CN110137301A - 基于金属阵列结构的石墨烯光电探测器及其制备方法 - Google Patents

基于金属阵列结构的石墨烯光电探测器及其制备方法 Download PDF

Info

Publication number
CN110137301A
CN110137301A CN201910337753.4A CN201910337753A CN110137301A CN 110137301 A CN110137301 A CN 110137301A CN 201910337753 A CN201910337753 A CN 201910337753A CN 110137301 A CN110137301 A CN 110137301A
Authority
CN
China
Prior art keywords
graphene
optical waveguide
array
array structure
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910337753.4A
Other languages
English (en)
Inventor
蒋青松
朱杰
于银山
居勇峰
杨潇
朱铁柱
曹苏群
季仁东
张宇林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN201910337753.4A priority Critical patent/CN110137301A/zh
Publication of CN110137301A publication Critical patent/CN110137301A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明涉及集成芯片领域,公开了一种基于金属阵列结构的石墨烯光电探测器及其制备方法,包括:衬底(1)、形成于衬底(1)上的光波导(2),光波导(2)的两端分别连接光输入端(3)和宽带光反射器件(4),在光波导(2)上表面覆盖有阵列石墨烯纳米带(6),阵列石墨烯纳米带(6)与光波导(2)的传输方向垂直设置;在阵列石墨烯纳米带(6)两端、光波导(2)两侧还分别覆盖第一电极(7)和第二电极(8);在阵列石墨烯纳米带(6)中的石墨烯纳米带上表面上、光波导(2)正上方还覆盖有金属颗粒阵列结构(9)。通过本方法制备的探测器的暗电流较低,响应度较高,光‑电响应带宽较大。

Description

基于金属阵列结构的石墨烯光电探测器及其制备方法
技术领域
本发明涉及集成芯片领域,特别涉及一种基于金属阵列结构的石墨烯光电探测器及其制备方法。
背景技术
在光-电子集成芯片中,光-电探测器是接收端核心芯片之一,它将高速光数据转换成电信号。光-电探测器一般来说是利用材料具有热电效应、光电效应、电吸收效应,来探测光的强度大小。在光通信波段,目前基于的主要材料体系有III-V族材料以及锗(Ge)。虽然基于这些材料体系的探测器取得具有良好的性能并且实现商用化,但是还是有不足之处,例如,光学相应波长不够宽,器件尺寸较大,制备工艺复杂,成本较高等。
石墨烯作为一种新型材料具有优异的光电子学特性,例如,宽带光响应、与光的强相互作用,超快载流子迁移速率等,结合硅、氮化硅等材料的集成光波导结构,可以实现对光的超宽带、高响应度探测。石墨烯的载流子迁移速率很快,在充分设计优化RC电路后,探测器的3dB光电响应带宽,理论上可到500GHz以上,具有十分诱人的产品化应用前景和商业价值。
发明内容
发明目的:针对现有技术中存在的问题,本发明提供一种基于金属阵列结构的石墨烯光电探测器及其制备方法,通过本方法制备的探测器的暗电流较低,响应度较高,光-电响应带宽较大。
技术方案:本发明提供了一种基于金属阵列结构的石墨烯光电探测器及其制备方法,包括:衬底、形成于衬底上的光波导,所述光波导的两端分别连接光输入端和宽带光反射器件,在所述光波导上表面覆盖有阵列石墨烯纳米带,所述阵列石墨烯纳米带与所述光波导的传输方向垂直设置;在所述阵列石墨烯纳米带两端、所述光波导两侧还分别覆盖第一电极和第二电极;在所述阵列石墨烯纳米带中的石墨烯纳米带上表面上、所述光波导正上方还覆盖有金属颗粒阵列结构。
本发明还提供了一种基于金属阵列结构的石墨烯光电探测器的制备方法,包括以下步骤:S1:在所述衬底上表面通过电子束曝光或者光刻以及ICP(电感耦合等离子体)刻蚀工艺制备出所述光波导;S2:在所述光波导上沉积低折射率材料层,然后利用化学机械抛光技术,实现光波导表面以及两侧平坦化;S3:将片状单层或者多层石墨烯机械转移至所述平坦化后的光波导上表面,利用电子束曝光或者光刻、氧等离子刻蚀工艺,除去多余石墨烯,形成所述阵列石墨烯纳米带;S4:制备带有基底的二维聚苯乙烯光子晶体;S5:在所述二维聚苯乙烯光子晶体上沉积用于制备所述金属颗粒阵列结构的金属薄膜;S6:用四氢呋喃溶液除去所述二维聚苯乙烯光子晶体,得具有基底的金属颗粒阵列结构;S7:用聚甲基丙烯酸甲酯辅助湿法转移技术将所述金属颗粒阵列结构转移至所述阵列石墨烯纳米带的上表面;S8:去除所述聚甲基丙烯酸甲酯;S9:在所述阵列石墨烯纳米带的两端、所述光波导的两侧沉积金属材料层,形成所述第一电极和所述第二电极。
优选地,金属颗粒阵列结构为二维六角点阵结构。
优选地,各所述金属颗粒阵列结构中相邻两个六角点阵单元之间的中心间距a为50nm~500nm。
优选地,所述金属颗粒阵列结构中,各金属颗粒之间不连续,粒径为10nm-50nm。
优选地,所述宽带光反射器件的反射率大于80%。宽带反射器件的主要作用是将没有被光波导区域吸收的光再重新反射回去,增强阵列石墨烯纳米带对光的进一步吸收,提高本探测器的响应度,所以该宽带光反射器件的反射率要求较高,以能够对光起到反射作用。
优选地,在所述阵列石墨烯纳米带中,相邻两个石墨烯纳米带的中心间距h为40nm-2um。
优选地,在所述阵列石墨烯纳米带中,每个石墨烯纳米带在X方向的尺寸为100nm-1000nm,Y方向的尺寸为宽度为300nm-1000nm,Z方向的尺寸为0.34nm-3nm。
优选地,所述第一电极和所述第二电极距离所述光波导的最小间距i均大于500nm。
优选地,所述光波导的宽度e为350nm-1000nm,厚度f为50nm-500nm,底面距离所述衬底的底面之间的间距g为2um-6um。
工作原理及有益效果:本发明中,携带高速电信号的光载波,利用光输入端耦合进入光波导,在光波导区域,由于波导上面覆盖阵列石墨烯纳米带结构,石墨烯纳米带会吸收光子,产生载流子,继而形成电流;第一电极-阵列石墨烯纳米带-第二电极形成回路,可以将高速的光信号转化为高速电信号,实现探测,即光-电转化过程;金属颗粒阵列结构、阵列石墨烯纳米带以及光波导三者形成表面等离子共振,增强石墨烯和光场的相互作用。若从光输入端耦合进入光波导区域的光没有被光波导区域完全吸收,则位于光波导区域另一端的宽带反射器件会将这部分光重新反射到光波导探测区域内,阵列石墨烯纳米带对该部分光进一步吸收,提高本探测器的响应度。
本基于金属阵列结构的石墨烯光电探测器中的阵列石墨烯纳米带(光栅结构),一方面由于是纳米带状石墨烯结构,使得其能隙不为零,可以降低石墨烯探测器的暗电流;另一方面,石墨烯阵列周期性结构,形成光栅,会降低波导里光的速度,继而增强石墨烯和光相互作用,提高探测器响应度;此外,金属颗粒阵列结构、阵列石墨烯纳米带以及光波导三者形成表面等离子共振,增强石墨烯和光场的相互作用;宽带反射器件会将没有被光波导区域吸收的光重新反射到光波导区域内,阵列石墨烯纳米带对该部分光进一步吸收,提高本探测器的响应度。该石墨烯探测器主要应用于光波长为0.8um-2.0um的光通信波段。
本发明中,衬底优选使用低折射率的材料制成,可为二氧化硅、氮化硅、氮化铝等,本发明中衬底为绝缘体上硅,该绝缘体上硅的结构从下至上依次为250um的硅、3~5um的二氧化硅以及220~3000nm的硅。相对于衬底材料,光波导优选使用高折射率材料制成,常见的材料有硅、氮化硅、砷化镓、氮化铝、铌酸锂、氮化镓、磷化铟等;这种高、低折射率材料分布才会形成光波导。
附图说明
图1为基于金属阵列结构的石墨烯光电探测器的整体结构俯视示意图;
图2为沿图1中C1面的截面示意图;
图3为沿图1中C2面的截面示意图;
图4为沿图1中C3面的截面示意图;
图5为金属颗粒阵列结构的尺寸结构示意图;
图6为基于金属阵列结构的石墨烯光电探测器的探测区域尺寸图;
图7为金属颗粒阵列结构的制备过程示意图。
具体实施方式
下面结合附图对本发明进行详细的介绍。
本实施方式提供了一种基于金属阵列结构的石墨烯光电探测器,如图1至6所示,衬底1上具有宽度e为350nm-1000nm、厚度f为50nm-500nm的光波导2,光波导2的底面距离衬底1的底面之间的间距g为2um-6um;光波导2的两端分别连接光输入端3和宽带光反射器件4,宽带光反射器件4没有具体的结构,在实际应用中,它类似于黑箱,黑箱里面不管是什么结构,只要能有效反射光就可以。在光波导2上表面覆盖有阵列石墨烯纳米带6,阵列石墨烯纳米带6与光波导2的传输方向垂直设置,在阵列石墨烯纳米带6中,相邻两个石墨烯纳米带的中心间距h为40nm-2um,每个石墨烯纳米带在X方向的尺寸为100nm-1000nm,Y方向的尺寸为300nm-1000nm,Z方向的尺寸为0.34nm-3nm。
在阵列石墨烯纳米带6两端、光波导2两侧还分别覆盖金属材料的第一电极7和第二电极8,第一电极7和第二电极8距离光波导2的最小间距i均大于500nm。在阵列石墨烯纳米带6中的石墨烯纳米带上表面上、光波导2正上方还覆盖有二维六角点阵结构的金属颗粒阵列结构9,该金属颗粒阵列结构9中各金属颗粒的粒径为10nm-50nm,相邻两个六角点阵单元之间的中心间距a为50nm~500nm。
本实施方式中的基于金属阵列结构的石墨烯光电探测器的工作原理如下:携带高速电信号的光载波,利用光输入端3耦合进入光波导2,在光波导2的探测区域,由于光波导2上面覆盖阵列石墨烯纳米带6的结构,石墨烯纳米带6会吸收光子,产生载流子,继而形成电流;第一电极7-阵列石墨烯纳米带6-第二电极8形成回路,可以将高速的光信号转化为高速电信号,实现探测,即光-电转化过程;金属颗粒阵列结构9、阵列石墨烯纳米带6以及光波导2三者形成表面等离子共振,增强石墨烯和光场的相互作用。若从光输入端3耦合进入光波导2区域的光没有被光波导2区域完全吸收,则位于光波导2区域另一端的宽带反射器件4会将这部分光重新反射到光波导2区域内,阵列石墨烯纳米带6对该部分光进一步吸收,提高本探测器的响应度。
上述基于金属阵列结构的石墨烯光电探测器的制备方法,包括以下步骤:
S1:在衬底1上表面通过电子束曝光或者光刻以及ICP刻蚀工艺制备出光波导;
S2:在光波导2上沉积低折射率材料层,然后利用化学机械抛光技术,实现光波导2表面以及两侧平坦化;
S3:将片状单层或者多层石墨烯机械转移至平坦化后的光波导上表面,利用电子束曝光或者光刻、氧等离子刻蚀工艺,除去多余石墨烯,形成阵列石墨烯纳米带6;
S4:采用较为成熟的技术制备带有基底的二维聚苯乙烯光子晶体;
S5:利用磁控溅射、电子束蒸镀、原子层沉积、热蒸镀等技术,在二维聚苯乙烯光子晶体上沉积用于制备金属颗粒阵列结构的、厚度为10nm ~50nm金属薄膜,比如金膜或银膜;如图7;
S6:用四氢呋喃溶液除去二维聚苯乙烯光子晶体,得具有基底的金属颗粒阵列结构;
S7:用聚甲基丙烯酸甲酯辅助湿法转移技术将金属颗粒阵列结构转移至阵列石墨烯纳米带的上表面;
S8:去除聚甲基丙烯酸甲酯;
S9:在阵列石墨烯纳米带6的两端、光波导2的两侧沉积金属材料层,形成第一电极7和第二电极8。
至此,完成基于金属阵列结构的石墨烯光电探测器的制备。
上述实施方式只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所做的等效变换或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种基于金属阵列结构的石墨烯光电探测器,其特征在于,包括:衬底(1)、形成于所述衬底(1)上的光波导(2),所述光波导(2)的两端分别连接光输入端(3)和宽带光反射器件(4),在所述光波导(2)上表面覆盖有阵列石墨烯纳米带(6),所述阵列石墨烯纳米带(6)与所述光波导(2)的传输方向垂直设置;在所述阵列石墨烯纳米带(6)两端、所述光波导(2)两侧还分别覆盖第一电极(7)和第二电极(8);在所述阵列石墨烯纳米带(6)中的石墨烯纳米带上表面上、所述光波导(2)正上方还覆盖有金属颗粒阵列结构(9)。
2.根据权利要求1所述的基于金属阵列结构的石墨烯光电探测器,其特征在于,所述金属颗粒阵列结构(9)为二维六角点阵结构。
3.根据权利要求2所述的基于金属阵列结构的石墨烯光电探测器,其特征在于,各所述金属颗粒阵列结构(9)中相邻两个六角点阵单元之间的中心间距a为50nm~500nm。
4.根据权利要求1所述的一种基于金属阵列结构的石墨烯光电探测器及其制备方法,其特征在于,所述金属颗粒阵列结构(9)中,各金属颗粒之间不连续,粒径为10nm-50nm。
5.根据权利要求1所述的基于金属阵列结构的石墨烯光电探测器,其特征在于,所述宽带光反射器件(4)的反射率大于80%。
6.根据权利要求1至5中任一项所述的基于金属阵列结构的石墨烯光电探测器,其特征在于,在所述阵列石墨烯纳米带(6)中,相邻两个石墨烯纳米带的中心间距h为40nm-2um。
7.根据权利要求1至5中任一项所述的基于金属阵列结构的石墨烯光电探测器,其特征在于,在所述阵列石墨烯纳米带(6)中,每个石墨烯纳米带在X方向的尺寸为100nm-1000nm,Y方向的尺寸为300nm-1000nm,Z方向的尺寸为0.34nm-3nm。
8.根据权利要求1至5中任一项所述的基于金属阵列结构的石墨烯光电探测器,其特征在于,所述第一电极(7)和所述第二电极(8)距离所述光波导(2)的最小间距i均大于500nm。
9.根据权利要求1至5任一项所述的基于金属阵列结构的石墨烯光电探测器,其特征在于,所述光波导(2)的宽度e为350nm-1000nm,厚度f为50nm-500nm,底面距离所述衬底(1)的底面之间的间距g为2um-6um。
10.根据权利要求1至9中任一项所述的基于金属阵列结构的石墨烯光电探测器的制备方法,其特征在于,包括以下步骤:
S1:在所述衬底(1)上表面通过电子束曝光或者光刻以及ICP刻蚀工艺制备出所述光波导(2);
S2:在所述光波导(2)上沉积低折射率材料层,然后利用化学机械抛光技术,实现光波导表面以及两侧平坦化;
S3:将片状单层或者多层石墨烯机械转移至所述平坦化后的光波导上表面,利用电子束曝光或者光刻、氧等离子刻蚀工艺,除去多余石墨烯,形成所述阵列石墨烯纳米带(6);
S4:制备带有基底的二维聚苯乙烯光子晶体;
S5:在所述二维聚苯乙烯光子晶体上沉积用于制备所述金属颗粒阵列结构的金属薄膜;
S6:用四氢呋喃溶液除去所述二维聚苯乙烯光子晶体,得具有基底的金属颗粒阵列结构;
S7:用聚甲基丙烯酸甲酯辅助湿法转移技术将所述金属颗粒阵列结构转移至所述阵列石墨烯纳米带的上表面;
S8:去除所述聚甲基丙烯酸甲酯;
S9:在所述阵列石墨烯纳米带(6)的两端、所述光波导(2)的两侧沉积金属材料层,形成所述第一电极(7)和所述第二电极(8)。
CN201910337753.4A 2019-04-25 2019-04-25 基于金属阵列结构的石墨烯光电探测器及其制备方法 Pending CN110137301A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910337753.4A CN110137301A (zh) 2019-04-25 2019-04-25 基于金属阵列结构的石墨烯光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910337753.4A CN110137301A (zh) 2019-04-25 2019-04-25 基于金属阵列结构的石墨烯光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN110137301A true CN110137301A (zh) 2019-08-16

Family

ID=67571036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910337753.4A Pending CN110137301A (zh) 2019-04-25 2019-04-25 基于金属阵列结构的石墨烯光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110137301A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514307A (zh) * 2019-08-30 2019-11-29 金华伏安光电科技有限公司 基于二维材料光热电效应的红外探测器及系统
CN110824732A (zh) * 2019-12-17 2020-02-21 华中科技大学 一种石墨烯电光调制器
CN110993800A (zh) * 2019-12-16 2020-04-10 北京元芯碳基集成电路研究院 一种光电探测器及其制备方法
CN114583003A (zh) * 2022-04-29 2022-06-03 浙江大学 基于硅/石墨烯纳米膜/锗的垂直光电探测器及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089454A2 (en) * 2012-12-07 2014-06-12 The Trustees Of Columbia University In The City Of New York Systems and methods for graphene photodetectors
CN104795410A (zh) * 2015-04-15 2015-07-22 重庆大学 基于光波导的石墨烯纳米带阵列太赫兹传感器
CN105118887A (zh) * 2015-07-14 2015-12-02 合肥工业大学 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法
CN105655420A (zh) * 2016-01-12 2016-06-08 浙江大学 石墨烯光吸收特性的玻璃基波导型光电探测器及制备方法
CN106328751A (zh) * 2015-07-02 2017-01-11 中兴通讯股份有限公司 硅基锗光电探测器
CN107482072A (zh) * 2016-06-07 2017-12-15 香港大学 具有亚带隙探测能力的石墨烯基波长选择光探测器
CN107768452A (zh) * 2017-10-19 2018-03-06 厦门大学 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法
WO2018223068A1 (en) * 2017-06-01 2018-12-06 The Regents Of The University Of California Metallo-graphene nanocomposites and methods for using metallo-graphene nanocomposites for electromagnetic energy conversion

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014089454A2 (en) * 2012-12-07 2014-06-12 The Trustees Of Columbia University In The City Of New York Systems and methods for graphene photodetectors
CN104795410A (zh) * 2015-04-15 2015-07-22 重庆大学 基于光波导的石墨烯纳米带阵列太赫兹传感器
CN106328751A (zh) * 2015-07-02 2017-01-11 中兴通讯股份有限公司 硅基锗光电探测器
CN105118887A (zh) * 2015-07-14 2015-12-02 合肥工业大学 一种铟纳米颗粒阵列修饰的石墨烯/硒化锌纳米带肖特基结蓝光光电开关及其制备方法
CN105655420A (zh) * 2016-01-12 2016-06-08 浙江大学 石墨烯光吸收特性的玻璃基波导型光电探测器及制备方法
CN107482072A (zh) * 2016-06-07 2017-12-15 香港大学 具有亚带隙探测能力的石墨烯基波长选择光探测器
WO2018223068A1 (en) * 2017-06-01 2018-12-06 The Regents Of The University Of California Metallo-graphene nanocomposites and methods for using metallo-graphene nanocomposites for electromagnetic energy conversion
CN107768452A (zh) * 2017-10-19 2018-03-06 厦门大学 一种增强型石墨烯‑硅异质结光电探测芯片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马成举: "《微纳米光纤及其在传感技术中的应用》", 30 November 2015, 国防工业出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110514307A (zh) * 2019-08-30 2019-11-29 金华伏安光电科技有限公司 基于二维材料光热电效应的红外探测器及系统
CN110514307B (zh) * 2019-08-30 2020-11-06 河南三元光电科技有限公司 基于二维材料光热电效应的红外探测器及系统
CN110993800A (zh) * 2019-12-16 2020-04-10 北京元芯碳基集成电路研究院 一种光电探测器及其制备方法
CN110824732A (zh) * 2019-12-17 2020-02-21 华中科技大学 一种石墨烯电光调制器
CN114583003A (zh) * 2022-04-29 2022-06-03 浙江大学 基于硅/石墨烯纳米膜/锗的垂直光电探测器及制备方法

Similar Documents

Publication Publication Date Title
CN110137301A (zh) 基于金属阵列结构的石墨烯光电探测器及其制备方法
JP5094385B2 (ja) 高応答性高帯域金属−半導体−金属光電デバイス
Van Lare et al. Mode coupling by plasmonic surface scatterers in thin-film silicon solar cells
WO2012024793A1 (en) Apparatus for manipulating plasmons
CN111886704B (zh) 光检测器
Cansizoglu et al. A new paradigm in high-speed and high-efficiency silicon photodiodes for communication—Part I: Enhancing photon–material interactions via low-dimensional structures
CN110133771A (zh) 一种利用结构对称性破缺实现超窄带吸收和传感的方法
Bora et al. Plasmonic black metals in resonant nanocavities
CN103325862B (zh) 一种双色量子阱红外光探测器
CN111180537B (zh) 集成有多端口光波导的低维材料异质结光电探测器
CN102569485B (zh) 近红外波段全硅基纳米光电探测器
CN113270517A (zh) 集成有波导的低维材料异质结光电探测器的制备方法
Mortazavifar et al. Optimization of light absorption in ultrathin elliptical silicon nanowire arrays for solar cell applications
CN202405298U (zh) 一种近红外波段全硅基纳米光电探测器
Liu et al. Enhanced light trapping in Ge-on-Si-on-insulator photodetector by guided mode resonance effect
CN102916071B (zh) 一种光电二极管及其制作方法
KR102298626B1 (ko) 광자 검출기
CN110112250A (zh) 石墨烯光-电探测器及其制备方法
US12013287B2 (en) Infrared absorption and detection enhancement using plasmonics
Sabaeian et al. Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section
WO2012044250A1 (en) A photodetector
CN109638104B (zh) 一种石墨烯光电探测器及其制备方法
Du et al. Effect of the grating shape on the response spectrum of quantum well infrared detector focal plane array
Kashyap et al. Enhancement of light absorption in plasmonic based photodetector with double nanograting structure
Laxmi et al. Silicon/graphene–ITO multiple heterojunctions and 1D PhC waveguide-based photodetection for mid-NIR IPE with high responsivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190816