池、以及制造材料结构体的方法
Tong et al. Plasmonic-enhanced Si Schottky barrier solar cells
Sun et al. Research on piezo-phototronic effect in ZnO/AZO heterojunction flexible ultraviolet photodetectors
CN111211186A (zh) 一种提高光电探测性能的MoS2光电晶体管及其制备方法
Li et al. Enhanced ultraviolet photoresponse in a graphene-gated ultra-thin Si-based photodiode
CN101399292B (zh) 一种用于光伏发电的高温热辐射集成器件
Wang et al. Surface state induced filterless SWIR narrow-band Si photodetector
CN110611010B (zh) 一种硅纳米晶/石墨烯宽光谱光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180306

WD01 Invention patent application deemed withdrawn after publication