CN107400864A - AlMoC/AlMoCN叠层涂层刀具及其制备工艺 - Google Patents

AlMoC/AlMoCN叠层涂层刀具及其制备工艺 Download PDF

Info

Publication number
CN107400864A
CN107400864A CN201710532631.1A CN201710532631A CN107400864A CN 107400864 A CN107400864 A CN 107400864A CN 201710532631 A CN201710532631 A CN 201710532631A CN 107400864 A CN107400864 A CN 107400864A
Authority
CN
China
Prior art keywords
coatings
almocn
almoc
magnetically controlled
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710532631.1A
Other languages
English (en)
Inventor
宋文龙
王首军
张璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jining University
Original Assignee
Jining University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jining University filed Critical Jining University
Priority to CN201710532631.1A priority Critical patent/CN107400864A/zh
Publication of CN107400864A publication Critical patent/CN107400864A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明属于机械制造切削刀具领域,特别是涉及一种AlMoC/AlMoCN叠层复合涂层刀具及其制备工艺。本发明采用非平衡磁控溅射与电弧镀复合沉积的方法制备,且沉积温度控制在300℃以下,可在更为广泛的刀具或工具基体上制备。所制备的AlMoC/AlMoCN叠层复合涂层刀具,刀具基体最外层为AlMoCN涂层,AlMoCN涂层与刀具基体之间有Ti过渡层,AlMoCN涂层与Ti过渡层之间是AlMoC涂层与AlMoCN涂层交替的复合叠层结构。所制备AlMoC/AlMoCN叠层复合涂层刀具综合了AlMoCN碳氮化合物涂层、AlMoC碳化物涂层及叠层结构的优点,可明显改善传统碳氮化合物涂层刀具的物理机械性能;同时,AlMoC/AlMoCN叠层复合结构通过叠层之间的界面可减缓涂层裂纹扩展。所述AlMoC/AlMoCN叠层复合涂层刀具可广泛应用于各种淬硬材料的切削加工。

Description

AlMoC/AlMoCN叠层涂层刀具及其制备工艺
技术领域
本发明属于机械制造金属切削刀具领域,特别是涉及一种AlMoC/AlMoCN叠层涂层刀具及其制备工艺。
背景技术
刀具涂层技术是近几十年应市场需求发展起来的材料表面改性技术,采用涂层刀具可以有效解决刀具材料的硬度、耐磨性和抗弯强度、冲击韧性之间的矛盾,有效提高切削刀具使用寿命,使刀具获得优良的综合机械性能,从而大幅度提高机械加工效率。TiCN是目前最广泛使用的三元碳氮化合物涂层,TiCN涂层由于兼具TiC的高硬度和TiN的良好韧性,显著提高了其摩擦磨损性能(Jinlong Li,Shihong Zhang,Mingxi Li.Influence of theC2H2 flow rate on gradient TiCN films deposited by multi-arc ion plating[J].Applied Surface Science,2013(283):134-144.),已广泛应用于铣削、攻牙、冲压、成型及滚齿的加工,在高速切削时比普通硬质合金刀具的耐磨性高5-8倍。中国专利“汽轮机转子轮槽铣刀表面TiCN多层复合涂层制备工艺”(专利号201510564738.5)利用Ti、氮气(N2)与乙炔气体(C2H2)在450℃沉积温度下合成了TiCN涂层铣刀,解决了26NiCrMov145材料转子加工难题。
TiCN涂层虽然具有高硬度、低摩擦系数的优点,但同时因其热稳定性和红硬性较差,仅适合应用于低速切削或具有良好冷却条件的场合,需要对传统TiCN涂层结构和制备工艺进行改进。目前,多元化是材料改善力学性能、耐蚀性和耐磨性的有效途径,通过制备多元复合涂层,既可提高涂层与基体的结合强度,又兼顾多种单涂层的综合性能,显著提高涂层刀具的性能。
目前TiCN等碳氮化合物主要通过化学气相沉积技术(CVD)等技术制备,即通过TiCl4(或Ti靶)、CH4(或C2H2)以及N2等气体反应生成,沉积温度通常超过400℃,对基体产生不利影响,同时气体碳源容易对涂层设备造成污染,制约了其广泛应用。
层状复合材料是近几年发展起来的材料增强增韧新技术,这种结构是通过模仿贝壳而来,因此又叫仿生叠层复合材料。自然界中贝壳的珍珠层是一种天然的层状结构材料,其断裂韧性却比普通单一均质结构高出3000倍以上。因此,通过模仿生物材料结构形式的层间设计,制备出的叠层复合涂层可以提高目前碳氮化合物涂层的韧性、稳定性及减摩耐磨性等综合性能。
发明内容
针对目前现有碳氮化合物涂层刀具性能及制备方法的不足,结合层状复合材料结构的优点,本发明目的在于提供一种AlMoC/AlMoCN叠层涂层刀具及其制备工艺。
本发明所述的AlMoC/AlMoCN叠层涂层刀具,包括刀具基体,刀具基体最外层为AlMoCN涂层,AlMoCN涂层与刀具基体之间有Ti过渡层,AlMoCN涂层与Ti过渡层之间是AlMoC涂层与AlMoCN涂层交替的叠层复合结构;
其中:
刀具基体的材料为高速钢、工具钢、模具钢、硬质合金、陶瓷、金刚石、立方氮化硼中的一种。
本发明所述的AlMoC/AlMoCN叠层涂层刀具的制备工艺,沉积方式为采用非平衡磁控溅射+电弧镀的复合镀膜方法,沉积时使用2个非平衡磁控溅射AlMoC复合靶,2个电弧Ti靶:首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法交替沉积AlMoC涂层与AlMoCN涂层,最外层为AlMoCN涂层。
所述非平衡磁控溅射AlMoC复合靶中包含重量分数为40-60wt%的Al、20-40wt%的Mo和10-20wt%的C,所述非平衡磁控溅射AlMoC复合靶采用真空热压法制备,具体包括以下步骤:
(1)将上述配比好的纯度均为99.9%的Al、Mo和C粉末混匀并装入模具,然后将装有粉末的模具置于真空热压炉;
(2)升温:首先快速升温,并施加初始应力25~40MPa,然后慢速升温至1100-1500℃,保温,混合粉经热压烧结后的成型;
(3)烧结结束后样品随炉冷却降温至200℃以下出炉得AlMoC复合靶。
所述AlMoC/AlMoCN叠层涂层刀具的制备工艺,具体包括以下步骤:
(1)对刀具基体表面前处理:将刀具基体表面抛光,去除表面油污、锈迹等杂质,然后依次放入酒精和丙酮中,超声清洗各30min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至8.0×10-3Pa,加热至250℃,保温25min;
(2)对刀具基体表面离子清洗:通Ar气,调压力为1.5Pa,开启偏压电源,电压700V,占空比0.4,辉光放电清洗30min;降低偏压至500V,占空比0.3,开启离子源离子清洗25min,开启电弧Ti靶电源,Ti靶电流50A,偏压300V,占空比0.2,离子轰击1~2min;
(3)采用电弧镀在刀具基体表面沉积Ti过渡层:调Ar气压0.7~0.8Pa,偏压降至230V,电弧Ti靶电流70A,沉积温度230℃,电弧镀沉积Ti过渡层4~5min;
(4)采用非平衡磁控溅射在Ti过渡层上沉积AlMoC涂层:调Ar气压0.5~0.6Pa,偏压调至200V,沉积温度200℃,关闭电弧Ti靶电源,开启非平衡磁控溅射AlMoC复合靶电流45A,沉积AlMoC涂层4~5min
(5)采用非平衡磁控溅射在AlMoC涂层上沉积AlMoCN涂层:开启N2,N2气压为1.5Pa,调Ar气压0.8Pa,偏压200V,调非平衡磁控溅射AlMoC复合靶电流50A,沉积温度200℃,复合沉积AlMoCN涂层4~5min,沉积完成后关闭N2
(6)采用非平衡磁控溅射在AlMoCN涂层上沉积AlMoC涂层:调Ar气压0.5~0.6Pa,偏压调至200V,沉积温度200℃,开启非平衡磁控溅射AlMoC复合靶电流45A,沉积AlMoC涂层4~5min;
(7)重复(5)、(6)、(5)……(5),交替沉积AlMoCN涂层、AlMoC涂层、AlMoCN涂层……AlMoCN涂层共70min;
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。
本发明所制备的AlMoC/AlMoCN叠层涂层刀具,刀具基体最外层为AlMoCN涂层,刀具基体与涂层间有Ti过渡层,AlMoCN涂层与Ti过渡层之间是AlMoC涂层和AlMoCN涂层交替的叠层复合结构。刀具基体上的Ti过渡层主要作用是减缓因涂层成分突变造成的层间应力,提高了涂层与刀具基体间的结合性能,涂层中的Al元素不仅起固溶强化作用,还能跟氧结合形成致密的Al2O3保护膜,可改善涂层的高温氧化性能,Mo元素提高了涂层的硬度和强度,改善涂层的抗高温氧化能力,降低了涂层的摩擦系数。所述叠层复合结构的层间界面可阻止涂层柱状晶的生长,阻碍裂纹和缺陷的扩展,提高涂层的硬度、韧性和耐冲击性。该涂层刀具具备更优异的摩擦磨损性能,可显著提高刀具的切削寿命和加工效率。
本发明与现有技术相比,具有以下有益效果。
本发明采用非平衡磁控溅射+电弧镀的复合镀膜方法,且沉积温度控制在300℃以下,可在更为广泛的刀具或工具基体上制备。本发明所制备的AlMoC/AlMoCN叠层涂层刀具综合了AlMoCN超硬碳氮化合物涂层、AlMoC超硬碳化物涂层及叠层结构的优点,可明显改善传统TiCN碳氮化合物涂层刀具的物理机械性能。该AlMoC/AlMoCN叠层复合刀具可降低高速干切削过程中的摩擦,相比传统TiCN等涂层刀具,降低切削力和切削温度25%以上,比传统刀具减小刀具磨损量30%以上,提高涂层使用寿命50%以上。同时,所述AlMoC/AlMoCN叠层复合结构通过叠层之间的界面可减缓涂层裂纹扩展,所制备的AlMoC/AlMoCN叠层刀具可广泛应用于各种淬硬材料的切削加工。
附图说明
图1、本发明的AlMoC/AlMoCN叠层涂层刀具的涂层结构示意图。
图中:1、刀具基体2、Ti过渡层、3、AlMoC涂层4、AlMoCN涂层5、AlMoC涂层与AlMoCN涂层交替的叠层复合结构。
具体实施方式
下面结合给出本发明的二个较佳实施例。
实施例1
本实施例所述的AlMoC/AlMoCN叠层涂层刀具,该刀具为普通的铣刀片,其刀具基体材料为:硬质合金YG6,刀具基体最外层为AlMoCN涂层,AlMoCN涂层与刀具基体之间有Ti过渡层,AlMoCN涂层与Ti过渡层之间是AlMoC涂层与AlMoCN涂层交替的叠层复合结构。
本实施例所述的AlMoC/AlMoCN叠层涂层刀具的制备工艺,沉积方式为采用非平衡磁控溅射+电弧镀的复合镀膜方法,沉积时使用2个非平衡磁控溅射AlMoC复合靶,2个电弧Ti靶:首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法交替沉积AlMoC涂层与AlMoCN涂层,最外层为AlMoCN涂层。
所述非平衡磁控溅射AlMoC复合靶中包含重量分数为40wt%的Al、40wt%的Mo和20wt%的C。
本实施例所述AlMoC/AlMoCN叠层涂层刀具制备工艺,具体包括以下步骤:
(1)对刀具基体表面前处理:将刀具基体表面抛光,去除表面油污、锈迹等杂质,然后依次放入酒精和丙酮中,超声清洗各30min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至8.0×10-3Pa,加热至250℃,保温25min;
(2)对刀具基体表面离子清洗:通Ar气,调压力为1.5Pa,开启偏压电源,电压700V,占空比0.4,辉光放电清洗30min;降低偏压至500V,占空比0.3,开启离子源离子清洗25min,开启电弧Ti靶电源,Ti靶电流50A,偏压300V,占空比0.2,离子轰击1~2min;
(3)采用电弧镀在刀具基体表面沉积Ti过渡层:调Ar气压0.7~0.8Pa,偏压降至230V,电弧Ti靶电流70A,沉积温度230℃,电弧镀沉积Ti过渡层4~5min;
(4)采用非平衡磁控溅射在Ti过渡层上沉积AlMoC涂层:调Ar气压0.5~0.6Pa,偏压调至200V,沉积温度200℃,关闭电弧Ti靶电源,开启非平衡磁控溅射AlMoC复合靶电流45A,沉积AlMoC涂层4~5min
(5)采用非平衡磁控溅射在AlMoC涂层上沉积AlMoCN涂层:开启N2,N2气压为1.5Pa,调Ar气压0.8Pa,偏压200V,调非平衡磁控溅射AlMoC复合靶电流50A,沉积温度200℃,复合沉积AlMoCN涂层4~5min,沉积完成后关闭N2
(6)采用非平衡磁控溅射在AlMoCN涂层上沉积AlMoC涂层:调Ar气压0.5~0.6Pa,偏压调至200V,沉积温度200℃,开启非平衡磁控溅射AlMoC复合靶电流45A,沉积AlMoC涂层4~5min;
(7)重复(5)、(6)、(5)……(5),交替沉积AlMoCN涂层、AlMoC涂层、AlMoCN涂层……AlMoCN涂层共70min;
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。
实施例2
本实施例所述的AlMoC/AlMoCN叠层涂层刀具,该刀具为普通麻花钻,其刀具基体材料为:高速钢M2,刀具基体最外层为AlMoCN涂层,AlMoCN涂层与刀具基体之间有Ti过渡层,AlMoCN涂层与Ti过渡层之间是AlMoC涂层与AlMoCN涂层交替的叠层复合结构。
本实施例所述的AlMoC/AlMoCN叠层涂层刀具的制备工艺,沉积方式为采用非平衡磁控溅射+电弧镀的复合镀膜方法,沉积时使用2个非平衡磁控溅射AlMoC复合靶,2个电弧Ti靶:首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法交替沉积AlMoC涂层与AlMoCN涂层,最外层为AlMoCN涂层。
所述非平衡磁控溅射AlMoC复合靶中包含重量分数为60wt%的Al、30wt%的Mo和10wt%的C。
本实施例所述AlMoC/AlMoCN叠层涂层刀具制备工艺,具体包括以下步骤:
(1)对刀具基体表面前处理:将刀具基体表面抛光,去除表面油污、锈迹等杂质,然后依次放入酒精和丙酮中,超声清洗各30min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至8.0×10-3Pa,加热至250℃,保温25min;
(2)对刀具基体表面离子清洗:通Ar气,调压力为1.5Pa,开启偏压电源,电压700V,占空比0.4,辉光放电清洗30min;降低偏压至500V,占空比0.3,开启离子源离子清洗25min,开启电弧Ti靶电源,Ti靶电流50A,偏压300V,占空比0.2,离子轰击1~2min;
(3)采用电弧镀在刀具基体表面沉积Ti过渡层:调Ar气压0.7~0.8Pa,偏压降至230V,电弧Ti靶电流70A,沉积温度230℃,电弧镀沉积Ti过渡层4~5min;
(4)采用非平衡磁控溅射在Ti过渡层上沉积AlMoC涂层:调Ar气压0.5~0.6Pa,偏压调至200V,沉积温度200℃,关闭电弧Ti靶电源,开启非平衡磁控溅射AlMoC复合靶电流45A,沉积AlMoC涂层4~5min
(5)采用非平衡磁控溅射在AlMoC涂层上沉积AlMoCN涂层:开启N2,N2气压为1.5Pa,调Ar气压0.8Pa,偏压200V,调非平衡磁控溅射AlMoC复合靶电流50A,沉积温度200℃,复合沉积AlMoCN涂层4~5min,沉积完成后关闭N2
(6)采用非平衡磁控溅射在AlMoCN涂层上沉积AlMoC涂层:调Ar气压0.5~0.6Pa,偏压调至200V,沉积温度200℃,开启非平衡磁控溅射AlMoC复合靶电流45A,沉积AlMoC涂层4~5min;
(7)重复(5)、(6)、(5)……(5),交替沉积AlMoCN涂层、AlMoC涂层、AlMoCN涂层……AlMoCN涂层共70min;
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。

Claims (4)

1.一种AlMoC/AlMoCN叠层涂层刀具,其特征在于:刀具基体最外层为AlMoCN涂层,AlMoCN涂层与刀具基体之间有Ti过渡层,AlMoCN涂层与Ti过渡层之间是AlMoC涂层与AlMoCN涂层交替的复合叠层结构;
其中:刀具基体的材料为高速钢、工具钢、模具钢、硬质合金、陶瓷、金刚石、立方氮化硼中的一种。
2.一种AlMoC/AlMoCN叠层涂层刀具的制备工艺,其特征在于:沉积方式为采用非平衡磁控溅射+电弧镀的复合镀膜方法,沉积时使用2个非平衡磁控溅射AlMoC复合靶,2个电弧Ti靶:首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法交替沉积AlMoC涂层与AlMoCN涂层,最外层为AlMoCN涂层。
3.根据权利要求2所述的AlMoC/AlMoCN叠层涂层刀具的制备工艺,其特征在于:非平衡磁控溅射AlMoC复合靶中包含重量分数为40-60wt%的Al、20-40wt%的Mo和10-20wt%的C。
4.根据权利要求2或3所述的AlMoC/AlMoCN叠层涂层刀具的制备工艺,其特征在于:具体包括以下步骤:
(1)对刀具基体表面前处理:将刀具基体表面抛光,去除表面油污、锈迹等杂质,然后依次放入酒精和丙酮中,超声清洗各30min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至8.0×10-3Pa,加热至250℃,保温25min;
(2)对刀具基体表面离子清洗:通Ar气,调压力为1.5Pa,开启偏压电源,电压700V,占空比0.4,辉光放电清洗30min;降低偏压至500V,占空比0.3,开启离子源离子清洗25min,开启电弧Ti靶电源,Ti靶电流50A,偏压300V,占空比0.2,离子轰击1~2min;
(3)采用电弧镀在刀具基体表面沉积Ti过渡层:调Ar气压0.7~0.8Pa,偏压降至230V,电弧Ti靶电流70A,沉积温度230℃,电弧镀沉积Ti过渡层4~5min;
(4)采用非平衡磁控溅射在Ti过渡层上沉积AlMoC涂层:调Ar气压0.5~0.6Pa,偏压调至200V,沉积温度200℃,关闭电弧Ti靶电源,开启非平衡磁控溅射AlMoC复合靶电流45A,沉积AlMoC涂层4~5min
(5)采用非平衡磁控溅射在AlMoC涂层上沉积AlMoCN涂层:开启N2,N2气压为1.5Pa,调Ar气压0.8Pa,偏压200V,调非平衡磁控溅射AlMoC复合靶电流50A,沉积温度200℃,复合沉积AlMoCN涂层4~5min,沉积完成后关闭N2
(6)采用非平衡磁控溅射在AlMoCN涂层上沉积AlMoC涂层:调Ar气压0.5~0.6Pa,偏压调至200V,沉积温度200℃,开启非平衡磁控溅射AlMoC复合靶电流45A,沉积AlMoC涂层4~5min;
(7)重复(5)、(6)、(5)……(5),交替沉积AlMoCN涂层、AlMoC涂层、AlMoCN涂层……AlMoCN涂层共70min;
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。
CN201710532631.1A 2017-07-03 2017-07-03 AlMoC/AlMoCN叠层涂层刀具及其制备工艺 Pending CN107400864A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710532631.1A CN107400864A (zh) 2017-07-03 2017-07-03 AlMoC/AlMoCN叠层涂层刀具及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710532631.1A CN107400864A (zh) 2017-07-03 2017-07-03 AlMoC/AlMoCN叠层涂层刀具及其制备工艺

Publications (1)

Publication Number Publication Date
CN107400864A true CN107400864A (zh) 2017-11-28

Family

ID=60405313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710532631.1A Pending CN107400864A (zh) 2017-07-03 2017-07-03 AlMoC/AlMoCN叠层涂层刀具及其制备工艺

Country Status (1)

Country Link
CN (1) CN107400864A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118299A (zh) * 2017-12-20 2018-06-05 中国科学院合肥物质科学研究院 一种氮化钼基梯度多元纳米复合涂层及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277554A (zh) * 2011-07-29 2011-12-14 山推工程机械股份有限公司 梯度叠层涂层刀具及其制备方法
CN106086787A (zh) * 2016-06-15 2016-11-09 济宁学院 Ti‑TiN+MoS2/Ti叠层复合涂层刀具及其制备工艺
CN106163708A (zh) * 2014-04-10 2016-11-23 株式会社图格莱 包覆工具

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277554A (zh) * 2011-07-29 2011-12-14 山推工程机械股份有限公司 梯度叠层涂层刀具及其制备方法
CN106163708A (zh) * 2014-04-10 2016-11-23 株式会社图格莱 包覆工具
CN106086787A (zh) * 2016-06-15 2016-11-09 济宁学院 Ti‑TiN+MoS2/Ti叠层复合涂层刀具及其制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118299A (zh) * 2017-12-20 2018-06-05 中国科学院合肥物质科学研究院 一种氮化钼基梯度多元纳米复合涂层及制备方法
CN108118299B (zh) * 2017-12-20 2019-06-28 中国科学院合肥物质科学研究院 一种氮化钼基梯度多元纳米复合涂层及制备方法

Similar Documents

Publication Publication Date Title
CN105624618B (zh) TiAlSiZrN基复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
CN105586572A (zh) (Ti,Al,Zr)N多组元复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
CN110306190A (zh) 一种多元纳米梯度涂层刀具及其制备方法
CN110129741A (zh) 一种多元纳米叠层涂层刀具及其制备方法
CN107177827B (zh) SiNbC/SiNbCN叠层复合涂层刀具及其制备工艺
CN108118301A (zh) 一种具有Si含量梯度变化的中间层的AlCrSiN涂层、制备方法
CN107338411B (zh) AlNbCN多元梯度复合涂层刀具及其制备方法
JP5555835B2 (ja) 耐摩耗性にすぐれたターニング加工用表面被覆切削工具およびその製造方法
CN106893975B (zh) AlC/AlCN叠层涂层刀具及其制备工艺
CN107177828B (zh) SiZrCN梯度复合涂层刀具及其制备方法
CN107338412A (zh) CrNbC/CrNbCN叠层复合涂层刀具及其制备工艺
CN107177825B (zh) ZrNbC/ZrNbCN叠层涂层刀具及其制备工艺
CN112323024B (zh) 一种高强抗氧化涂层及其制备方法和应用
CN107400864A (zh) AlMoC/AlMoCN叠层涂层刀具及其制备工艺
CN107177826B (zh) MoNbC/MoNbCN叠层复合涂层刀具及其制备工艺
CN107419229A (zh) CrMoC/CrMoCN叠层涂层刀具及其制备工艺
CN110158046B (zh) 复合涂层、自润滑复合涂层刀具及其制备方法
CN107058951B (zh) ZrAlC/ZrAlCN叠层复合涂层刀具及其制备工艺
CN107354432A (zh) ZrCrCN梯度复合涂层刀具及其制备方法
CN107177829B (zh) AlNbC/AlNbCN叠层复合涂层刀具及其制备工艺
CN107400866A (zh) ZrMoC/ZrMoCN叠层涂层刀具及其制备工艺
CN107119276B (zh) TiMoC/TiMoCN叠层涂层刀具及其制备方法
CN107119275B (zh) ZrCrC/ZrCrCN叠层复合涂层刀具及其制备工艺
JP5555834B2 (ja) 耐摩耗性にすぐれたミーリング加工用表面被覆切削工具およびその製造方法
CN107119255A (zh) SiZrC/SiZrCN叠层涂层刀具及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171128

RJ01 Rejection of invention patent application after publication