CN107285376B - 一种二维TiO2超薄纳米片及其制备方法 - Google Patents

一种二维TiO2超薄纳米片及其制备方法 Download PDF

Info

Publication number
CN107285376B
CN107285376B CN201710585249.7A CN201710585249A CN107285376B CN 107285376 B CN107285376 B CN 107285376B CN 201710585249 A CN201710585249 A CN 201710585249A CN 107285376 B CN107285376 B CN 107285376B
Authority
CN
China
Prior art keywords
tio
preparation
dimension
ethylene glycol
nanometer piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710585249.7A
Other languages
English (en)
Other versions
CN107285376A (zh
Inventor
任召辉
陈颖
阮罗渊
李铭
韩高荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710585249.7A priority Critical patent/CN107285376B/zh
Publication of CN107285376A publication Critical patent/CN107285376A/zh
Application granted granted Critical
Publication of CN107285376B publication Critical patent/CN107285376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二维TiO2超薄纳米片及其制备方法。该方法是以钛酸四正丁酯以及氢氟酸作为主要原料,乙二醇作为修饰剂,通过调配各项原料物质的量,并采用高温高压下的水热法实现对超薄TiO2纳米片的合成。此种制备方法获得的TiO2纳米片分散性好,可实现片厚度约为2nm‑20nm的调控,横向尺寸约为200nm,且具有优良的光催化产氢性能,在众多领域具有潜在应用。

Description

一种二维TiO2超薄纳米片及其制备方法
技术领域
本发明属于无机非金属及光催化材料制备领域,涉及一种二维TiO2超薄纳米片及其制备方法。
背景技术
TiO2作为最重要的氧化物半导体之一,已经被广泛的研究并且在能源和环境领域得到了很多应用。其中,光降解有机染料、光分解水制氢等光催化性能与TiO2的暴露晶面密切相关。其中锐钛矿TiO2中(001)和(101)晶面在选择性分离光生载流子中起到了重要作用,这对光催化的影响是很大的。现阶段为了制备高(001) 晶面暴露率的TiO2所面临的问题可分为两个方面:一是不规则形貌问题,另一个是纳米片聚集问题。在本发明的制备方法中引入乙二醇作为修饰剂,期望通过 HF和乙二醇的协同作用,使得(001)晶面的暴露率提高的同时,增强其分散性,从而提高其光催化性能。
发明内容
本发明的目的在于针对现有技术的不足,提供一种二维TiO2超薄纳米片及其制备方法,该方法采用水热法实现二维TiO2超薄纳米片的合成,获得的TiO2纳米片厚度范围约为2~20nm,横向尺寸约为200nm,(001)面暴露率约为97%,分散性好,产氢速率最高达到19.24mmolh-1g-1,根据现有资料及文献分析,该数据超过了现阶段所有TiO2及TiO2基光催化剂的光催化产氢速率。并且可以通过对乙二醇及HF用量比例的调节来达到对纳米片厚度的调控。
本发明提供一种二维TiO2超薄纳米片的制备方法,制备方法包括以下步骤:
将TBOT(钛酸四正丁酯)和HF混合,加入乙二醇,室温搅拌混合均匀;在 180℃的条件下水热反应16h;所得产物用去离子水和无水乙醇清洗后,置于烘箱中烘干,获得二维TiO2超薄纳米片。
上述技术方案中,优选的,所述的TBOT和HF的摩尔比为1:8。
优选的,所述的乙二醇和HF的摩尔比为1:1。
所用的原料钛酸四正丁酯、氢氟酸以及乙二醇的纯度均不低于化学纯。
所述的搅拌过程在室温下进行,且搅拌时长以60min为最佳。
采用本发明方法制备获得的TiO2纳米片为具有规则的矩形形貌,横向尺寸约为200nm,厚度范围约为2~20nm,且薄片具有良好的光催化产氢效率。且本发明通过大量研究发现,乙二醇与F-之间存在协同作用,通过调控乙二醇与HF的用量比例,可以实现对产物厚度及(001)面暴露率的调控,从而实现对光催化产氢效率的调节。
附图说明
图1是实例1制备的二维TiO2超薄纳米片的X射线衍射(XRD)图谱;
图2是实例1制备的二维TiO2超薄纳米片的扫描电子显微镜(SEM)照片;
图3是实例1,2制备的二维TiO2超薄纳米片的透射电子显微镜(TEM)照片下的厚度统计图;
图4是实例3制备的二维TiO2超薄纳米片的扫描电子显微镜(SEM)照片;
图5是实例1制备的二维TiO2超薄纳米片的光催化产氢速率图。
具体实施方式
以下结合实例进一步说明本发明。
实施例1
1)分别称取钛酸四正丁酯10g和氢氟酸4.5ml置于反应釜中,2)称量15ml 乙二醇溶液,与步骤1)所得溶液混合,磁力搅拌60min;
3)将反应釜拧紧,置于马弗炉中加热180℃保温16h;
4)将步骤3)所得溶液的沉淀物分别用去离子水以及无水乙醇清洗3次,最终得到的沉淀物置于马弗炉加热至70℃保温6h烘干,即可得最终产物。所合成的材料XRD分析图如图1,SEM照片如图2,纳米片的TEM图如图3(a),光催化产氢速率图如图5。
可以看出:该水热反应产物为锐钛矿TiO2,纳米片厚度约为2~3nm,横向尺寸约为200nm,其光催化产氢效率可达到19.24mmolh-1g-1
实施例2
1)分别称取钛酸四正丁酯10g和氢氟酸4.5ml置于反应釜中;
2)称量10ml乙二醇溶液,与步骤1)所得溶液混合,磁力搅拌60min;
3)将反应釜拧紧,置于马弗炉中加热180℃保温16h;
4)将步骤3)所得溶液的沉淀物分别用去离子水以及无水乙醇清洗3次,最终得到的沉淀物置于马弗炉加热至70℃保温6h烘干,即可得最终产物。其纳米片的TEM图如图3(b),可以看出:产物呈纳米片状,厚度约为20nm,横向尺寸约为50nm。
实施例3
1)分别称取钛酸四正丁酯10g和氢氟酸4.5ml置于反应釜中;
2)称量20ml乙二醇溶液,与步骤1)所得溶液混合,磁力搅拌60min;
3)将反应釜拧紧,置于马弗炉中加热180℃保温16h;
4)将步骤3)所得溶液的沉淀物分别用去离子水以及无水乙醇清洗3次,最终得到的沉淀物置于马弗炉加热至70℃保温6h烘干,即可得最终产物。其纳米片的SEM图如图4,可以看出:产物已难以维持片状形貌。
研究表明,乙二醇的用量对最终产物的形貌及性能起到至关重要的作用,以上述实施例为例,其余条件不变,当乙二醇的用量低于5mL或高于20mL时,获得的TiO2将难以维持规则矩形片状,其(001)面暴露率也相应急剧减小。其原因可能为乙二醇与F-之间存在协同作用,乙二醇分子在(001)面上与F-之间的结合使得光催化过程中氧化还原的位点增加,并且增强了(001)面的稳定性,故 (001)面暴露率增大,从而提高了光催化产氢反应效率。

Claims (2)

1.二维TiO2超薄纳米片的制备方法,其特征是,包括以下步骤:
将TBOT和HF混合,加入乙二醇,室温搅拌混合均匀;在180℃的条件下水热反应16h;所得产物用去离子水和无水乙醇清洗后,置于烘箱中烘干,获得二维TiO2超薄纳米片,所述的乙二醇和HF的摩尔比为1:1。
2.根据权利要求1所述的二维TiO2超薄纳米片的制备方法,其特征是,所述的TBOT和HF的摩尔比为1:8。
CN201710585249.7A 2017-07-18 2017-07-18 一种二维TiO2超薄纳米片及其制备方法 Active CN107285376B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710585249.7A CN107285376B (zh) 2017-07-18 2017-07-18 一种二维TiO2超薄纳米片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710585249.7A CN107285376B (zh) 2017-07-18 2017-07-18 一种二维TiO2超薄纳米片及其制备方法

Publications (2)

Publication Number Publication Date
CN107285376A CN107285376A (zh) 2017-10-24
CN107285376B true CN107285376B (zh) 2018-11-30

Family

ID=60100982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710585249.7A Active CN107285376B (zh) 2017-07-18 2017-07-18 一种二维TiO2超薄纳米片及其制备方法

Country Status (1)

Country Link
CN (1) CN107285376B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935034B (zh) * 2017-11-09 2020-03-17 中国科学院上海硅酸盐研究所 少层氧化钛及其制备方法
CN108190949A (zh) * 2018-02-13 2018-06-22 武汉理工大学 一种快速制备小粒径锐钛矿型纳米二氧化钛的方法
CN108597882A (zh) * 2018-03-30 2018-09-28 梧州井儿铺贸易有限公司 一种改进光阳极的染料太阳能电池
CN109603793A (zh) * 2018-12-28 2019-04-12 上海理工大学 单斜相二氧化钛可见光催化剂的制备方法及用途
CN109762312B (zh) * 2019-01-30 2021-04-30 芜湖万隆新材料有限公司 一种高韧性二维超薄纳米二氧化钛改性ptt复合材料及其制备方法
CN110227433B (zh) * 2019-06-26 2020-10-23 浙江大学 一种锐钛矿型TiO2晶面异质结的制备方法
CN111268725B (zh) * 2020-02-09 2021-05-18 中国矿业大学 一种{001}晶面暴露的多孔二氧化钛纳米片的制备方法及应用
CN113998668A (zh) * 2021-10-22 2022-02-01 杭州电子科技大学 超薄二氧化钛纳米片作为光催化剂在太阳能分解木质纤维素制氢的应用
CN115180648A (zh) * 2022-08-16 2022-10-14 河南理工大学 一种TiO2超薄纳米片及其制备方法和应用
CN116272937B (zh) * 2023-03-28 2024-05-03 南京大学 一种TiO2纳米片材料的制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103303972A (zh) * 2013-06-25 2013-09-18 哈尔滨工业大学 一种二氧化钛纳米管阵列表面纳米多孔层的去除方法
CN104211109B (zh) * 2014-06-12 2016-06-29 中国科学院福建物质结构研究所 高纯度的板钛矿型二氧化钛纳米片及其制备方法和应用
CN104628030B (zh) * 2015-01-30 2016-07-06 上海交通大学 类石墨烯结构二氧化钛的无氟制备方法
CN105271395A (zh) * 2015-10-12 2016-01-27 上海第二工业大学 一种超薄二氧化钛纳米片及其制备方法
CN105819502A (zh) * 2016-03-18 2016-08-03 厦门大学 一种超薄b相二氧化钛纳米片的制备方法

Also Published As

Publication number Publication date
CN107285376A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
CN107285376B (zh) 一种二维TiO2超薄纳米片及其制备方法
CN104118908B (zh) 一种有序二氧化钛纳米材料的调控制备方法
CN101318702B (zh) 一种三氧化钨纳米片及其制备方法
CN108722384A (zh) 一种富氧空位二氧化钛纳米花及其制备方法
CN107199038B (zh) 一种复合光催化剂及其制备方法
Ma et al. Synthesis of nanocrystalline strontium titanate by a sol–gel assisted solid phase method and its formation mechanism and photocatalytic activity
CN104030371B (zh) 一种软模板法合成介孔片状结构组成的NiO微球的方法
CN107486230B (zh) 一种高活性大比表面积纳米片状结构g-C3N4的制备方法
CN108355698A (zh) 一种o掺杂石墨相氮化碳纳米片粉末的制备方法
CN106698503B (zh) 一种二氧化钛纳米粉的合成方法
CN105540640A (zh) 一种花状纳米氧化锌的制备方法
CN107814408B (zh) 一种富含S空缺位的SnS2超薄纳米片的制备方法
CN103623799A (zh) 一种二氧化钛介孔微球的制备方法
CN106975497A (zh) 二氧化钛纳米片与铜锌锡硫纳米颗粒异质结制备方法及应用
Husin et al. Visible light driven photocatalytic hydrogen evolution by lanthanum and carbon-co-doped NaTaO3 photocatalyst
Li et al. The synthesis of Ag-doped mesoporous TiO2
CN104891566B (zh) 脉冲电磁场制备锐钛矿型纳米二氧化钛的方法
CN105502480B (zh) 一种绣球花状钛酸锶纳米粉体的制备方法
CN102863014A (zh) 一种形貌可控纳米氧化铟的制备方法
CN105664921A (zh) 一种纳米W0.4Mo0.6O3高性能光催化剂的制备方法
CN108328634A (zh) 一种铜负载铝酸锌纳米粉体及其制备方法
CN104477976A (zh) 具有可控微纳结构的钛酸钙粉体的制备方法
CN107032406A (zh) 一种钼酸锰微纳米束及其制备方法
CN104045108A (zh) 一种制备TiO粉体材料的方法
CN104140123A (zh) 一种由层状纳米片组装的三维花状钛酸材料及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant