CN1073308A - 用于感应电机的驱动控制装置 - Google Patents

用于感应电机的驱动控制装置 Download PDF

Info

Publication number
CN1073308A
CN1073308A CN92113457A CN92113457A CN1073308A CN 1073308 A CN1073308 A CN 1073308A CN 92113457 A CN92113457 A CN 92113457A CN 92113457 A CN92113457 A CN 92113457A CN 1073308 A CN1073308 A CN 1073308A
Authority
CN
China
Prior art keywords
value
moment
rotor flux
output
torsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN92113457A
Other languages
English (en)
Other versions
CN1037797C (zh
Inventor
田中茂
多田隈进
根一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP3339592A external-priority patent/JPH05161382A/ja
Priority claimed from JP01306992A external-priority patent/JP3244744B2/ja
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1073308A publication Critical patent/CN1073308A/zh
Application granted granted Critical
Publication of CN1037797C publication Critical patent/CN1037797C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control
    • H02P21/09Field phase angle calculation based on rotor voltage equation by adding slip frequency and speed proportional frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/01Asynchronous machines

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一个差频型驱动控制装置,包括一个检测器,一 个计算单元,一个中枢网络,及一个矢量控制单元。 中枢网络接收转子磁通控制值、扭矩电流控制值、转 子磁通计算值和扭矩电流计算值,利用对应于这些输 入的输出信号输出激励电流控制值的差频控制值,矢 量控制单元依中枢网络输出的差频控制值检测扭矩 电流和激励电流,且依所检测的激励电流值与激励电 流控制值的偏差及检测的扭矩电流值与扭矩电流控 制值的偏差来控制感应电机。

Description

本发明涉及一个用于感应电机的差频型矢量控制设备,该设备采用一个能够自动符合感应电机的转子电阻或互感变化的中枢网络。
在传统技术中,矢量控制系统常常作为一个可变速驱动系统用于感应电机中,该矢量控制系统被设计为与直流电机同样的方式来操纵感应电机,该系统将转子端分为一个扭矩轴分量和一个磁通轴分量,然后控制单个轴分量。
矢量控制系统被分为磁场定向型和差频型,在磁场定向型中,转子磁通被作为一个矢量用于控制一次电流;在差频型中,磁通矢量由感应电机参数的算术运算来控制。
图9示出了一个差频型矢量控制设备的功能方框图,其中参考号2标示一个作为受控目标的感应电机。
在这一矢量控制设备中,一个外部输出的转子磁通控制值φ2被输入到一个激励电流计算单元1和一个差频计算单元5,同样也是外部输出的一个速度控制值ωr被输入到比较器C1。输入给感应电机2的三相输入电流ia、ib和ic分别由电流检测器CT1至CT3检测,感应电机2的转速ωr由一个转速检测器3检测。
激励电流计算单元1利用下面的等式(1)由转子磁通控制值φ2计算一个激励电流控制值id,并将所得到的id加到一个比较器C2上:
id=φ2/M+[L2/(m·R2)]·dφ2/dt (1)
其中,M是感应电机2的互感,L2是感应电机2的转子电感,R2是感应电机2的转子电阻。
比较器C1计算速度控制值ωr和转速ωr的偏差,并将所得的偏差加到一个控制校正电路4,设控制校正电路4将偏差放大,并将其结果作为一个扭矩电流控制值iq加到一个差频计算单元5和一个比较器C3。
该差频计算单元5利用下面的等式(2)由扭矩电流控制值iq计算一个差频控制值ωs,并将所得到的ωs加到加法器6:
ωs=(M·R2/L2)·iq/φ2(2)
加法器6将差频控制值ωs和由转速检测器3所检测出的转速ωr相加得到一个一次角频率ωe,并将所得到的一次角频率ωe加到一个积分电路7,该积分电路7通过对一次角频率ωe作积分计算一个相位角θ,并将该相位角θ加到一个ROM8。
该ROM8构成一个存储表,它响应输入的相位角θ产生两相单位正弦信号sinθ和cosθ,并将这些单位正弦信号sinθ和cosθ加到坐标变换电路9和10。
坐标转换电路9利用下面的等式(3)和(4)将由电流检测器CT1、CT2和CT3所检测的三相电流ia、ib和ic分别转换为dq坐标系统(旋转坐标系统)的一个激励电流(直轴电流)id和一个扭矩电流(交轴电流):
id=cosθ·iα-sinθ·iβ    (3)
iq=sinθ·iα-cosθ·iβ    (4)
其中:
iα=K·(ia-ib/2-ic/2)
iβ=K′·(ib-ic)
K = 2/3 ,K′= 1/ 2
另一方面,比较器C2将激励电流控制值id与所检测到的激励电流值id进行比较得到一个偏差εd=id-id,一个控制校正电路11将偏差εd=id-id进行放大并将一个放大输出ed提供给坐标转换电路10。输出ed作为一个电压控制值的d轴分量。同样,比较器C3将扭矩电流控制值iq和作为交轴分量的扭矩电流iq进行比较得到一个偏差εq=iq-iq。一个控制校正电路12将偏差εq=iq-iq进行放大并将放大的输出eq提供给坐标转换电路10。这个输出eq作为电压控制值的q轴分量。
坐标转换电路10利用下面的等式(5)和(6)将d轴和q轴的电压控制值ed和eq转换为三相电压控制值ea、eb和ec
ea=K·eα(5)
eb=K·(-eα/2+eβ· 3 /2) (6)
ec=K·(-eα/2-eβ· 3 /2) (7)
其中:
=cosθ·ed+sinθ·eq
eβ=-sinθ·ed+cosθ·eq
一个向感应电机2输出具有一个可变电压和一个可变频率的三相交流(Ac)功率的功率转换器可以由例如一个脉宽调制控制(PWM)转换器或一个双向离子变频器组成,该功率转换器13产生与由坐标转换电路10输入的三相电压控制值ea、eb和ec成比例的电压, 并且控制感应电机2的电枢电流ia、ib和ic。
具有上述配置、用于一个感应电机的传统的差频型矢量控制设备实行控制操作,使得所检测的激励电流值id和扭矩电流值iq与其相应的控制值一致,从而取得与直流(DC)电机相当的特性。
然而,上面所述的传统的矢量控制设备具有一个缺点,即如果在常数(M,R2和L2)中包括了误差,那么激励电流计算单元1和差频计算单元5的运算精度就会下降,而这一缺点使得感应电机的输出特性恶化。
感应电机2的常数(M、R2和L2)随其型号或额定输出而变化,因此要确定它们的正确值是很困难的,虽然通常采用设计值来进行算术运算,但设计值是否完全与其实际值一致是不正确的,因此,能否实现精确的矢量控制是值得怀疑的。
在实际应用中是这样的:在测量稳态特性时,一个熟炼的工程师进行一次测试操作,然后将常数(M、R2和L2)调整到认为是最佳的值,这种调整既费时、又费钱,而且只能对具有大量感应电机的一个通用电机进行粗糙的调整,这产生了一些问题,如降低电机的输出性能。
感应电机的转子电阻R2随着转子中的温度变化而变化,而感应电机的互感M或转子电感L2随磁芯的饱和而变化,因此,即使最初确定了正确的值,但有可能由于在运行中常数的变化使得磁通矢量φ2和扭矩电流iq之间的角不能再保持在一个正确的角度,从而减小了感应电机产生的扭矩。
本发明的目的是要为感应电机提供一个驱动控制设备,它不需要对用于计算一个激励电流控制值和一个差频控制值的算术常数进行调整,而且即使在运行中算术常数发生了变化,它也能对这些算术常数进行自动调节,从而与该变化一致。
本发明的一个驱动控制设备包括:
一个参数检测器,用于检测对一台感应电机的一个输入电流和一个输入电压,作为该感应电机的控制参数;
一个计算单元,利用所述控制参数计算感应电机的一个转子磁通和一个扭矩电流;
一个中枢网络,接收感应电机的一个转子磁通控制值和一个扭矩电流控制值以及由计算单元计算的转子磁通和扭矩电流值、或转子磁通控制值、扭矩电流控制值、计算出的转子磁通值、所述计算出的扭矩电流值以及一个检测的扭矩电流值,利用对应于输入的输出信号根据一个反向传播定律的基础进行记忆,并且输出一个激励电流命令值和一个差频命令值;
一个矢量控制单元,根据由中枢网络所输出的差频控制值和所述控制参量检测感应电机的一个实际激励电流和一个实际扭矩电流,并根据一个所检测的实际激励电流值和激励电流控制值之间的偏差以及一个所检测的实际扭矩电流值和所述扭矩电流控制值之间的偏差来控制该感应电机。
根据本发明,对感应电机的矢量控制是采用中枢网络的记忆功能来实现的,这不需要对用于矢量控制的电机常数进行调整。此外,即使在运行中电机常数发生了变化,该设备能够自动调节电机常数以符合这一变化。
附图示出了本发明目前的最佳实施例,它将与上面的总体描述以及下面对最佳实施例的详细描述一起来解释本发明的原理。
图1是一个功能方框图,它示出了根据本发明一个实施例的一个矢量驱动控制设备;
图2是一个方框图,它详细示出了用于图1设备中的一个中枢网络部分;
图3是一个方框图,它示出了适用于图1所示设备的一个中枢网络的第一种变型;
图4的视图示出了图3所示中枢网络的模似结果;
图5是一个方框图,它示出了适用于图1所示设备的一个中枢网络的第二种变型;
图6的视图示出了图5所示中枢网络的模似结果;
图7是一个方框图,它示出了适用于图1所示设备的一个中枢网络的第三种变型;
图8是一个方框图,它示出了适用于图1所示设备的一个中枢网络的第四种变型;
图9是一个功能方框图,它示出了现有技术中已存在的用于感应电机的矢量控制设备。
下面将参照附图来描述本发明的一个实施例。
图1的功能方框图示出了根据本发明一个实施例的一个差频型矢量控制设备,其中与图9相同的参考号代表了相同的部件。
本实施例的矢量控制设备包括:用于检测输入给一个感应电机2的三相输入电流的电流检测器CT1至CT3,用于检测输入给该感应电机2的三相输入电压检测器PT1至PT3,用于获得一个激励电流控制值id和一个差频控制值ωs的一个中枢网络处理单元20,一个用于计算感应电机2的转子磁通和扭矩电流的磁通计算单元21,以及一个用于控制感应电机驱动的矢量控制单元。
所述矢量控制单元由比较器C1至C3、控制校正电路4、11和12、一个加法器6、一个积分电路7、一个ROM8、坐标转换电路9和10以及一个功率转换器13组成,这些组件与图9中所示的矢量控制设备的相应的组件具有同样的功能,并且以相同的方式进行连接。
图2示出了中枢网络处理单元20的细节。该中枢网络处理单元20与图9所示设备的激励电流计算单元1和差频计算单元5执行同等的功能。
该中枢网络处理单元20具有一个中枢网络电路22、输入开关SW1和SW2、输出开关SW3和SW4以及一个向后传播电路23。
输入开关SW1有选择性地向中枢网络电路22提供一个外界输出的转子磁通控制值φ2和由磁通计算单元21计算的一个输入转子磁通值φ2C,输入开关SW2有选择性地向中枢网络电路22提供来自控制校正电路4的一个输入扭矩电流控制值iq和由磁通计算单元21计算的一个输入扭矩电流值iqc。
中枢网络电路22由下述部件组成:第一至第五信息传输通路T1至T5,以一个预定的延迟由开关SW1向第三信息传输通路T3提供一个输入信号的一个延迟元件24、第一加法器25和第二加法器26。
第一信息传输通路T1带有一个系数单元P1,用于对一个输入信号X1乘以一个加权W11。同样,第二至第五信息传输通路T2至T5分别带有系数单元P2至P5,用于分别对输入信号X2和X3乘以加权W12、W21、W31和W32。
第一加法器25将来自第一、第三和第四信息传输通路T1、T3和T4的输出相加,第二加法器26将来自第二和第五信息传输通路T2和T5的输出相加。
向后传播电路23有选择地通过输出开关SW3接收来自第一加法器25的输出和通过输出开关SW4接收来自第二加法器26的输出。
开关SW1至SW4在第一次计时时合向“A”端,而在第二次计时时合向“B”端。当开关合向“A”端时,向后传播电路23存储来自第一加法器25来的输入信号作为V1、存储从第二加法器26来的输入信号作为V2。向后传播电路23由(U1,U2)和(V1,V2)之间的差值产生加权校正值△W11、△W12、△W21、△W31以及△W32,从而对中枢网络电路的加权进行校正。
注意,当输出开关SW3和SW4合向“A”端时,来自第一加法器25的输出除了输入给向后传播电路之外,还作为激励电流控制值id输入给比较器C2,来自第二加法器26的输出除了输入给向后传播电路外,也作为差频控制值ωs输入给矢量控制单元的加法器6。
具有上述电路配置的这一实施例采用转子磁通控制值φ2和扭矩电流控制值iq作为对中枢网络电路22的输入信号。虽然转子磁通控制值φ2通常以一个预定值输入,但是,当根据感应电机2的转速实行弱磁场控制时,这个值要变化。转子磁通控制值φ2经开关SW1输入到中枢网络电路22。
来自一个速度控制电路一由比较器C1和控制校正电路4构成一的输出通常用作扭矩电流控制值iq,即,比较器C1将由一个转速检测器3所检测的一个速度ωr与一个速度控制值ωr进行比较得到一个偏差εr=ωr-ωr。控制校正电路4将偏差εr=ωr-ωr放大并经开关SW2将其结果作为扭矩电流控制值iq提供给中枢网络22。
从功率转换器13到感应电机2的电流ia、ib和ic以及电压Va、Vb和Vc分别由电流检测器CT1至CT3以及电压检测器PT1至PT3检测。所检测的值是磁通计算单元21的输入。磁通计算单元21利用电流ia至ic计算感应电机2转子磁通φ2C和扭矩电流iqc。
磁通计算单元21利用下面的等式(8)至(11)对所检测的具有三相(a、b和c相)的电压和电流进行坐标转换,将其转换为两相(α和β相)的电压和电流:
iα=K·(ia-ib/2-ic/2)    (8)
iβ=K′·(ib-ic)    (9)
eα=K·(ea-eb/2-ec/2)    (10)
eβ=K′·(eb-ec)    (11)
其中, K = 2/3 ,K′= 1/ 2
这个αβ坐标系统的转子磁通φ2α和φ2β可由下面的等式(12)和(13)作算术运算得到:
φ2α=(L2/M)∫(eα-R1·iα)dt-σ·L1·(L2/M)·iα    (12)
φ2β=(L2/M)∫(eβ-R1·iβ)dt-σ·L1·(L2/M)·iβ    (13)
其中R1是一次线圈电阻,R2是转子电阻,L1是一次线圈电感,L2是转子电感,M是互感,σ=1-M2/(L1·L2)是漏感系数。
要将αβ坐标系统的转子磁通φ2α和φ2β转换为dq坐标系统的转子磁通,要用下面的方程式进行计算:
φ2d=cosψ·φ2α-sinψ·φ2β    (14)
φ2q=-sinψ·φ2α+cosψ·φ2β    (15)
cosψ = φ 2α / (φ2α 2 -ψ2β 2 ) (16)
sinψ = φ 2β / (φ2α 2 +φ2β 2 ) (17)
φ 2d = (φ2α 2 +φ2β 2 ) (18)
φ2q=0    (19)
其中φ2d是转子磁通所计算出的值φ2C。
dq坐标系统的电流值idc和iqc可以用上面所描述的cosψ和sinψ通过下面的等式(20)和(21)来计算:
idc=cosψ·iα+sinψ·iβ    (20)
iqc=-sinψ·iα+cosψ·iβ    (21)
其中iqc是所计算的扭矩电流值。
值得注意的是,磁通计算单元21既可由硬件构成,也可由软件构成。根据上面给出的方程式(8)至(21)计算转子磁通值φ2C和扭矩电流值iqc的磁通计算单元可以由本领域的普通技术人员来实现。
所计算出的转子磁通值φ2C和扭矩电流值iqc输入到中枢网络电路22的其它输入端。
为了得到一个最佳激励电流控制值和一个最佳差频控制值,中枢网络处理单元20执行下面的记忆操作。
对每一采样时间△t,开关SW1至SW4交替地合向“A”端和“B”端。向后传播电路23通过应用当开关SW3和SW4合向“A”端时来自该开关输出的输入信号U1和U2以及当该开关合向“B”端时来自该开关输出的输入信号V1和V2,实行对中枢网络电路22的信息传输通路T1至T5的加权值W的记忆。
下面要对这一记忆操作更详细地描述。
在第一次计时时,开关SW1至SW4合向“A”端从而将适当的加权W11至W32加到中枢网络电路32。转子磁通控制值φ2和扭矩电流控制值iq被输入到中枢网络电路22从而引起电路输出激励电流控制值id和转差角频率控制值ωs
在中枢网络电路22中,第一和第二加法器25和26输出由下面的等式(22)和(23)给出的激励电流控制值id和转差角频率控制值ωs
id=X1·W11+X2·W21+X3·W31 (22)
ωs=X1·W12+X3·W32 (23)
从中枢网络电路22输出的激励电流控制值id和差频控制值ωs输入给上面所描述的矢量控制单元,从而对感应电机2执行矢量控制,因为前面已经对矢量控制单元的操作作了详细描述,因此在此省略对其的描述。
在这种情况下执行操作时所得到的电压Va、Vb和Vc以及电流ia、ib和ic被输入给磁通计算单元21,由此根据前面所描述的方法计算感应电机2的转子磁通φ2C和扭矩电流iqc。向后传播电路23分别存贮上述id和ωs作为U1和U2。
在第二次计时时,开关SW1至SW4被合向“B”端,将所计算的转子磁通值φ2C和所计算的扭矩电流值iqc输入给中枢网络电路22,中枢网络电路22根据所计算的转子磁通值φ2C和所计算的扭矩电流值iqc计算一个激励电流控制值id′和一个差频控制值ωs′。向后传播电路23分别存贮id′和ωs′作为V1和V2。
向后传播电路23分别根据当前的控制值id和ωs与原先计算的控制值id和ωs的差值改变中枢网络电路的加权,从而反复执行记忆直到差值最终为零。
也就是说,假设δ1和δ2的差由下式给出:
δ1=U1-V1=id-id
δ2=U2-V2=ωs-ωs
向后传播电路23以下面的方式计算加权W11、W12、W21、W31和W32的校正值△W11至W32:
△W11=K1·δ1·X1
△W12=K2·δ2·X1
△W21=K1·δ1·X2
△W31=K1·δ1·X3
△W32=K1·δ2·X3
其中:
K1和K2是增益
X1=φ2C(n):φ2C的当前采样值
X2=φ2C(n-1):φ2C的紧前一个采样值
X3=iqc(n):iqc的当前采样值
值得注意的是,具有前面所描述的计算校正量△W功能的向后传播电路23既可由硬件、也可由软件来构成,本领域的普通技术人员可以很容易地根据前面的等式来实现。开关SW1至SW4也可由硬件或者软件来构成。
中枢网络电路22中信息传输通路P1至P5的加权W11至W32可如下校正:
W11(K+1)=W11(K)+△W11
W12(K+1)=W12(K)+△W12
W21(K+1)=W21(K)+△W21
W31(K+1)=W31(K)+△W31
W32(K+1)=W32(K)+△W32
举例说明,假如id>id′使δ1为正值,则加权W11、W21和W31被增大,从而增大了用于实际运行中的激励电流控制值id,结果,执行记忆使得满足id=id′。
如果由于ωs>ωs′使得δ2变为正值,系数W12和W32被增大,从而增大用于实际操作中的转差频率ωs,结果,执行记忆使得满足ωs=ωs′。
最后,φ2=φ2C、iq=iqc、id=id′以及ωs=ωs都被满足从而调整了所述的运行。在这种情况下,如果由磁通计算单元21所计算的转子磁通值φ2C和扭矩电流值iqc是合乎要求的精确值,那么由中枢网络所计算的激励电流控制值id和转差角频率控制值也可能是合乎要求的精确值,从而可以获得一个具有与一个直流电机相同输出特性的矢量控制感应电机。
通常,当感应电机2的转速低时,由磁通计算单元21所得到的转子磁通计算值φ2C和扭矩电流计算值iqc的精度会下降,从而,当转速高时执行上面所描述的中枢网络的记忆,而当转速低时记忆操作暂停。
根据本实施例,即使转子电阻R2在运行中由于转子温度升高而发生变化,中枢网络的加权根据该变化而刷新。从而,感应电机2的矢量控制能够永远保持在最佳状况下。同理,当由于感应电机2的磁芯饱和导致互感变化时也同样如此。
由于这一原理,根据本发明的对感应电机的驱动控制设备能够自动选择用于矢量控制的最佳值而不需熟炼的工程师,而且还有很强的抗干扰(如升温)的能力。
因此,根据这一实施例,可以实现无人调节,并且获得增强的性能,即使常数R2和M变化也能进行可行的最佳矢量控制。
注意上面的实施例包括五个信息传输通路(加权)和一个延迟元件。然而,为了获得一个较好的响应,可以增加延迟元件的数目,或者增加或减少具有相应加权的信息传输通路的数目。
此外,在图1所示的实施例中虽然采用磁通计算单元21来检测转子磁通φ2C和扭矩电流iqc。所述设备也可采用一个磁通检测器同样实现。
下面将描述对根据上述实施例的中枢网络处理单元的变型改动。下面将要描述的第一至第四变型可用来取代图1所示的中枢网络处理单元20。
图3示出了对中枢网络处理单元的第一种变型。
该实施例包括一个中枢网络40、输入开关41a和41b、输出开关41c和41d、一个除法器45和一个向后传播电路47。
输入开关41a有选择地向中枢网络电路40提供转子磁通控制值φ2和由磁通计算单元21所计算的转子磁通值φ2C,开关41b则有选择地向中枢网络电路40提供来自控制校正电路4的扭矩电流控制值iq以及由磁通计算单元21所计算的扭矩电流值iqc。
中枢网络电路40包括:第一至第三信息传输通路T41至T43,一个微分单元或微分器46用于对来自开关41a的输入信号作微分并将该信号提供给第二信息传输通路T42,以及一个加法器48,用于接收第一和第二信息传输通路的输出。
第一信息传输通路T41带有一个函数发生器42,用于产生一个第一激励电流加权函数W11:第二信息传输通路T42带有一个函数发生器43,用于产生一个第二激励电流加权函数W21;第三信息传输通路T43带有一个函数发生器44,用于产生一个差频加权函数W32。
加法器48的输出经输出开关41C输入给向后传输电路47和图1所示的比较器C2。第三信息传输通路的输出经输出开关41d输入给向后传输电路47和除法器45。
当输出开关41c和41d合向“A”端时,向后传播电路47接收信号输入作为U1和U2,而当开关合向“B”端时,接收信号输入作为V1和V2。
当转子磁通控制值φ2是输入并且输出开关41d合向“A”端时,除法器45接收第三信息传输通路的输出,将商作为差频控制值ωs输出。
当输出开关41c和41d合向“A”端时,加法器48的输出输入给向后传播电路47,同时作为激励电流控制值id输入给图1所示的比较器C2。
具有上述电路配置的变型执行控制如下:
即,在第一次计时时,开关41a至41d被合向“A”端,将信号×1至×4提供给信息传输通路,第一信息传输通路将×1和加权函数W11的乘积提供给加法器48;第二信息传输通路将×2(X1的微分值)与加权函数W21的乘积提供给加法器48;加法器48的输出被作为激励电流控制值id输出,同时作为U1输入给向后传播电路47;X3和加权函数W32的积输入给除法器45,同时,也作为U2输入给向后传播电路47。
采用在第一次计时时从中枢网络电路40输出的激励电流控制值id和差频控制值ωs来控制感应电机2。
在第二次计时时,开关41a至41d被合向“B”端,将来自磁通计算单元21的计算值设置为X1、X2和X3,从而以与控制值同样的方式来计算V1和V2。采用下面的等式来对W11、W21和W32实行记忆。一个计算函数J由下面的等式(24)来代表:
J=1/2×{(V1-U1)2+(V2-U2)2} (24)
在此情况下,假设记忆增益为Kd1和Kd2,内部参数的变化量△W可由下面的等式(25)和(26)来计算:
△W11=(
Figure 921134576_IMG2
J/ W11)·Kd1=(V1-U1)×1·Kd1 (25)
△W32=(
Figure 921134576_IMG4
J/
Figure 921134576_IMG5
W32)·Kd2=(V2-U2)×2·Kd2 (26)
用下面的等式(27)至(29)可对内部参数实行记忆:
W11=W11+△W11    (27)
W32=W32+△W32    (28)
W21=1/W32    (29)
采用新的内部参数来计算激励电流控制值id和差频控制值ωs
id=(W11·X1)+(W21·X2) (30)
ωs=(W33·X3)/φ 2(31)
图4是当上面所描述的第一种变型用于图1所示的矢量控制设备并且将其运行进行模拟时所获得的时序图,如图4所示,根据第一实施例,执行记忆使加权函数W自动设置为最佳值,产生的扭矩τ和转子磁通φ2c被校正,从而对控制值φ2 而言不产生误差。
注意,向后传播电路47可以执行下面的控制:
即,假设在第一次计时时当开关41a至41d被合向“A”端时,从开关41a输入到第一至第三信息传输通路的控制值分别为X1、X2和X3,并且输入信号与在其相应信息传输通路中所获得的加权函数的积是U1和U2。
此外,假设在第二次计时时当开关41a至41d被合向“B”端时,从开关41a输入到第一至第三信息传输通路的计算值分别为X1、X2和X3,并且这些输入信号与加权函数的积是V1和V2。
计算函数J由下面的等式(32)表示:
J=1/2×{(U1-V1)2+(U2-V2)2} (32)
在这种情况下,假设记忆增益为Kd1、Kd2和Kd3,内部参数的变化量△W由等式(33)至(35)来表示:
△W11=(
Figure 921134576_IMG6
J/
Figure 921134576_IMG7
W11)·Kd1=(U1-V1)·X1·Kd1 (33)
△W21=( J/
Figure 921134576_IMG9
W21)·Kd2=(U2-V2)·X2·Kd2 (34)
△W32=(
Figure 921134576_IMG10
J/
Figure 921134576_IMG11
W32)·Kd3=(U2-V2)·X2·Kd3 (35)
由下面的等式(36)至(38)对新的内部参数执行记忆:
W11=W11+△W11    (36)
W21=W21+△W21    (37)
W32=W32+△W32    (38)
采用新的内部参数来计算激励电流控制值id和差频控制值ωs
id=(W11·X1)+(W21·X2) (39)
ωs=(W32·X3)/φ2 (40)
因此,根据这一变型,采用除法器45减少了相互干扰项,从而可以减少传输通路的数目,结果可以有效地缩短记忆时间。
中枢网络处理单元的一个第二种变型示于图5,它包括一个线性两相中枢网络电路30、输入开关31a和31b、输出开关31c至31e、一个向后传播电路38、一个除法器36和一个加法器37。
输入开关31a有选择地将转子磁通控制值φ2和来自磁通计算单元21的转子磁通计算值φ2C提供给中枢网络电路30。开关31b有选择地将来自控制校正电路4的扭矩电流控制值iq、来自磁通计算单元21的扭矩电流计算值iqc、和来自坐标转换电路9的扭矩电流检测值iq提供给中枢网络电路30。
中枢网络电路30由下列部件构成:第一至第三信息传输通路T11至T13,一个微分单元或微分器33,后者对来自开关SW1的输入信号作微分计算并将该信号提供给第二信息传输通路T12。
第一信息传输通路带有一个函数发生器32,用于将输入信号X1与一个加权W11相乘。同样,第二和第三信息传输通路分别带有函数发生器34和35,用于分别将输入信号X2和X3乘以加权W22和W33。
输出开关31c有选择地切换来自第一信息传输通路T11的输出信号的传输目标。开关31d有选择地切换来自第二信息传输通路T12的输出信号的传输目标。开关31e有选择地切换来自第三信息传输通路T13的输出信号的传输目标。
除法器36将经由开关31e来自第三信息传输通路T13的输出信号除以转子磁通控制值φ2并输出商作为差频控制值ωs。加法器37将来自第一和第二传输通路T11和T12的输出相加,并且输出和作为激励电流控制值id
向后传播电路38在第一次计时时存贮从输出开关31c至31e输入的输入信号U1、U2和U3并在第二次计时时存贮从输出开关31c至31e输入的输入信号V1、V2和V3。向后传播电路38根据(U1、U2、U3)和(V1、V2、V3)的差校正中枢网络的加权。
由具有上述电路配置的中枢网络处理单元所执行的记忆操作将在下面进行描述。
在第一次计时时,开关31a到31e被合向“A”端,从而给输入开关31a和31b将转子磁通控制值φ2和检测的扭矩电流值iq提供给中枢网络电路30。
第一至第三信息传输通路T11至T13将这些输入信号X1至X3乘以各加权并输出乘积。输出开关31c和31d将来自第一和第二信息传输通路的输出提供给向后传播电路38分别作为U1和U2。并且提供给加法器37。开关31e将来自第三信息传输通路的输出提供给向后传播电路38作为U3。
也就是说,向后传播电路38贮存X1和加权W11的乘积作为U1,X2(X1的微分值)和加权W22的乘积作为U2以及X3和加权W33的乘积作为U3。
采用从加法器37输出的激励电流控制值id和从除法器36输出的差频控制值ωs对感应电机2进行控制。由在第一次计时时产生的控制值所控制的感应电机2的输入电流和电压被进行检测。磁通计算单元根据前面所描述的方法得到转子磁通计算值φ2C和扭矩电流计算值iqc。该转子磁通计算值φ2C和扭矩磁通计算值iqc被输入给输入开关31a至31b。
在第二次计时时,开关31a至31e被合向“B”端向中枢网络电路30提供转子磁通计算值φ2C和扭矩电流计算值iqc。中枢网络的各个通路中相应于输入计算值的输出信号与对控制值相同的方式被存储在向后传播电路38中作为V1、V2和V3。
向后传播电路38根据下面的等式(41)至(47)校正信息传输通路的加权。
即,计算函数J用下面的等式(41)表示:
J=1/2×{(V1-U1)2+(V2-U2)2+(V3-U3)2} (41)
假设记忆增益为kd1、kd2和Kd3,加权的校正量△W用下面的式子(42)至(44)进行计算:
△W11=(
Figure 921134576_IMG12
J/ W11)·Kd1=(V1-U1)·X1·Kd1 (42)
△W22=( J/
Figure 921134576_IMG15
W22)·Kd2=(V2-U2)·X2·Kd2 (43)
△W33=(
Figure 921134576_IMG16
J/
Figure 921134576_IMG17
W33)·Kd3=(V3-U3)·X3·Kd3 (44)
利用下面的式子(45)至(47)对中枢网络电路30中第一至第三信息传输通路的相应的加权进行校正:
W11=W11+△W11    (45)
W33=W33+△W33    (46)
W22=1/W33    (47)
在第三次计时时,开关31a至31e被合向“C”端,从开关31a提供转子磁通控制值φ2,从开关31b提供扭矩电流控制值iq。采用如上所述所校正的新加权W,中枢网络电路30由这些输入来计算激励电流控制值id和差频控制值ωs。中枢网络输出由下面的式子(48)和(49)给出id和ωs
id=(W11·X1)+(W22·X2) (48)
ωs=(W33·X3)/φ2(49)
在第三次计时时来自第三信息传输通路的信号输出没有被用于记忆,而是在除法器36中被转子磁通控制值φ2所除,其商被输出作为差频控制值ωs
因此,根据这一修改,由于对加权系数W33是用实际电流iq来实行记忆的,从而可以有效地消除由一个当前控制误差eq=iq-iq所产生的错误记忆,这一修改还有一个优点,即,即使在瞬态状况下iq不等于iq,也不会对中枢网络的记忆产生不利的影响。
图6示出当感应电机2的驱动是由采用根据上述第二种变型的中枢网络处理单元的矢量控制设备来控制时,各个控制、计算值和加权W11、W22和W33的变化。如图6所示,根据该变型,当感应电机2的驱动是通过采用适当的内部参数来控制时,执行记忆从而使得中枢网络的加权W被自动设置到最佳值,产生的扭矩τ和感应电机2的转子磁通计算值φ2C被校正,从而使其相应于转子磁通控制值φ2不产生误差。
图7示出了中枢网络处理单元的第三种变型。
该变型的中枢网络处理单元包括一个中枢网络电路30′、输入开关31a和31b、输出开关31c和31d、以及一个向后传播电路38′。在该变型中,正比于磁通的一项和正比于磁通变化的一项相加的和值被输入给向后传播电路。
与用于图5所示变型的输入开关相似,输入开关31a和31b有选择地向中枢网络电路30′提供转子磁通控制值φ2、转子磁通计算值φ2C、扭矩电流检测值iq、扭矩电流计算值iqc以及扭矩电流命令值iq
中枢网络电路30′由第一至第三信息传输通路T21至T23、一个微分单元33、一个除法器36′和一个加法器37′构成。在该变型中,来自第一和第二信息传输通路T21和T22的输出被输入给加法器37′,来自第三信息传输通路T23的输出被输入给除法器36′。
除法器36′还接收转子磁通控制值φ2并将其输出提供给输出开关31d。加法器37′的输出被输入给输出开关31c。
与用于图5所示变型中的输出开关相似,输出开关31c和31d在第一次和第二次计时时将加法器37′和除法器36′的输出提供给向后传播电路38′作为(U1,U2)和(V1,V2)。开关31d在第三次计时时将除法器36′的输出提供给图1所示的加法器6。
图8示出了第四种变型,其电路配置是图5和图7所示电路配置的结合。
在这个变型的中枢网络电路30″中,一个加法器37′将第一和第二信息传输通路T31和T32的输出相加,并将和提供给一个输出开关31c,第三信息传输通路T33的输出经一个输出开关31d输入给一个除法器36。其它电路配置与图5或图7所示的变型的电路配置完全一样。
当矢量控制设备由具有上述配置、示于图7或图8的中枢网络处理单元取代图1所示的中枢网络处理单元20时,可以获得与上述实施例同样的结果。
值得注意的是,本发明并不局限于上述实施例及其变型,在不脱离本发明精神和范围的前提下还可能会作出许多变化。

Claims (12)

1、用于感应电机的驱动控制装置,其特征在于该装置包括:
参数检测装置,用于检测所述感应电机的控制参数;
计算装置,用于利用所述控制参数计算所述感应电机的一个转子磁通和一个扭矩电流:
中枢网络装置,用于接收对所述感应电机的一个转子磁通控制值和一个扭矩电流控制值以及由所述计算装置计算的转子磁通和扭矩电流值,利用对应于输入信号的信号输出根据一个向后传播定律执行记忆,并且输出一个激励电流控制值和一个差频控制值:
矢量控制装置,用于根据中枢网络装置输出的差频控制值以及控制参数检测所述感应电机的一个实际激励电流和一个实际扭矩电流,并且根据检测的实际激励电流值与激励电流控制值的偏差以及检测的实际扭矩电流值与扭矩电流控制值的偏差来控制所述感应电机。
2、如权利要求1所述的装置,其特征在于所述的中枢网络装置包括由具有不同加权的多条信息传输通路所组成的一个中枢网络、多个开关装置和向后传播装置,所述开关装置用于向所述信息传输通路提供转子磁通控制值、扭矩电流控制值、转子磁通计算值和扭矩电流计算值,并且有选择地将所述信息传输通路的输出提供给向后传播装置,所述向后传播装置根据所述信息传输通路的输出校正所述信息传输通路的加权使其成为最佳值。
3、根据权利要求2所述的装置,其特征在于所述中枢网络包括:
一个第一信息传输通路,将由所述开关装置有选择性地输入的转子磁通控制值和转子磁通计算值乘以一个加权W11并输出该乘积:
一个第二信息传输通路,将由所述开关装置有选择性地输入的转子磁通控制值和转子磁通计算值乘以一个加权W12并输出该乘积;
一个延迟单元,对由所述开关装置有选择性地输入的转子磁通控制值和转子磁通计算值进行延时;
一个第三信息传输通路,将所述延迟单元的输出乘以一个加权W21,并输出该乘积;
一个第四信息传输通路,将由所述开关装置有选择性地输入的扭矩电流控制值和扭矩电流计算值乘以一个加权W31,并输出该乘积;
一个第五信息传输通路,将由所述开关装置有选择性地输入的扭矩电流控制值和扭矩电流计算值乘以一个加权W32,并输出该乘积;
一个第一加法单元,将所述第一、第三和第四信息传输通路的输出相加,并输出该和信号作为一个激励电流控制值;
一个第二加法单元,将所述第二和第五信号传输通路的输出相加,并输出该和信号作为一个差频控制值,并且
所述开关装置在第一次计时时向所述中枢网络提供转子磁通控制值和扭矩电流控制值,在第二次计时时向所述中枢网络提供转子磁通计算值和扭矩电流计算值,并且在第一次和第二次计时时将所述第一和第二加法单元的输出提供给所述向后传播装置。
4、根据权利要求3所述的装置,其特征在于所述向后传播装置根据下面的式子计算加权的校正量△W11、△W12、△W21、△W31和△32:
△W11=K1·(U1-V1)·X1
△W12=K2·(U2-V2)·X1
△W21=K1·(U1-V1)·X2
△W31=K1·(U1-V1)·X3
△W32=K2·(U2-V2)·X3
其中U1是第一次计时时所述第一加法单元的一个信号输出,U2是第一次计时时所述第二加法单元的一个信号输出,V1是第二次计时时所述第一加法单元的一个信号输出,V2是第二次计时时所述第二加法单元的信号输出,X1是输入给所述第一和第二信息传输通路的一个信号,X2是输入给所述第三信息传输通路的一个信号,X3是输入给所述第四和第五信息传输通路的一个信号。
5、根据权利要求2所述的装置,其特征在于所述中枢网络包括:
一个第一信息传输通路,将由所述开关装置有选择性地输入的转子磁通控制值和转子磁通计算值乘以一个加权W11,并输出该乘积;
一个微分单元,对由所述开关装置有选择性地输入的转子磁通控制值和转子磁通计算值作微分;
一个第二信息传输通路,将所述微分单元的输出乘以一个加权W21,并输出该乘积;
一个第三信息传输通路,将由所述开关装置有选择性地输入的扭矩电流控制值和扭矩电流计算值乘以一个加权W32,并输出该乘积;
一个加法单元,将所述第一和第二信息传输通路的输出相加,并输出该和信号作为激励电流控制值,
所述开关装置在第一次计时时向所述中枢网络提供转子磁通控制值和扭矩电流控制值,在第二次计时时向所述中枢网络提供转子磁通计算值和扭矩电流计算值,并且在第一次和第二次计时时将所述加法单元和所述第三信息传输通路的输出提供给所述向后传播装置,
所述中枢网络装置进一步包括一个除法单元,将所述第三信息传输通路的输出除以转子磁通控制值,并输出该商作为差频控制值。
6、根据权利要求5所述的装置,其特征在于所述的向后传播装置根据下面的式子计算加权的校正量△W11、△W21和△W32:
J=(1/2)·{(U1-V1)2+(U2-V2)2
其中J是一个计算函数,U1是第一次计时时所述加法单元的信号输出,U2是第一次计时时所述除法单元的信号输出,V1是第二次计时时所述加法单元的信号输出,V2是第二次计时时所述除法单元的信号输出,X1是输入给所述第一信息传输通路和所述微分单元的信号,X2是输入给所述第二信息传输通路的信号,X3是输入给所述第三信息传输通路的信号,K1至K3分别是所述第一至第三信息传输通路的增益。
7、用于感应电机的驱动控制装置,其特征在于该装置包括:
参数检测装置,用于检测所述感应电机的控制参数;
计算装置,用于利用控制参数计算所述感应电机的转子磁通和扭矩电流;
中枢网络装置,用于接收对所述感应电机的转子磁通控制值与扭矩电流控制值和由所述计算装置计算的转子磁通与扭矩电流值,利用对应于转子磁通控制值、转子磁通计算值、扭矩电流计算值和扭矩电流检测值的信号输出根据向后传播定律实行记忆,以及输出一个激励电流控制值和一个差频控制值;
矢量控制装置,根据由所述中枢网络装置输出的差频控制值和控制参数来检测对所述感应电机的实际激励电流和实际扭矩电流,并根据所检测的实际激励电流值和激励电流控制值之间的偏差以及所检测的实际扭矩电流值和扭矩电流控制值之间的偏差来控制所述感应电机。
8、根据权利要求7所述的装置,其特征在于所述的中枢网络装置包括一个中枢网络,该网络由具有相应可变加权的多条信息传输通路构成,用于从所述矢量控制装置接收检测的扭矩电流,还包括开关装置,用于向所述信息传输通路有选择性地提供转子磁通控制值、扭矩电流控制值、转子磁通计算值、扭矩电流计算值和扭矩电流检测值,并有选择地将所述信息传输通路的输出提供给所述向后传播装置,所述向后传播装置根据所述信息传输通路的输出校正所述信息传输通路的加权至最佳值。
9、根据权利要求8所述的装置,其特征在于
所述中枢网络装置更进一步包括一个加法单元和一个除法单元,
所述中枢网络包括:
一个第一信息传输通路,将由所述开关装置有选择地输入的转子磁通控制值和转子磁通计算值乘以一个加权W11,并输出该乘积:
一个微分单元,对由所述开关装置有选择地输入的转子磁通控制值和转子磁通计算值作微分;
一个第二信息传输通路,将所述微分单元的输出乘以一个加权W32,并输出该乘积;
一个第三信息传输通路,对由所述开关装置有选择地输入的扭矩电流控制值、扭矩电流计算值和扭矩电流检测值乘以一个加权W32,并输出该乘积,
所述开关装置在第一次计时时向所述中枢网络提供转子磁通控制值和扭矩电流检测值,在第二次计时时向所述中枢网络提供转子磁通计算值和扭矩电流计算值,在第三次计时时向所述中枢网络提供转子磁通控制值和扭矩电流控制值,在第一次和第二次计时时向所述向后传播装置提供所述第一至第三信息传输通路的输出,在第三次计时时将所述第三信息传输通路的输出提供给所述除法单元,
所述加法单元将所述第一和第二信息传输通路的输出相加,并输出该和值作为激励电流控制值,
所述除法单元将所述第三信息传输通路的输出除以转子磁通控制值,并输出该商值作为差频控制值。
10、根据权利要求9所述的装置,其特征在于所述向后传播装置根据下面的式子来计算加权的校正量△W11、△W21和△W32:
J=(1/2)·{(U1-V1)2-(U3-V3)2
△W11=(U1-V1)·X1·K1
△W21=(U2-V2)·X2·K2
△W32=(U3-V3)·X3·K3
其中J是一个计算函数,U1、U2和U3是第一次计时时分别从所述第一至第三信息传输通路输出的信号,V1、V2和V3是第二次计时时分别从所述第一至第三信息传输通路输出的信号,X1是输入给所述第一信息传输通路和所述微分单元的信号,X2是输入给所述第二信息传输通路的信号,X3是输入给所述第三信息传输通路的信号,K1至K3分别是所述第一至第三信息传输通路的增益。
11、根据权利要求8所述的装置,其特征在于所述中枢网络包括:
一个第一信息传输通路,将由所述开关装置有选择地输入的转子磁通控制值和转子磁通计算值乘以一个加权W11,并输入该乘积;
一个微分单元,对由所述开关装置有选择地输入的转子磁通控制值和转子磁通计算值作微分;
一个第二信息传输通路,用于将所述微分单元的输出乘以一个加权W21,并且输出该乘积;
一个第三信息传输通路,将由所述开关装置有选择地输入的扭矩电流控制值、扭矩电流计算值和扭矩电流检测值乘以一个加权W32,并且输出该乘积;
一个加法单元,对所述第一和第二信息传输通路的输出相加,并且输出该和值作为激励电流控制值;
一个除法单元,用于将所述第三信息传输通路的输出除以转子磁通控制值并且输出该商值作为差频控制值,
所述开关装置在第一次计时时向所述中枢网络提供转子磁通控制值和扭矩电流检测值,在第二次计时时向所述中枢网络提供转子磁通计算值和扭矩电流计算值,在第三次计时时向所述中枢网络提供转子磁通控制值和扭矩电流控制值,在第一次和第二次计时时将所述加法单元和所述除法单元的输出提供给所述向后传播装置,并且在第三次计时时将所述除法单元的输出作为差频控制值输出。
12、根据权利要求8所述的装置,其特征在于所述中枢网络包括:
一个第一信息传输通路,将由所述开关装置有选择地输入的转子磁通控制值和转子磁通计算值乘以一个加权W11,并且输出该乘积;
一个微分单元,对由所述开关装置有选择地输入的转子磁通控制值和转子磁通计算值作微分;
一个第二信息传输通路,将所述微分单元的输出乘以一个加权W21,并且输出该乘积;
一个第三信息传输通路,将由所述开关装置有选择地输入的扭矩电流控制值、扭矩电流计算值和扭矩电流检测值乘以一个加权W32,并且输出该乘积;
一个加法单元,将所述第一和第二信息传输通路的输出相加,并且输出该和值作为激励电流控制值,
所述中枢网络装置包括一个除法单元,用于将所述第三信息传输通路的输出除以转子磁通控制值,并且输出该商值作为差频控制值,
所述开关装置在第一次计时时向所述中枢网络提供转子磁通控制值和扭矩电流检测值,在第二次计时时向所述中枢网络提供转子磁通计算值和扭矩电流计算值,在第三次计时时向所述中枢网络提供转子磁通控制值和扭矩电流控制值,在第一次和第二次计时时向所述向后传播装置提供所述加法单元和所述除法单元的输出,并且在第三次计时时将所述除法单元的输出作为差频控制值输出。
CN92113457A 1991-11-30 1992-11-30 用于感应电机的驱动控制装置 Expired - Fee Related CN1037797C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP3339592A JPH05161382A (ja) 1991-11-30 1991-11-30 誘導電動機の駆動制御装置
JP339592/91 1991-11-30
JP01306992A JP3244744B2 (ja) 1992-01-28 1992-01-28 誘導電動機のベクトル制御装置
JP13069/92 1992-01-28

Publications (2)

Publication Number Publication Date
CN1073308A true CN1073308A (zh) 1993-06-16
CN1037797C CN1037797C (zh) 1998-03-18

Family

ID=26348790

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92113457A Expired - Fee Related CN1037797C (zh) 1991-11-30 1992-11-30 用于感应电机的驱动控制装置

Country Status (6)

Country Link
US (1) US5365158A (zh)
KR (1) KR960001029B1 (zh)
CN (1) CN1037797C (zh)
AU (1) AU644314B2 (zh)
DE (1) DE4240210C2 (zh)
GB (1) GB2261966B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112470392A (zh) * 2020-10-29 2021-03-09 深圳市英威腾电气股份有限公司 一种异步电机的自动负载补偿方法、装置、设备及介质

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0608571B1 (en) * 1993-01-11 1998-03-25 Kabushiki Kaisha Meidensha Vector control system for induction motor
US5594670A (en) * 1993-09-03 1997-01-14 Kabushiki Kaisha Meidensha Apparatus for measuring circuit constant of induction motor with vector control system and method therefor
JP2791273B2 (ja) * 1993-09-07 1998-08-27 株式会社東芝 電力変換装置
EP0645879B1 (en) * 1993-09-27 1997-08-13 Matsushita Electric Works, Ltd. Vector and apparatus control method for controlling a rotor speed of an induction motor
JPH07274600A (ja) * 1994-03-24 1995-10-20 Fanuc Ltd 誘導電動機の加減速制御方法及び制御装置
US5498945A (en) * 1994-04-08 1996-03-12 Ford Motor Company Peak-torque-per-ampere (PTPA) control method for an induction motor
JPH0880100A (ja) * 1994-06-30 1996-03-22 Mitsubishi Electric Corp 誘導電動機の制御装置及びその制御方法
US5574387A (en) * 1994-06-30 1996-11-12 Siemens Corporate Research, Inc. Radial basis function neural network autoassociator and method for induction motor monitoring
US5576632A (en) * 1994-06-30 1996-11-19 Siemens Corporate Research, Inc. Neural network auto-associator and method for induction motor monitoring
US5642461A (en) * 1994-11-14 1997-06-24 Seagate Technology, Inc. Economical wide range speed control system
US5502360A (en) * 1995-03-10 1996-03-26 Allen-Bradley Company, Inc. Stator resistance detector for use in electric motor controllers
JP3675014B2 (ja) * 1995-06-08 2005-07-27 株式会社デンソー インバータ制御装置
US5943660A (en) * 1995-06-28 1999-08-24 Board Of Regents The University Of Texas System Method for feedback linearization of neural networks and neural network incorporating same
ES2111363T3 (es) * 1995-10-26 1998-03-01 Siemens Ag Procedimiento y dispositivo para la regulacion por orientacion del campo de una maquina de campo giratorio.
US6198238B1 (en) * 1995-12-07 2001-03-06 Borealis Technical Limited High phase order cycloconverting generator and drive means
DE19612920A1 (de) * 1996-04-01 1997-10-02 Asea Brown Boveri Verfahren und Vorrichtung zur direkten Drehmomentregelung einer Drehfeldmaschine
US5689194A (en) * 1996-04-19 1997-11-18 Framatome Technologies, Inc. Acoustic motor current signature analysis system with audio amplified speaker output
US6570361B1 (en) 1999-02-22 2003-05-27 Borealis Technical Limited Rotating induction apparatus
JPH10229687A (ja) * 1997-02-14 1998-08-25 Fuji Electric Co Ltd 誘導電動機の可変速制御装置
US5796236A (en) * 1997-06-30 1998-08-18 Reliance Electric Industrial Company Slip adjuster for use in electrical motor controllers
US6199023B1 (en) * 1998-11-16 2001-03-06 Geneal Electric Company System for removing spurious signatures in motor current signature analysis
US6864661B2 (en) * 1999-02-22 2005-03-08 Borealis Technical Limited Rotating induction apparatus
US6922037B2 (en) * 1999-02-22 2005-07-26 Borealis Technical Limited Rotating induction apparatus
US6104148A (en) * 1999-04-15 2000-08-15 General Electric Company System and method for controlling an AC traction motor without sensing motor rotation speed
FR2795570B1 (fr) * 1999-06-24 2001-09-21 Albert Kohen Procede de commande en couple, d'un moteur a induction, a l'aide d'un gradateur de tension
JP3520002B2 (ja) * 1999-12-08 2004-04-19 三菱電機株式会社 誘導電動機のベクトル制御装置
US6509711B1 (en) * 2000-04-26 2003-01-21 Ford Global Technologies, Inc. Digital rotor flux observer
NO20010396L (no) * 2001-01-23 2002-07-24 Abb Ind As Fremgangsmåte og innretning for styring av driften av en motor
US6590361B2 (en) * 2001-07-19 2003-07-08 Delphi Technologies, Inc. Method and system for controlling an induction machine
US6630809B2 (en) * 2001-11-29 2003-10-07 Ballard Power Systems Corporation System and method for induction motor control
US7187155B2 (en) * 2004-05-14 2007-03-06 Rockwell Automation Technologies, Inc. Leakage inductance saturation compensation for a slip control technique of a motor drive
US20060087293A1 (en) * 2004-10-26 2006-04-27 Honeywell International, Inc. AC generator with independently controlled field rotational speed
US8080964B2 (en) 2004-10-29 2011-12-20 Virginia Tech Intellectual Properties, Inc. Neural network and method for estimating regions of motor operation from information characterizing the motor
KR100613860B1 (ko) * 2005-03-18 2006-08-17 학교법인 유한학원 신경망을 이용한 유도전동기의 제어 장치
US8519648B2 (en) * 2011-07-22 2013-08-27 GM Global Technology Operations LLC Temperature compensation for improved field weakening accuracy
DE102012107065A1 (de) * 2012-08-02 2014-02-06 Ssb Wind Systems Gmbh & Co. Kg Steuerungsvorrichtung für einen Rotorblattverstellantrieb einer Windkraftanlage
US10496052B2 (en) 2015-04-10 2019-12-03 The Board Of Trustees Of The University Of Alabama Systems, methods and devices for vector control of induction machines using artificial neural networks
US10333390B2 (en) * 2015-05-08 2019-06-25 The Board Of Trustees Of The University Of Alabama Systems and methods for providing vector control of a grid connected converter with a resonant circuit grid filter
DE202016008654U1 (de) 2016-01-26 2018-10-29 András Lelkes Umrichter zum Speisen eines elektrisch erregten Motors
JP6506219B2 (ja) * 2016-07-21 2019-04-24 ファナック株式会社 モータの電流指令を学習する機械学習器,モータ制御装置および機械学習方法
US11646748B2 (en) * 2020-04-06 2023-05-09 Infineon Technologies Austria Ag ML-based phase current balancer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180592A (ja) * 1985-02-05 1986-08-13 Mitsubishi Electric Corp 査導電動機の制御装置
JPS61240875A (ja) * 1985-04-16 1986-10-27 Fanuc Ltd 三相誘導電動機の制御方法
JPS6331492A (ja) * 1986-07-25 1988-02-10 Nippon Electric Ind Co Ltd インダクシヨンモ−タの制御装置
JPH07108119B2 (ja) * 1987-08-08 1995-11-15 三菱電機株式会社 誘導電動機制御装置
EP0310050B1 (en) * 1987-09-29 1994-06-15 Kabushiki Kaisha Toshiba Control apparatus for induction machine
JP2780263B2 (ja) * 1988-02-23 1998-07-30 株式会社明電舎 誘導電動機のベクトル制御方法と装置
US5003490A (en) * 1988-10-07 1991-03-26 Hughes Aircraft Company Neural network signal processor
US5196778A (en) * 1989-06-23 1993-03-23 Mitsubishi Denki Kabushiki Kaisha Control apparatus suitable for use in induction motor
EP0490024B1 (en) * 1990-12-11 1995-05-17 Kabushiki Kaisha Meidensha Induction motor vector control
US5166593A (en) * 1991-10-02 1992-11-24 General Electric Company Closed-loop torque feedback for a universal field-oriented controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112470392A (zh) * 2020-10-29 2021-03-09 深圳市英威腾电气股份有限公司 一种异步电机的自动负载补偿方法、装置、设备及介质

Also Published As

Publication number Publication date
AU2839992A (en) 1993-06-03
DE4240210C2 (de) 1995-11-02
DE4240210A1 (zh) 1993-06-03
AU644314B2 (en) 1993-12-02
CN1037797C (zh) 1998-03-18
GB2261966A (en) 1993-06-02
GB9223991D0 (en) 1993-01-06
US5365158A (en) 1994-11-15
KR930011397A (ko) 1993-06-24
GB2261966B (en) 1995-11-08
KR960001029B1 (ko) 1996-01-17

Similar Documents

Publication Publication Date Title
CN1037797C (zh) 用于感应电机的驱动控制装置
CN1244196C (zh) 同步电动机的控制装置
CN1175556C (zh) 感应电动机的矢量控制装置
CN1052834C (zh) 永磁同步电动机的控制系统
CN1258868C (zh) 用于交流同步马达的初始磁极估计装置
CN1122356C (zh) 同步电动机驱动方法、压缩机驱动方法、用于这种方法的装置和无刷电动机驱动装置
CN1516918A (zh) 同步电抗电动机的控制装置
CN1101293C (zh) 用于电阻焊机的控制装置
CN101053137A (zh) 感应式电机的功率调节
CN1180275C (zh) 感应电动机的电动机常数的测量方法
CN1283041C (zh) 无速度传感器永磁同步电机-空调压缩机系统的控制方法
CN1759529A (zh) 交流电动机的不使用传感器的向量控制方法与向量控制器
CN1543057A (zh) 驱动电动机的逆变控制器和使用逆变控制器的空气调节机
CN1748357A (zh) 用于永磁体旋转电机的无传感器控制系统和方法
CN1976212A (zh) 永磁同步电机的矢量控制装置、常数显示系统和变换器模块
CN1374752A (zh) 电动机控制装置
CN1505864A (zh) 力控制系统
CN1838518A (zh) 功率逆变器系统和校正功率逆变器系统的电源电压的方法
CN1181416C (zh) 预测控制设备
CN1783686A (zh) 用于抑制有源变换器中的二次谐波电流的方法和装置
CN1294447A (zh) 感应电动机的控制系统
CN1025696C (zh) 反馈控制系统
CN1574028A (zh) 盘装置和头定位控制方法
CN1968005A (zh) 测量感应电动机角速度的方法
CN1404215A (zh) 基于磁场饱和非线性电机模型异步电机优化励磁控制方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee