CN111122517A - 一种基于非对称纳米粒子二聚体微纳结构传感器 - Google Patents

一种基于非对称纳米粒子二聚体微纳结构传感器 Download PDF

Info

Publication number
CN111122517A
CN111122517A CN202010014668.7A CN202010014668A CN111122517A CN 111122517 A CN111122517 A CN 111122517A CN 202010014668 A CN202010014668 A CN 202010014668A CN 111122517 A CN111122517 A CN 111122517A
Authority
CN
China
Prior art keywords
micro
asymmetric
nano structure
dimer
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010014668.7A
Other languages
English (en)
Inventor
常颖
孙世能
韩晓微
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University
Original Assignee
Shenyang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University filed Critical Shenyang University
Priority to CN202010014668.7A priority Critical patent/CN111122517A/zh
Publication of CN111122517A publication Critical patent/CN111122517A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons
    • G01N21/554Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种基于非对称纳米粒子二聚体微纳结构传感器,涉及一种二聚体微纳结构传感器,基于非对称纳米粒子二聚体结构中的表面等离激元特性,激发了具有法诺线型的共振吸收光谱。该共振源于连续的表面模式和分立的局域模式。其反射光谱峰值对外部环境异常敏感,同时峰值半高宽狭窄便于在工程探测中便于观察其,灵敏度可以达到667nm/RIU。该方法适用于各种待评的水环境情况,同时该方法结构合理并且概念清楚,灵活简便,可以进行推广。

Description

一种基于非对称纳米粒子二聚体微纳结构传感器
技术领域
本发明涉及一种二聚体微纳结构传感器,特别是涉及一种基于非对称纳米粒子二聚体微纳结构传感器。
背景技术
随着微纳结构加工技术的发展,金属微纳结构特有的表面等离激元特性表现出极大的应用价值。当入射光的波长与金属纳米结构相匹配时,就会发生表面等离激元共振现象。基于表面等离子体共振的金属纳米结构传感器具有测量精度高、易集成的特点,类似光子器件已经被广泛应用于光开关、滤波器、生化传感等领域,与法诺共振相关的结构可调性、传感特性等也表现出很大的应用潜力。法诺共振能够降低能量损耗,得到较高的电场,然而由于表面等离激元共振在可见光波段具有较大的辐射损耗,导致等离子体共振传感器谐振峰较宽,极大地限制了传感器的性能。
发明内容
本发明的目的在于提供一种基于非对称纳米粒子二聚体微纳结构传感器,本发明基于一种独特的微纳复合结构,同时实现了表面等离激元和局域表面等离激元两种共振模式,并且利用两种模式的耦合效应激发了法诺共振吸收光谱线型,法诺共振效应是一种弱耦合作用,其对周围介质的变化异常敏感,利用表面等离激元耦合结构实现法诺共振效应设计了本发明高灵敏传感器。
本发明的目的是通过以下技术方案实现的:
一种基于非对称纳米粒子二聚体微纳结构传感器,所述非对称纳米粒子二聚体结构传感器,包括银纳米粒子二聚体以及银薄膜,每个周期单元由竖直放置的两个非对称纳米粒子组成;该微纳结构置于不同水环境中反射光谱出现消光现象。
所述的一种基于非对称纳米粒子二聚体微纳结构传感器,所述微纳结构中所组成部分均采用金属银。
所述的一种基于非对称纳米粒子二聚体微纳结构传感器,所述传感器晶格周期630 nm,银薄膜厚度40 nm,上层纳米粒子和下层纳米粒子半径分别为150 nm和90 nm 。
本发明的非对称结构的纳米粒子二聚体微纳结构传感器具有如下特点:
1、通过两个非对称结构的纳米粒子二聚体可激发局域等离激元,包括电偶极和电四极模式,即分立模式;
2、通过银薄膜结构激发表面等离激元,即连续模式;
3、通过分立模式和连续模式的吸收光谱相干叠加形成了反对称线型的法诺共振吸收;
4、本发明的吸收峰值点发生在可见光波段;
5、本发明的反射谷值具有窄带特性,在进行水环境折射率检测时具有很好的探测性;
6、本发明纳米传感精度可达到667nm/RIU,可探测外部水环境的细微变化。
附图说明
图1 是本发明提出的非对称纳米粒子二聚体传感器示意图;
图2 是实施例的反射光谱随折射率变化的仿真结果。
具体实施方式
下面结合实施例对本发明的技术方案作进一步说明,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,都属于本申请保护的范围。
本发明一种基于非对称纳米粒子二聚体微纳结构传感器,纳米粒子二聚体由于结构的不对称性,激发了电偶极和电四极局域等离激元,置于金属薄层上同时激发表面等离激元,利用表面模式和局域模式相干叠加实现了法诺共振吸收反对称线型。非对称纳米粒子二聚体的半径分别为90 nm和150 nm,基底金属膜厚度40 nm。激发光分别为687 nm和632nm时分别激发了局域等离激元的电偶极和电四极模式。连续的表面模式和分立的局域等离激元模式相干叠加后形成反对称的法诺共振吸收线型。法诺线型的反射光谱的峰值点对其处于的外部水环境敏感,反射效率均可达到~0.1,有利于提高在检测过程中探测信号灵敏度。
实验上已经制备出竖直放置的纳米粒子二聚体阵列微纳结构,非对称银纳米粒子二聚体结构在不同的激发波长下会出现多极局域共振吸收峰,分别是电偶极和电四极模式。放置于银薄膜上会激发相应波长下的表面等离激元。局域的分立模式和表面的连续模式会在合适频率下形成法诺共振。
实施例
如图1所示,本实施例选用非对称银纳米粒子二聚体,周期阵列单元由两个非对称银纳米粒子竖直放置,周期结构置于基底为石英的薄银薄膜上,入射光垂直照射在银膜表面上。 上层纳米粒子半径150 nm,下层纳米粒子半径90 nm,晶格常数630 nm,银膜厚度为40 nm。
图2是该传感器在不同折射率环境下的反射光谱谷值点,其中
灵敏度=定义为反射谷值对应波长变化率/折射率变化率。
法诺共振对外部环境折射率非常敏感,当外部环境折射率变化范围1.0-2.0,法诺共振反射峰随着折射率的增大发生红移。逐渐尖锐的反对称线型说明了等离激元传感器敏感性的提高。
图2同时可以说明法诺共振波长与折射率的依赖关系。反射点都拥有很高的反射效率(~0.1),这说明非对称二聚体微纳结构传感器不仅具有很高的灵敏度(667 nm/RIU),同时伴随着对应波长的共振吸收。

Claims (3)

1.一种基于非对称纳米粒子二聚体微纳结构传感器,其特征在于,所述非对称纳米粒子二聚体结构传感器,包括银纳米粒子二聚体以及银薄膜,每个周期单元由竖直放置的两个非对称纳米粒子组成;该微纳结构置于不同水环境中反射光谱出现消光现象。
2.根据权利要求1所述的一种基于非对称纳米粒子二聚体微纳结构传感器,其特征在于,所述微纳结构中所组成部分均采用金属银。
3.根据权利要求1所述的一种基于非对称纳米粒子二聚体微纳结构传感器,其特征在于,所述传感器晶格周期630 nm,银薄膜厚度40 nm,上层纳米粒子和下层纳米粒子半径分别为150 nm和90 nm 。
CN202010014668.7A 2020-01-07 2020-01-07 一种基于非对称纳米粒子二聚体微纳结构传感器 Withdrawn CN111122517A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010014668.7A CN111122517A (zh) 2020-01-07 2020-01-07 一种基于非对称纳米粒子二聚体微纳结构传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010014668.7A CN111122517A (zh) 2020-01-07 2020-01-07 一种基于非对称纳米粒子二聚体微纳结构传感器

Publications (1)

Publication Number Publication Date
CN111122517A true CN111122517A (zh) 2020-05-08

Family

ID=70487215

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010014668.7A Withdrawn CN111122517A (zh) 2020-01-07 2020-01-07 一种基于非对称纳米粒子二聚体微纳结构传感器

Country Status (1)

Country Link
CN (1) CN111122517A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366236A (zh) * 2020-11-18 2021-02-12 沈阳大学 光能量收集微结构、感光元件和光学器件
US20220169860A1 (en) * 2020-11-30 2022-06-02 Palo Alto Research Center Incorporated Particles with color effect and compositions including the same
CN115453433A (zh) * 2022-11-09 2022-12-09 南方电网数字电网研究院有限公司 石墨烯非对称结构磁传感器及其参数确定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218900A (ja) * 2006-01-18 2007-08-30 Canon Inc 標的物質検出用の素子
JP2015010825A (ja) * 2013-06-26 2015-01-19 スタンレー電気株式会社 局在プラズモン共鳴チップ
US20180059026A1 (en) * 2016-08-23 2018-03-01 Optokey, Inc. Surface Enhanced Raman Spectroscopy (SERS) Structure For Double Resonance Output
CN108333652A (zh) * 2018-01-30 2018-07-27 东北石油大学 一种基于硅十字架二聚体的单向性光学纳米天线
CN110530820A (zh) * 2019-09-03 2019-12-03 中国人民解放军国防科技大学 基于金纳米天线/石墨烯结构的双波段等离激元传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218900A (ja) * 2006-01-18 2007-08-30 Canon Inc 標的物質検出用の素子
JP2015010825A (ja) * 2013-06-26 2015-01-19 スタンレー電気株式会社 局在プラズモン共鳴チップ
US20180059026A1 (en) * 2016-08-23 2018-03-01 Optokey, Inc. Surface Enhanced Raman Spectroscopy (SERS) Structure For Double Resonance Output
CN108333652A (zh) * 2018-01-30 2018-07-27 东北石油大学 一种基于硅十字架二聚体的单向性光学纳米天线
CN110530820A (zh) * 2019-09-03 2019-12-03 中国人民解放军国防科技大学 基于金纳米天线/石墨烯结构的双波段等离激元传感器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YING CHANG ET AL.: ""Highly Sensitive Plasmonic Sensor Based on Fano Resonance from Silver Nanoparticle Heterodimer Array on a Thin Silver Film", 《PLASMONICS》, vol. 9, no. 3, pages 499 - 505, XP035940612, DOI: 10.1007/s11468-013-9648-1 *
常颖: "银纳米粒子对阵列银膜结构的表面等离激元耦合特性", 《中国博士学位论文全文数据库 (工程科技Ⅰ辑)》, no. 1, pages 020 - 51 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112366236A (zh) * 2020-11-18 2021-02-12 沈阳大学 光能量收集微结构、感光元件和光学器件
US20220169860A1 (en) * 2020-11-30 2022-06-02 Palo Alto Research Center Incorporated Particles with color effect and compositions including the same
US11987711B2 (en) * 2020-11-30 2024-05-21 Xerox Corporation Particles with color effect and compositions including the same
CN115453433A (zh) * 2022-11-09 2022-12-09 南方电网数字电网研究院有限公司 石墨烯非对称结构磁传感器及其参数确定方法
CN115453433B (zh) * 2022-11-09 2023-01-20 南方电网数字电网研究院有限公司 石墨烯非对称结构磁传感器及其参数确定方法

Similar Documents

Publication Publication Date Title
Wang et al. A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
CN111122517A (zh) 一种基于非对称纳米粒子二聚体微纳结构传感器
Wallace et al. Advancements in fractal plasmonics: structures, optical properties, and applications
Long et al. Grating coupled SPR sensors using off the shelf compact discs and sensitivity dependence on grating period
Yu et al. Ultra-wide sensing range plasmonic refractive index sensor based on a two-dimensional circular-hole grating engraved on a gold film
Mansouri et al. Numerical modeling of an integrable and tunable plasmonic pressure sensor with nanostructure grating
Bhatia et al. Surface plasmon resonance based fiber optic refractive index sensor utilizing silicon layer: Effect of doping
Darvishzadeh-Varcheie et al. Electric field enhancement with plasmonic colloidal nanoantennas excited by a silicon nitride waveguide
Chen et al. Theoretical study of surface plasmonic refractive index sensing based on gold nano-cross array and gold nanofilm
Kaplan et al. Tuning optical discs for plasmonic applications
Lertvachirapaiboon et al. Transmission surface plasmon resonance signal enhancement via growth of gold nanoparticles on a gold grating surface
Wang et al. Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy
El Barghouti et al. Effect of MoS2 layer on the LSPR in periodic nanostructures
Sayed et al. Salinity sensor based on 1D photonic crystals by tamm resonance with different geometrical shapes
Urbancova et al. 2D polymer/metal structures for surface plasmon resonance
Oumekloul et al. Evolution of LSPR of gold nanowire chain embedded in dielectric multilayers
Elshorbagy et al. Plasmonic sensors based on funneling light through nanophotonic structures
Xu et al. Hybrid plasmonic structures: design and fabrication by laser means
CN114778493A (zh) 纳米粒子有序排布的等离激元共振传感器及其制作方法
Jia et al. Theoretical study of 2D sub-wavelength structure fabrication via surface plasmon excitation utilizing the enhanced Kretschmann structure combined with sample rotation
Shen et al. Plasmonic Mach–Zehnder interferometric sensor based on a metal–insulator-metal nanostructure
Nguyen et al. Periodic array of nanoholes on gold-coated optical fiber end-faces for surface plasmon resonance liquid refractive index sensing
Chau et al. Resonant enhancement of photoluminescence from dye molecules in lithium niobate substrate using photoinduced silver deposition with concentration dependence
Gao et al. Seawater refractive index sensor based on a cascaded double grating structure
Zheng et al. Optical characteristics of subwavelength metallic grating coupled porous film surface plasmon resonance sensor with high sensitivity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200508

WW01 Invention patent application withdrawn after publication