CN107337176A - 表面增强拉曼散射基底及其制备工艺 - Google Patents

表面增强拉曼散射基底及其制备工艺 Download PDF

Info

Publication number
CN107337176A
CN107337176A CN201710458327.7A CN201710458327A CN107337176A CN 107337176 A CN107337176 A CN 107337176A CN 201710458327 A CN201710458327 A CN 201710458327A CN 107337176 A CN107337176 A CN 107337176A
Authority
CN
China
Prior art keywords
substrate
raman scattering
enhanced raman
surface enhanced
micro structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710458327.7A
Other languages
English (en)
Other versions
CN107337176B (zh
Inventor
潘革波
张淼荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN201710458327.7A priority Critical patent/CN107337176B/zh
Publication of CN107337176A publication Critical patent/CN107337176A/zh
Application granted granted Critical
Publication of CN107337176B publication Critical patent/CN107337176B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/001Devices without movable or flexible elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0014Array or network of similar nanostructural elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0009Forming specific nanostructures
    • B82B3/0019Forming specific nanostructures without movable or flexible elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明提供一种表面增强拉曼散射基底及其制备方法,所述表面增强拉曼散射基底包括衬底,所述衬底的表面具有微结构阵列,所述微结构阵列是由多个微结构阵列排布而成,所述表面增强拉曼散射基底还包括覆盖于所述微结构阵列表面的金属纳米颗粒。所述制备方法包括;提供一衬底;刻蚀所述衬底,以在其表面形成微结构阵列;至少在所述衬底上形成有微结构阵列的区域沉积金属纳米颗粒,以制得所述表面增强拉曼散射基底。本发明提出的表面增强拉曼散射基底成本低廉、稳定性和灵敏度高、重现性好、能满足多种需求,且所述表面增强拉曼散射基底的制备工艺简单。

Description

表面增强拉曼散射基底及其制备工艺
技术领域
本发明涉及表面增强拉曼散射芯片技术领域,尤其涉及一种表面增强拉曼散射基底及其制备工艺。
背景技术
表面增强拉曼散射光谱作为一种超灵敏和无损伤的分析工具在电化学、环境分析和生物医学等领域已经展现出强大的能力。如今制约该技术面向实际应用的最大阻碍在于基底的重现性问题。尽管各种基底被开发用来提升增强因子,实现定量检测,延长基底寿命和允许在不同环境中研究表面增强拉曼散射,截止到目前,仍很难得到一种同时兼具低成本,高稳定性,高灵敏度和重现性好的表面增强拉曼散射基底。目前,常用的方法是根据不同的应用领域,通过设计具有特定功能的基底来满足相关的要求。在定量分析中,首选均一、可重现的基底;然而,在痕量检测中,要优先考虑有最大增强效果的基底。在生物相关的检测中,需要洁净、有良好生物兼容性的基底。
因此,设计一种制作工艺简单,成本低廉,稳定性和灵敏度高,重现性好,能满足多种需求的表面增强拉曼散射基底具有重大的实用意义。
发明内容
为了解决上述问题,本发明提出一种表面增强拉曼散射基底及其制备工艺,所述表面增强拉曼散射基底成本低廉、稳定性和灵敏度高、重现性好、能满足多种需求,所述制备工艺简单。
本发明提出的具体技术方案为:提供一种表面增强拉曼散射基底,所述表面增强拉曼散射基底包括衬底,所述衬底的表面具有微结构阵列,所述微结构阵列是由多个微结构阵列排布而成,所述表面增强拉曼散射基底还包括覆盖于所述微结构阵列表面的金属纳米颗粒。
进一步地,所述微结构的形状为纳米花型。
进一步地,所述衬底的材质为氮化物半导体。
进一步地,所述衬底的材质选自氮化铝(AlN)、氮化镓(GaN)、氮化铟(InN)或氮化铝镓铟(AlGaInN)中的一种。
进一步地,所述金属纳米颗粒的材质选自金(Au)、银(Ag)或铜(Cu)中的一种。
本发明还提供了一种表面增强拉曼散射基底的制备方法,所述制备方法包括:
提供一衬底;
刻蚀所述衬底,以在其表面形成微结构阵列;
至少在所述衬底上形成有微结构阵列的区域沉积金属纳米颗粒,以制得所述表面增强拉曼散射基底。
进一步地,刻蚀所述衬底所采用的刻蚀工艺为湿法刻蚀工艺或干法刻蚀工艺。
进一步地,沉积金属纳米颗粒所采用的沉积工艺为电化学、光化学或磁控溅射沉积工艺。
本发明提供的表面增强拉曼散射基底包括衬底,所述衬底表面具有微结构阵列,所述微结构阵列是由多个微结构阵列排布而成,所述表面增强拉曼散射基底还包括覆盖于所述微结构阵列表面的金属纳米颗粒。本发明提出的表面增强拉曼散射基底成本低廉、稳定性和灵敏度高、重现性好、能满足多种需求,且所述表面增强拉曼散射基底的制备工艺简单。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1为实施例1中表面增强拉曼散射基底的结构示意图;
图2为实施例1中表面增强拉曼散射基底的制备方法流程图;
图3为金属辅助光化学刻蚀工艺装置示意图;
图4为实施例1中具有微结构阵列的衬底的SEM图;
图5为电化学沉积工艺装置示意图;
图6为实施例1中具有金属纳米颗粒的衬底的SEM图;
图7为光电化学刻蚀工艺装置示意图;
图8为实施例2中具有金属纳米颗粒的衬底的SEM图;
图9为光化学沉积工艺装置示意图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为局限于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
实施例1
参照图1,本实施例提供的表面增强拉曼散射基底包括衬底1,衬底1的表面具有微结构阵列2,微结构阵列2是由多个微结构21阵列排布而成。表面增强拉曼散射基底还包括覆盖于微结构阵列2表面的金属纳米颗粒3。其中,本实施例中的表面增强拉曼散射基底为三维。
具体的,微结构21的形状为纳米花型。衬底1的材质为氮化物半导体,其中,氮化物半导体选自AlN、GaN、InN或AlGaInN中的一种。当然,衬底1的材质还可以选自其他氮化物,这里不做限定。微结构阵列2是由衬底1经过刻蚀得到,因此,微结构阵列2的材质与衬底1的材质相同即为氮化物。本实施例中,衬底1的材质为氮化镓(GaN)。金属纳米颗粒3通过沉积工艺沉积于微结构阵列2的表面,其中,金属纳米颗粒3的材质为金(Au)。
参照图2,本实施例还提供了上述表面增强拉曼散射基底的制备方法,所述制备方法包括:
步骤S1、提供一衬底1。
步骤S2、刻蚀衬底1,以在其表面形成微结构阵列2。
参照图3,在步骤S2中采用金属辅助光化学刻蚀工艺对衬底1进行刻蚀,具体的,步骤S2包括:
S21、金属催化剂通过电化学三电极体系循环伏安工艺沉积到衬底1上。其中,衬底1、铂丝、银/氯化银(Ag/AgCl)电极分别作为工作电极、对电极、参比电极。循环伏安工艺的具体参数为:电压范围为-1.5~0.5V,扫描速率为50mV/s,扫描圈数为2圈。沉积液为HAuCl4和NaCl的混合液,其中,混合液中HAuCl4的浓度为1mmol/L,NaCl的浓度为0.5mol/L;
S22、将步骤S21获得的衬底1浸没在刻蚀液中,300W氙灯照射30min。其中,刻蚀液为HF和H2O2的混合液,混合液中HF的浓度为4mol/L,H2O2的浓度为1mol/L;
S23、将步骤S22获得的衬底1用去离子水冲洗并用N2吹干,以在衬底1的表面形成微结构阵列2。
参照图4,图4示出了经过步骤S2后获得的具有微结构阵列2的衬底1的SEM图。
步骤S3、至少在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,以制得表面增强拉曼散射基底。
参照图5,在步骤S3中采用电化学沉积工艺在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,其中,本实施例中的金属纳米颗粒3的材质为金,具体的,步骤S3包括:
S31、金纳米颗粒通过电化学三电极体系循环伏安工艺沉积到具有微结构阵列2的衬底1的表面。具有微结构阵列2的衬底1、铂丝、银/氯化银电极分别作为工作电极、对电极、参比电极。循环伏安工艺的具体参数为:电压范围为-1.5~0.5V,扫描速率为50mV/s,扫描圈数为3圈。沉积液为HAuCl4和NaCl的混合液,其中,混合液中HAuCl4的浓度为1mmol/L,NaCl的浓度为0.5mol/L;
S32、将步骤S31获得的衬底1用去离子水冲洗并用N2吹干,获得表面增强拉曼散射基底。
参照图6,图6示出了经过步骤S3后获得的表面增强拉曼散射基底的SEM图。
实施例2
本实施例的表面增强拉曼散射基底的结构与实施例1中的表面增强拉曼散射基底的结构相同,本实施例中的制备方法包括:
步骤S1、提供一衬底1。
步骤S2、刻蚀衬底1,以在其表面形成微结构阵列2。
参照图7,在步骤S2中采用光电化学刻蚀工艺对衬底1进行刻蚀,具体的,步骤S2包括:
S21、衬底1、铂丝分别作为阳极、阴极,300W氙灯作为光源,刻蚀液为乙二胺四乙酸二钠(EDTA-2Na)水溶液,其中,乙二胺四乙酸二钠的浓度为0.3mol/L,刻蚀电压为5V,刻蚀时间为20min;
S22、将步骤S21获得的衬底1用去离子水冲洗并用N2吹干,以在衬底1的表面形成微结构阵列2。
步骤S3、至少在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,以制得表面增强拉曼散射基底。
在步骤S3中采用电化学沉积工艺在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,其中,本实施例中的金属纳米颗粒3的材质为银,具体的,步骤S3包括:
S31、银纳米颗粒通过电化学三电极体系循环伏安工艺沉积到具有微结构阵列2的衬底1的表面。具有微结构阵列2的衬底1、铂丝、银/氯化银电极分别作为工作电极、对电极、参比电极。循环伏安技术的具体参数为:电压范围为-1.5~0.5V,扫描速率为50mV/s,扫描圈数为3圈。沉积液为AgNO3和NaNO3的混合液,其中,混合液中AgNO3的浓度为1mmol/L,NaNO3的浓度为0.5mol/L;
S32、将步骤S31获得的衬底1用去离子水冲洗并用N2吹干,获得表面增强拉曼散射基底。
参照图8,图8示出了经过步骤S3后获得的表面增强拉曼散射基底的SEM图。
实施例3
本实施例的表面增强拉曼散射基底的结构与实施例1中的表面增强拉曼散射基底的结构相同,本实施例中的制备方法包括:
步骤S1、提供一衬底1。
步骤S2、刻蚀衬底1,以在其表面形成微结构阵列2。
在步骤S2中采用光电化学刻蚀工艺对衬底1进行刻蚀,具体的,步骤S2包括:
S21、衬底1、铂丝分别作为阳极、阴极,300W氙灯作为光源,刻蚀液为离子液体1-乙基-3-甲基咪唑三氟甲磺酸盐([Emim]OTF),刻蚀电压为5V,刻蚀时间为10min;
S22、将步骤S21获得的衬底1用去离子水冲洗并用N2吹干,以在衬底1的表面形成微结构阵列2。
步骤S3、至少在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,以制得表面增强拉曼散射基底。
在步骤S3中采用电化学沉积工艺在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,其中,本实施例中的金属纳米颗粒3的材质为铜,具体的,步骤S3包括:
S31、铜纳米颗粒通过电化学三电极体系循环伏安工艺沉积到具有微结构阵列2的衬底1的表面。具有微结构阵列2的衬底1、铂丝、银/氯化银电极分别作为工作电极、对电极、参比电极。循环伏安技术的具体参数为:电压范围为-1.5~0.5V,扫描速率为50mV/s,扫描圈数为3圈。沉积液为CuCl2和NaCl的混合液,其中,混合液中CuCl2的浓度为1mmol/L,NaCl的浓度为0.5mol/L;
S32、将步骤S31获得的衬底1用去离子水冲洗并用N2吹干,获得表面增强拉曼散射基底。
实施例4
本实施例的表面增强拉曼散射基底的结构与实施例1中的表面增强拉曼散射基底的结构相同,本实施例中的制备方法包括:
步骤S1、提供一衬底1。
步骤S2、刻蚀衬底1,以在其表面形成微结构阵列2。
在步骤S2中采用金属辅助光化学刻蚀工艺对衬底1进行刻蚀,具体的,步骤S2包括:
S21、金属催化剂通过电化学三电极体系循环伏安工艺沉积到衬底1上。其中,衬底1、铂丝、银/氯化银电极分别作为工作电极、对电极、参比电极。循环伏安工艺的具体参数为:电压范围为-1.5~0.5V,扫描速率为50mV/s,扫描圈数为2圈。沉积液为H2PtCl6和NaCl的混合液,其中,混合液中H2PtCl6的浓度为1mmol/L,NaCl的浓度为0.5mol/L;
S22、将步骤S21获得的衬底1浸没在刻蚀液中,300W氙灯照射30min。其中,刻蚀液为HF和H2O2的混合液,混合液中HF的浓度为4mol/L,H2O2的浓度为1mol/L;
S23、将步骤S22获得的衬底1用去离子水冲洗并用N2吹干,以在衬底1的表面形成微结构阵列2。
步骤S3、至少在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,以制得表面增强拉曼散射基底。
参照图9,在步骤S3中采用光化学沉积工艺在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,其中,本实施例中的金属纳米颗粒3的材质为金,具体的,步骤S3包括:
S31、将具有微结构阵列2的衬底1浸没到沉积液中,300W氙灯照射2min。沉积液为HAuCl4和NaCl的混合液,其中,混合液中HAuCl4的浓度为1mmol/L,NaCl的浓度为0.5mol/L;
S32、将步骤S31获得的衬底1用去离子水冲洗并用N2吹干,获得表面增强拉曼散射基底。
实施例5
本实施例的表面增强拉曼散射基底的结构与实施例1中的表面增强拉曼散射基底的结构相同,本实施例中的制备方法包括:
步骤S1、提供一衬底1。
步骤S2、刻蚀衬底1,以在其表面形成微结构阵列2。
在步骤S2中采用光电化学刻蚀工艺对衬底1进行刻蚀,具体的,步骤S2包括:
S21、衬底1、铂丝分别作为阳极、阴极,300W氙灯作为光源,刻蚀液为乙二胺四乙酸二钠(EDTA-2Na)水溶液,其中,乙二胺四乙酸二钠的浓度为0.3mol/L,刻蚀电压为5V,刻蚀时间为20min;
S22、将步骤S21获得的衬底1用去离子水冲洗并用N2吹干,以在衬底1的表面形成微结构阵列2。
步骤S3、至少在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,以制得表面增强拉曼散射基底。
在步骤S3中采用光化学沉积工艺在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,其中,本实施例中的金属纳米颗粒3的材质为银,具体的,步骤S3包括:
S31、将具有微结构阵列2的衬底1浸没到沉积液中,300W氙灯照射2min。沉积液为AgNO3和NaNO3的混合液,其中,混合液中AgNO3的浓度为1mmol/L,NaNO3的浓度为0.5mol/L;
S32、将步骤S31获得的衬底1用去离子水冲洗并用N2吹干,获得表面增强拉曼散射基底。
实施例6
本实施例的表面增强拉曼散射基底的结构与实施例1中的表面增强拉曼散射基底的结构相同,本实施例中的制备方法包括:
步骤S1、提供一衬底1。
步骤S2、刻蚀衬底1,以在其表面形成微结构阵列2。
在步骤S2中采用光电化学刻蚀工艺对衬底1进行刻蚀,具体的,步骤S2包括:
S21、衬底1、铂丝分别作为阳极、阴极,300W氙灯作为光源,刻蚀液为离子液体1-乙基-3-甲基咪唑三氟甲磺酸盐([Emim]OTF),刻蚀电压为5V,刻蚀时间为10min;
S22、将步骤S21获得的衬底1用去离子水冲洗并用N2吹干,以在衬底1的表面形成微结构阵列2。
步骤S3、至少在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,以制得表面增强拉曼散射基底。
在步骤S3中采用光化学沉积工艺在衬底1上形成有微结构阵列2的区域沉积金属纳米颗粒3,其中,本实施例中的金属纳米颗粒3的材质为铜,具体的,步骤S3包括:
S31、将具有微结构阵列2的衬底1浸没到沉积液中,300W氙灯照射2min。沉积液为CuCl2和NaCl的混合液,其中,混合液中CuCl2的浓度为1mmol/L,NaCl的浓度为0.5mol/L;
S32、将步骤S31获得的衬底1用去离子水冲洗并用N2吹干,获得表面增强拉曼散射基底。
当然,本实施例中的表面增强拉曼散射基底的制备方法中刻蚀衬底1的工艺还包括干法刻蚀工艺等其他刻蚀工艺,沉积金属纳米颗粒3所采用的沉积工艺还包括磁控溅射沉积工艺等其他沉积工艺。
本实施例提供的表面增强拉曼散射基底,其制备工艺简单,成本低,易于大规模生产。相比于二维基底,本实施例中三维的表面增强拉曼散射基底具有更多的活性“热点”,更大的比表面积,更高的拉曼活性且兼具良好的生物兼容性,其在生物医学检测领域有很好的实用前景。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (8)

1.一种表面增强拉曼散射基底,其特征在于,包括衬底,所述衬底的表面具有微结构阵列,所述微结构阵列是由多个微结构阵列排布而成,所述表面增强拉曼散射基底还包括覆盖于所述微结构阵列表面的金属纳米颗粒。
2.根据权利要求1所述的表面增强拉曼散射基底,其特征在于,所述微结构的形状为纳米花型。
3.根据权利要求2所述的表面增强拉曼散射基底,其特征在于,所述衬底的材质为氮化物半导体。
4.根据权利要求3所述的表面增强拉曼散射基底,其特征在于,所述衬底的材质选自氮化铝、氮化镓、氮化铟或氮化铝镓铟中的一种。
5.根据权利要求1所述的表面增强拉曼散射基底,其特征在于,所述金属纳米颗粒的材质选自金、银或铜中的一种。
6.一种表面增强拉曼散射基底的制备方法,其特征在于,包括:
提供一衬底;
刻蚀所述衬底,以在其表面形成微结构阵列;
至少在所述衬底上形成有微结构阵列的区域沉积金属纳米颗粒,以制得所述表面增强拉曼散射基底。
7.根据权利要求6所述的制备方法,其特征在于,刻蚀所述衬底所采用的刻蚀工艺为湿法刻蚀工艺或干法刻蚀工艺。
8.根据权利要求6所述的制备方法,其特征在于,沉积金属纳米颗粒所采用的沉积工艺为电化学、光化学或磁控溅射沉积工艺。
CN201710458327.7A 2017-06-16 2017-06-16 表面增强拉曼散射基底及其制备工艺 Active CN107337176B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710458327.7A CN107337176B (zh) 2017-06-16 2017-06-16 表面增强拉曼散射基底及其制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710458327.7A CN107337176B (zh) 2017-06-16 2017-06-16 表面增强拉曼散射基底及其制备工艺

Publications (2)

Publication Number Publication Date
CN107337176A true CN107337176A (zh) 2017-11-10
CN107337176B CN107337176B (zh) 2019-12-27

Family

ID=60221458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710458327.7A Active CN107337176B (zh) 2017-06-16 2017-06-16 表面增强拉曼散射基底及其制备工艺

Country Status (1)

Country Link
CN (1) CN107337176B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975270A (zh) * 2019-04-12 2019-07-05 北京师范大学 一种银纳米花周期阵列sers基底及其制备方法
CN110714184A (zh) * 2019-09-29 2020-01-21 山东大学 基于多孔氮化镓的表面增强拉曼散射基底及其制备方法
CN111122022A (zh) * 2019-12-30 2020-05-08 浙江清华柔性电子技术研究院 功能薄膜及其制备方法、柔性压力传感器及其制备方法
CN111122021A (zh) * 2019-12-30 2020-05-08 浙江清华柔性电子技术研究院 柔性复合薄膜及制备方法、柔性压力传感器及制备方法
CN112268888A (zh) * 2020-10-19 2021-01-26 西安工程大学 一种银纳米线-氮化镓纳米颗粒复合材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566570A (zh) * 2009-05-27 2009-10-28 东南大学 有序可控的表面增强拉曼散射活性基底及其制备方法
CN102661944A (zh) * 2012-05-14 2012-09-12 北京化工大学 一种金属粒子阵列基表面增强拉曼散射基底的制备方法
CN103361643A (zh) * 2013-07-22 2013-10-23 中国科学院苏州纳米技术与纳米仿生研究所 一种GaN腐蚀液
CN103983629A (zh) * 2014-05-13 2014-08-13 中国工程物理研究院化工材料研究所 一种表面增强拉曼散射探测芯片及其制备方法
CN105004706A (zh) * 2014-04-24 2015-10-28 中国科学院苏州纳米技术与纳米仿生研究所 表面增强拉曼散射活性基底及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101566570A (zh) * 2009-05-27 2009-10-28 东南大学 有序可控的表面增强拉曼散射活性基底及其制备方法
CN102661944A (zh) * 2012-05-14 2012-09-12 北京化工大学 一种金属粒子阵列基表面增强拉曼散射基底的制备方法
CN103361643A (zh) * 2013-07-22 2013-10-23 中国科学院苏州纳米技术与纳米仿生研究所 一种GaN腐蚀液
CN105004706A (zh) * 2014-04-24 2015-10-28 中国科学院苏州纳米技术与纳米仿生研究所 表面增强拉曼散射活性基底及其制备方法
CN103983629A (zh) * 2014-05-13 2014-08-13 中国工程物理研究院化工材料研究所 一种表面增强拉曼散射探测芯片及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
MIAO-RONG ZHANG等: "Electrosynthesis of gold nanoparticles/porou GaN electrode for non-enzymatic hydrogen peroxide detection", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
MIAO-RONG ZHANG等: "Metal-assisted photochemical etching of gallium nitride using electrodeposited noble metal nanoparticles as catalysts", 《ELECTROCHEMISTRY COMMUNICATIONS》 *
MINH-KHA NGUYEN等: "A Plasmonic Coupling Substrate Based on SandwichStructure of Ultrathin Silica-Coated Silver Nanocubes and Flower-Like Alumina-Coated Etched Aluminum for Sensitive Detection of Biomarkers in Urine", 《ADVANCED HEALTHCARE MATERIALS》 *
SOUMIK SIDDHANTA等: "Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing", 《ACS APPLIED MATERIALS AND INTERFACES》 *
YU FEI CHAN等: "ZnO/Si arrays decorated by Au nanoparticles for surface-enhanced Raman scattering study", 《JOURNAL OF APPLIED PHYSICS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975270A (zh) * 2019-04-12 2019-07-05 北京师范大学 一种银纳米花周期阵列sers基底及其制备方法
CN110714184A (zh) * 2019-09-29 2020-01-21 山东大学 基于多孔氮化镓的表面增强拉曼散射基底及其制备方法
CN111122022A (zh) * 2019-12-30 2020-05-08 浙江清华柔性电子技术研究院 功能薄膜及其制备方法、柔性压力传感器及其制备方法
CN111122021A (zh) * 2019-12-30 2020-05-08 浙江清华柔性电子技术研究院 柔性复合薄膜及制备方法、柔性压力传感器及制备方法
CN111122022B (zh) * 2019-12-30 2023-08-15 浙江清华柔性电子技术研究院 功能薄膜及其制备方法、柔性压力传感器及其制备方法
CN111122021B (zh) * 2019-12-30 2023-08-15 浙江清华柔性电子技术研究院 柔性复合薄膜及制备方法、柔性压力传感器及制备方法
CN112268888A (zh) * 2020-10-19 2021-01-26 西安工程大学 一种银纳米线-氮化镓纳米颗粒复合材料的制备方法

Also Published As

Publication number Publication date
CN107337176B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
CN107337176A (zh) 表面增强拉曼散射基底及其制备工艺
CN110389162B (zh) 金掺杂氮化碳复合材料及其制备方法、甲基汞的检测方法
CN106018390B (zh) 比率型电化学发光纸芯片的制备及在铅离子检测中的应用
CN105973865A (zh) 一种Au纳米树枝晶表面增强拉曼散射基底及其制备方法
CN102976266A (zh) 基于金银纳米线阵列的表面增强拉曼散射标记及其制备方法
CN106525942B (zh) 一种以时间为读取信号的光致电传感器的构建方法
CN105004706B (zh) 表面增强拉曼散射活性基底及其制备方法
CN101221130A (zh) 基于硅纳米孔柱阵列的表面增强拉曼散射活性基底的制备方法
Mikkelsen et al. Dental amalgam, an alternative electrode material for voltammetric analyses of pollutants
CN103007965A (zh) 一种钛基碳纳米管负载铜钯双金属催化剂及其制备方法
CN108226138A (zh) 一种Ag纳米片组装的空心管阵列表面增强拉曼散射基底
Zhang et al. Three-dimensional gallium nitride nanoflowers supports decorated by gold or silver nanoparticles to fabricate surface-enhanced Raman scattering substrates
CN104807802A (zh) 一种表面增强拉曼散射基底及其原位生长方法
CN106395740B (zh) 一种贵金属纳米粒子间距可控的sers衬底制备方法
CN1356543A (zh) 金单晶纳米岛阵列薄膜电极的制备方法
CN108802121A (zh) 一种光电流溶解氧传感器
CN103364390A (zh) 一种表面增强拉曼基底及其制备方法和应用
CN105836698B (zh) 一种金‑二氧化钛复合纳米管阵列与金纳米管阵列电极的制备方法
CN110331427A (zh) 一种多孔硅-银纳米枝晶结构及其制备方法
CN107151807B (zh) 半球壳状多孔金微纳结构及其制备方法和用途
Okajima et al. Electrogenerated chemiluminescence of lucigenin enhanced by the modifications of electrodes with self-assembled monolayers and of solutions with surfactants
CN109239155A (zh) 无酶葡萄糖光电化学传感器、无酶葡萄糖浓度的检测方法
Oh et al. Structural complexity induced by {110} blocking of cysteine in electrochemical copper deposition on silver nanocubes
Saito et al. Oxygen plasma exfoliated vertically-aligned carbon nanotubes as electrodes for ultrasensitive stripping detection of Pb2+
CN110068565B (zh) Sers传感芯片的应用及其检测方法和制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180208

Address after: 215123 Suzhou Industrial Park, Jiangsu Province, if the waterway No. 398, No.

Applicant after: Suzhou Institute of Nano-Tech and Bionics (SINANO), Chinese Academy of Sciences

Applicant after: University of Chinese Academy of Sciences

Address before: 215123 Suzhou Industrial Park, Jiangsu Province, if the waterway No. 398, No.

Applicant before: Suzhou Institute of Nano-Tech and Bionics (SINANO), Chinese Academy of Sciences

GR01 Patent grant
GR01 Patent grant