CN107119276B - TiMoC/TiMoCN叠层涂层刀具及其制备方法 - Google Patents

TiMoC/TiMoCN叠层涂层刀具及其制备方法 Download PDF

Info

Publication number
CN107119276B
CN107119276B CN201710287967.6A CN201710287967A CN107119276B CN 107119276 B CN107119276 B CN 107119276B CN 201710287967 A CN201710287967 A CN 201710287967A CN 107119276 B CN107119276 B CN 107119276B
Authority
CN
China
Prior art keywords
coating
timocn
timoc
depositing
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710287967.6A
Other languages
English (en)
Other versions
CN107119276A (zh
Inventor
宋文龙
王首军
张璇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XUZHOU SHUNDA STEEL WHEEL MANUFACTURING Co.,Ltd.
Original Assignee
Jining University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jining University filed Critical Jining University
Priority to CN201710287967.6A priority Critical patent/CN107119276B/zh
Publication of CN107119276A publication Critical patent/CN107119276A/zh
Application granted granted Critical
Publication of CN107119276B publication Critical patent/CN107119276B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

本发明属于机械制造金属切削刀具领域,特别是涉及一种TiMoC/TiMoCN叠层涂层刀具及其制备方法。本发明采用非平衡磁控溅射+电弧镀的复合镀膜方法,直接采用TiMoC复合靶作碳源,且沉积温度控制在300℃以下,可在更为广泛的刀具或工具基体上制备,所制备的TiMoC/TiMoCN叠层涂层刀具,刀具基体最外层为TiMoCN涂层,刀具基体与TiMoCN涂层间有Ti过渡层,TiMoCN涂层与Ti过渡层之间为TiMoC涂层与TiMoCN涂层交替的复合叠层结构。所制备的TiMoC/TiMoCN叠层涂层刀具综合了TiMoCN超硬碳氮化合物涂层、TiMoC超硬碳化物涂层及叠层结构的优点,可明显改善传统碳氮化合物涂层刀具的物理机械性能;同时,TiMoC/TiMoCN叠层复合结构通过叠层之间的界面可减缓涂层裂纹扩展,所述TiMoC/TiMoCN叠层复合涂层刀具可广泛应用于各种材料的干切削和高速加工。

Description

TiMoC/TiMoCN叠层涂层刀具及其制备方法
技术领域
本发明属于机械制造金属切削刀具领域,特别是涉及一种TiMoC/TiMoCN叠层涂层刀具及其制备方法。
背景技术
近10年来,涂层技术在刀具行业的应用得到了快速普及,涂层刀具已成为切削加工不可缺少的主流刀具。与此同时,随着切削加工向高速切削、强力切削和干式切削的迅速发展,对涂层刀具的性能提出了更高的要求。TiCN是目前最广泛使用的三元碳氮化合物涂层,TiCN涂层由于兼具TiC的高硬度和TiN的良好韧性,显著提高了其摩擦磨损性能(Jinlong Li,Shihong Zhang,Mingxi Li.Influence ofthe C2H2flow rate on gradientTiCN films deposited by multi-arc ion plating[J].Applied Surface Science,2013(283):134-144.),已广泛应用于铣削、攻牙、冲压、成型及滚齿的加工,在高速切削时比普通硬质合金刀具的耐磨性高5-8倍。中国专利“汽轮机转子轮槽铣刀表面TiCN多层复合涂层制备方法”(专利号201510564738.5)利用Ti、氮气(N2)与乙炔气体(C2H2)在450℃沉积温度下合成了TiCN涂层铣刀,解决了26NiCrMov145材料转子加工难题。
TiCN涂层虽然具有高硬度、低摩擦系数的优点,但同时因其热稳定性和红硬性较差,仅适合应用于低速切削或具有良好冷却条件的场合,需要对传统TiCN涂层结构和制备方法进行改进。目前,多元化是材料改善力学性能、耐蚀性和耐磨性的有效途径,通过制备多元复合涂层,既可提高涂层与基体的结合强度,又兼顾多种单涂层的综合性能,显著提高涂层刀具的性能。
目前TiCN等碳氮化合物主要通过化学气相沉积技术(CVD)等技术制备,即通过TiCl4(或Ti靶)、CH4(或C2H2)以及N2等气体反应生成,沉积温度通常超过400℃,对基体产生不利影响,同时气体碳源容易对涂层设备造成污染,制约了其广泛应用。
层状复合材料是近几年发展起来的材料增强增韧新技术,这种结构是通过模仿贝壳而来,因此又叫仿生叠层复合材料。自然界中贝壳的珍珠层是一种天然的层状结构材料,其断裂韧性却比普通单一均质结构高出3000倍以上。因此,通过模仿生物材料结构形式的层间设计,制备出的叠层复合涂层可以提高目前碳氮化合物涂层的韧性、稳定性及减摩耐磨性等综合性能。
发明内容
针对现有碳氮化合物涂层刀具性能及制备方法的不足,结合层状复合材料结构的优点本发明目的在于提供一种TiMoC/TiMoCN叠层涂层刀具及其制备方法。
本发明所述的TiMoC/TiMoCN叠层涂层刀具,刀具基体最外层为TiMoCN涂层,刀具基体与TiMoCN涂层间有Ti过渡层,TiMoCN涂层与Ti过渡层之间为TiMoC涂层与TiMoCN涂层交替的复合叠层结构。
所述刀具基体材料为高速钢、工具钢、模具钢、硬质合金、陶瓷、金刚石或立方氮化硼中的一种。
本发明所述的TiMoC/TiMoCN叠层涂层刀具的制备方法,沉积方式为采用非平衡磁控溅射+电弧镀的复合镀膜方法,沉积时使用2个复合TiMoC非平衡磁控溅射靶,2个电弧Ti靶:首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法交替沉积TiMoC涂层与TiMoCN涂层,最外层为TiMoCN涂层;其中,TiMoC非平衡磁控溅射靶包含重量分数为50%-70%的Ti、20%-40%的Mo和10%-15%的C。
具体包括以下步骤:
(1)刀具基体表面前处理;
(2)刀具基体表面离子清洗;
(3)采用电弧镀在刀具基体表面沉积Ti过渡层;
(4)采用非平衡磁控溅射在Ti过渡层上沉积TiMoC涂层;
(5)采用非平衡磁控溅射在TiMoC涂层上沉积TiMoCN涂层;
(6)采用非平衡磁控溅射在TiMoCN涂层上沉积TiMoC涂层;
(7)重复(5)、(6)、(5)……(5),交替沉积TiMoCN涂层、TiMoC涂层、TiMoCN涂层……TiMoCN涂层共80min;
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。
其中:
步骤(1)中首先将刀具基体表面抛光,然后依次放入酒精和丙酮中,超声清洗各20min,干燥充分后迅速放入镀膜机,抽真空至6.0×10-3Pa,加热至250℃,保温40min。
步骤(2)中通入Ar气,其压力为1.4Pa,开启偏压电源,电压600V,占空比0.3,辉光放电清洗25min;降低偏压至400V,占空比0.2,开启离子源离子清洗25min,开启电弧Ti靶电源,Ti靶电流40A,偏压300V,离子轰击1~2min。
步骤(3)中调Ar气压0.8~0.9Pa,偏压降至250V,Ti靶电流80A,沉积温度220℃,电弧镀Ti过渡层4~5min。
步骤(4)中调Ar气压0.5~0.6Pa,偏压调至220V,关闭电弧Ti靶电源,开启TiMoC非平衡磁控溅射靶电流40A,沉积TiMoC层4~5min。
步骤(5)中开启N2,N2气压为1.5Pa,Ar气压0.8Pa,偏压200V,调TiMoC非平衡磁控溅射靶电流35A,沉积温度250℃,复合沉积TiMoCN涂层4~5min,沉积完成关闭N2
步骤(6)中调Ar气压0.5~0.6Pa,偏压调至220V,调TiMoC非平衡磁控溅射靶电流40A,沉积TiMoC涂层4~5min。
本发明所述TiMoC非平衡磁控溅射靶,采用真空热压法制备,即将装有Ti粉末、Mo粉末、C粉末混合粉的模具置入真空热压炉,经热压烧结后的成型所得。
本发明所制备的TiMoC/TiMoCN叠层涂层刀具,刀具基体最外层为TiMoCN涂层,刀具基体与涂层间有Ti过渡层,TiMoCN涂层与Ti过渡层之间是TiMoC涂层和TiMoCN涂层交替的复合叠层结构。Ti过渡层主要作用是减缓因涂层成分突变造成的层间应力,提高了涂层与刀具基体间的结合性能,涂层中的Mo元素提高了涂层的硬度和强度,改善了涂层的抗高温氧化能力,降低了涂层表面的摩擦系数,同时所述叠层复合结构的层间界面可阻止涂层柱状晶的生长,阻碍裂纹和缺陷的扩展,提高涂层的硬度、韧性和耐冲击性。
本发明与现有技术相比,具有以下有益效果。
本发明采用非平衡磁控溅射+电弧镀的复合镀膜方法,直接采用TiMoC非平衡磁控溅射靶作碳源,且沉积温度控制在300℃以下,可在更为广泛的刀具或工具基体上制备。本发明所制备的TiMoC/TiMoCN叠层涂层刀具综合了TiMoCN超硬碳氮化合物涂层、TiMoC超硬碳化物涂层及叠层结构的优点,可明显改善传统TiCN涂层刀具的物理机械性能。所述TiMoC/TiMoCN叠层复合刀具可降低高速干切削过程中的摩擦,降低切削力和切削温度20%以上,减少刀具表面的粘结和磨损,比传统刀具减小刀具磨损20-30%,提高涂层使用寿命40%以上。同时,TiMoC/TiMoCN叠层复合结构通过叠层之间的界面可减缓涂层裂纹扩展,所述TiMoC/TiMoCN叠层复合涂层刀具可广泛应用于各种材料的干切削和高速加工。
附图说明
图1、本发明的TiMoC/TiMoCN叠层涂层刀具的涂层结构示意图。
图中:1、为刀具基体2、Ti过渡层3、TiMoC涂层4、TiMoCN涂层5、TiMoC涂层与TiMoCN涂层交替的叠层复合结构。
具体实施方式
下面给出本发明的二个最佳实施例:
实施例1
一种TiMoC/TiMoCN叠层涂层刀具及其制备方法,该刀具为普通的铣刀片,其刀具基体材料为:硬质合金YT15,刀具基体最外层为TiMoCN涂层,刀具基体与TiMoCN涂层间有Ti过渡层,TiMoCN涂层与Ti过渡层之间为TiMoC涂层与TiMoCN涂层交替的复合叠层结构。本发明沉积方式为采用非平衡磁控溅射+电弧镀的复合镀膜方法,沉积时使用2个复合TiMoC非平衡磁控溅射靶,2个电弧Ti靶:首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法交替沉积TiMoC涂层与TiMoCN涂层,最后表面为TiMoCN复合涂层;其中,TiMoC非平衡磁控溅射靶包含重量分数为70%的Ti、20%的Mo和10%的C。
具体制备步骤如下:
(1)刀具基体表面前处理:将刀具基体表面抛光,去除表面油污、锈迹等杂质,然后依次放入酒精和丙酮中,超声清洗各20min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至6.0×10-3Pa,加热至250℃,保温40min;
(2)刀具基体表面离子清洗:通Ar气,其压力为1.4Pa,开启偏压电源,电压600V,占空比0.3,辉光放电清洗25min;降低偏压至400V,占空比0.2,开启离子源离子清洗25min,开启电弧Ti靶电源,Ti靶电流40A,偏压300V,离子轰击1~2min;
(3)采用电弧镀在刀具基体表面沉积Ti过渡层:调Ar气压0.8~0.9Pa,偏压降至250V,Ti靶电流80A,沉积温度220℃,电弧镀Ti过渡层4~5min;
(4)采用非平衡磁控溅射在Ti过渡层上沉积TiMoC涂层:调Ar气压0.5~0.6Pa,偏压调至220V,关闭电弧Ti靶电源,开启TiMoC非平衡磁控溅射靶电流40A,沉积TiMoC涂层4~5min;
(5)采用非平衡磁控溅射在TiMoC涂层上沉积TiMoCN涂层:开启N2,N2气压为1.5Pa,Ar气压0.8Pa,偏压200V,TiMoC非平衡磁控溅射靶电流35A,沉积温度250℃,复合沉积TiMoCN层4~5min,沉积完成关闭N2
(6)采用非平衡磁控溅射在TiMoCN涂层上沉积TiMoC涂层:调Ar气压0.5~0.6Pa,偏压调至220V,调TiMoC非平衡磁控溅射靶电流40A,沉积TiMoC涂层4~5min;
(7)重复(5)、(6)、(5)……(5),交替沉积TiMoCN涂层、TiMoC涂层、TiMoCN涂层……TiMoCN涂层共80min:
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。
实施例2
一种TiMoC/TiMoCN叠层涂层刀具及其制备方法,该刀具为普通麻花钻,其刀具基体材料为:高速钢W18Cr4V,刀具基体最外层为TiMoCN涂层,刀具基体与TiMoCN涂层间有Ti过渡层,TiMoCN涂层与Ti过渡层之间为TiMoC涂层与TiMoCN涂层交替的复合叠层结构。本发明沉积方式为采用非平衡磁控溅射+电弧镀的复合镀膜方法,沉积时使用2个复合TiMoC非平衡磁控溅射靶,2个电弧Ti靶:首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法交替沉积TiMoC与TiMoCN层,最外层为TiMoCN复合涂层;其中,TiMoC非平衡磁控溅射靶包含重量分数为50%的Ti、40%的Mo和10%的C。
具体制备步骤如下:
(1)刀具基体表面前处理:将刀具基体表面抛光,去除表面油污、锈迹等杂质,然后依次放入酒精和丙酮中,超声清洗各20min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至6.0×10-3Pa,加热至250℃,保温40min;
(2)刀具基体表面离子清洗:通Ar气,其压力为1.4Pa,开启偏压电源,电压600V,占空比0.3,辉光放电清洗25min;降低偏压至400V,占空比0.2,开启离子源离子清洗25min,开启电弧Ti靶电源,Ti靶电流40A,偏压300V,离子轰击1~2min;
(3)采用电弧镀在刀具基体表面沉积Ti过渡层:调Ar气压0.8~0.9Pa,偏压降至250V,Ti靶电流80A,沉积温度220℃,电弧镀Ti过渡层4~5min;
(4)采用非平衡磁控溅射在Ti过渡层上沉积TiMoC涂层:调Ar气压0.5~0.6Pa,偏压调至220V,关闭电弧Ti靶电源,开启TiMoC非平衡磁控溅射靶电流40A,沉积TiMoC涂层4~5min;
(5)采用非平衡磁控溅射在TiMoC涂层上沉积TiMoCN涂层:开启N2,N2气压为1.5Pa,Ar气压0.8Pa,偏压200V,TiMoC非平衡磁控溅射靶电流35A,沉积温度250℃,复合沉积TiMoCN层4~5min,沉积完成关闭N2
(6)采用非平衡磁控溅射在TiMoCN涂层上沉积TiMoC涂层:调Ar气压0.5~0.6Pa,偏压调至220V,调TiMoC非平衡磁控溅射靶电流40A,沉积TiMoC涂层4~5min;
(7)重复(5)、(6)、(5)……(5),交替沉积TiMoCN涂层、TiMoC涂层、TiMoCN涂层……TiMoCN涂层共80min:
(8)后处理:关闭各靶电源、离子源及气体源,涂层结束。

Claims (1)

1.一种TiMoC/TiMoCN叠层涂层刀具的制备方法,其特征在于:刀具基体材料为高速钢、工具钢、模具钢、硬质合金、陶瓷、金刚石或立方氮化硼中的一种,刀具基体最外层为TiMoCN涂层,刀具基体与TiMoCN涂层间有Ti过渡层,TiMoCN涂层与Ti过渡层之间为TiMoC涂层与TiMoCN涂层交替的复合叠层结构;沉积方式为采用非平衡磁控溅射+电弧镀的复合镀膜方法,沉积时使用2个复合TiMoC非平衡磁控溅射靶,2个电弧Ti靶:首先采用电弧镀沉积Ti过渡层,然后采用非平衡磁控溅射方法交替沉积TiMoC涂层与TiMoCN涂层,最外层为TiMoCN涂层;其中,TiMoC非平衡磁控溅射靶包含重量分数为50%-70%的Ti、20%-40%的Mo和10%-15%的C;具体包括以下步骤:
(1)前处理:将刀具基体表面抛光,去除表面油污、锈迹杂质,然后依次放入酒精和丙酮中,超声清洗各20min,去除刀具表面油污和其它附着物,电吹风干燥充分后迅速放入镀膜机,抽真空至6.0×10-3Pa,加热至250℃,保温40min;
(2)离子清洗:通Ar气,其压力为1.4Pa,开启偏压电源,电压600V,占空比0.3,辉光放电清洗25min;降低偏压至400V,占空比0.2,开启离子源离子清洗25min,开启电弧Ti靶电源,Ti靶电流40A,偏压300V,离子轰击1~2min;
(3)沉积Ti过渡层:Ar气压0.8~0.9Pa,偏压降至250V,Ti靶电流80A,沉积温度220℃,电弧镀Ti过渡层4~5min;
(4)沉积TiMoC层:Ar气压0.5~0.6Pa,偏压调至220V,关闭电弧Ti靶电源,开启磁控溅射TiMoC复合靶电流40A,沉积TiMoC层4~5min;
(5)沉积TiMoCN层:开启N2,N2气压为1.5Pa,Ar气压0.8Pa,偏压200V,TiMoC靶电流35A,沉积温度250℃,复合沉积TiMoCN层4~5min;
(6)沉积TiMoC层:关闭N2,重复(4);
(7)沉积TiMoCN层:开启N2,重复(5);
(8)重复(4)、(5)、(4)···:交替沉积TiMoC层、TiMoCN层、TiMoC层···TiMoCN层共80min;
(9)后处理:关闭各靶电源、离子源及气体源,涂层结束。
CN201710287967.6A 2017-04-27 2017-04-27 TiMoC/TiMoCN叠层涂层刀具及其制备方法 Active CN107119276B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710287967.6A CN107119276B (zh) 2017-04-27 2017-04-27 TiMoC/TiMoCN叠层涂层刀具及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710287967.6A CN107119276B (zh) 2017-04-27 2017-04-27 TiMoC/TiMoCN叠层涂层刀具及其制备方法

Publications (2)

Publication Number Publication Date
CN107119276A CN107119276A (zh) 2017-09-01
CN107119276B true CN107119276B (zh) 2019-05-07

Family

ID=59726375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710287967.6A Active CN107119276B (zh) 2017-04-27 2017-04-27 TiMoC/TiMoCN叠层涂层刀具及其制备方法

Country Status (1)

Country Link
CN (1) CN107119276B (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086787B (zh) * 2016-06-15 2018-09-28 广东银鹰实业集团有限公司 Ti-TiN+MoS2/Ti叠层复合涂层刀具及其制备工艺
JP7083448B2 (ja) * 2017-01-07 2022-06-13 株式会社タンガロイ 被覆切削工具

Also Published As

Publication number Publication date
CN107119276A (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
CN107201499B (zh) 一种钛合金切削用成分梯度TiAlXN涂层刀具及其制备方法
CN105112858B (zh) 一种多层结构的纳米复合刀具涂层
CN110016642A (zh) 一种微织构梯度涂层刀具及其制备方法
CN107523790B (zh) 一种AlCrSiCuN纳米多层涂层及其制备方法
CN105887024B (zh) TiCrN&MoS2/Cr/Ti叠层涂层刀具及其制备工艺
CN105803394B (zh) TiZrCrAlN多元复合耐磨涂层刀具及其制备方法
CN109023361A (zh) 梯度涂层刀具及其制备方法
CN109097731A (zh) 一种AlCrN/AlCrYN多元多层涂层及其制备方法和应用
CN107338411B (zh) AlNbCN多元梯度复合涂层刀具及其制备方法
CN107177827B (zh) SiNbC/SiNbCN叠层复合涂层刀具及其制备工艺
CN106893975B (zh) AlC/AlCN叠层涂层刀具及其制备工艺
CN107177828B (zh) SiZrCN梯度复合涂层刀具及其制备方法
CN105861997B (zh) TiCrN/MoS2多元减摩润滑涂层刀具及其制备工艺
CN107099778B (zh) 一种铝合金干式加工用非晶刀具涂层及其制备方法
CN106048538A (zh) AlZrN多元复合硬质涂层刀具及其制备工艺
CN107354431A (zh) TiMoCN梯度复合涂层刀具及其制备方法
CN107177825B (zh) ZrNbC/ZrNbCN叠层涂层刀具及其制备工艺
CN109576643A (zh) 一种TiSiVN多组元复合梯度刀具涂层及其制备方法
CN105862004B (zh) TiAlCrN&MoS2/Ti/Al/Cr多元叠层润滑涂层刀具及其制备工艺
CN107058951B (zh) ZrAlC/ZrAlCN叠层复合涂层刀具及其制备工艺
CN107119276B (zh) TiMoC/TiMoCN叠层涂层刀具及其制备方法
CN107338412A (zh) CrNbC/CrNbCN叠层复合涂层刀具及其制备工艺
CN107177826B (zh) MoNbC/MoNbCN叠层复合涂层刀具及其制备工艺
CN107354432A (zh) ZrCrCN梯度复合涂层刀具及其制备方法
CN107119275B (zh) ZrCrC/ZrCrCN叠层复合涂层刀具及其制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201029

Address after: 221700 West Head Extension of People's Road, Fengxian County, Xuzhou City, Jiangsu Province

Patentee after: XUZHOU SHUNDA STEEL WHEEL MANUFACTURING Co.,Ltd.

Address before: 272001 Shandong city of Jining province high tech Zone Haichuan Road No. 16 Jining high tech Zone University Park

Patentee before: JINING University