CN107148275A - 包含编码生长因子的外源多核苷酸的稳定的神经干细胞及其使用方法 - Google Patents

包含编码生长因子的外源多核苷酸的稳定的神经干细胞及其使用方法 Download PDF

Info

Publication number
CN107148275A
CN107148275A CN201580057196.0A CN201580057196A CN107148275A CN 107148275 A CN107148275 A CN 107148275A CN 201580057196 A CN201580057196 A CN 201580057196A CN 107148275 A CN107148275 A CN 107148275A
Authority
CN
China
Prior art keywords
igf
cell
stem cell
nsc
brain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580057196.0A
Other languages
English (en)
Inventor
托马斯·哈泽尔
卡尔·K·约赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Palisade Bio Inc
Original Assignee
Neuralstem Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neuralstem Inc filed Critical Neuralstem Inc
Publication of CN107148275A publication Critical patent/CN107148275A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/30Insulin-like growth factors, i.e. somatomedins, e.g. IGF-1, IGF-2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/65Insulin-like growth factors, i.e. somatomedins, e.g. IGF-1, IGF-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Endocrinology (AREA)
  • Diabetes (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Psychiatry (AREA)
  • Hospice & Palliative Care (AREA)

Abstract

本公开提供了包含编码生长因子例如IGF‑1的外源多核苷酸的人类神经干细胞。还公开了使用所述人类神经干细胞治疗神经变性疾病或障碍的方法,所述神经变性疾病或障碍包括例如ALS。本公开总的来说涉及包含编码生长因子的外源多核苷酸的人类神经干细胞,所述生长因子包括例如神经营养因子。在实施方式中,所述生长因子被所述人类神经干细胞稳定地表达。这些人类神经干细胞可用于在需要的对象(例如患有神经变性疾病或障碍的人类对象)中治疗神经变性疾病或障碍。

Description

包含编码生长因子的外源多核苷酸的稳定的神经干细胞及其 使用方法
优先权要求
本申请要求2015年4月15日提交的美国临时申请号62/147,950的优先权和权益,并要求2014年10月20日提交的美国临时申请号62/066,174的优先权和权益,每个所述临时申请通过参考并入本文。
背景技术
由于胰岛素样生长因子-1(IGF-1)在哺乳动物中枢神经系统(CNS)中的细胞发育和存活中的关键作用,这种蛋白质对于影响CNS的各种不同病症来说已被认为是潜在重要的治疗剂。在动物模型中,通过某些方法(包括病毒载体和鞘内注射)递送IGF-1,已显示出治疗ALS的希望。然而,在临床试验中,向人类患者皮下给药成熟的重组IGF-1,在ALS的治疗中没有表现出功效。因此,对于将治疗有效量的IGF-1递送到神经元细胞损失的位点的改进的方法,存在着需求。
发明概述
本公开总的来说涉及包含编码生长因子的外源多核苷酸的人类神经干细胞,所述生长因子包括例如神经营养因子。在实施方式中,所述生长因子被所述人类神经干细胞稳定地表达。这些人类神经干细胞可用于在需要的对象(例如患有神经变性疾病或障碍的人类对象)中治疗神经变性疾病或障碍。
本公开提供了一种神经干细胞(例如稳定的人类神经干细胞),其包含编码胰岛素样生长因子1(IGF-1)的外源多核苷酸。所述神经干细胞表达、包括例如稳定地过表达IGF-1。所述包含编码IGF-1的外源多核苷酸的神经干细胞与不包含编码IGF-1的外源多核苷酸的神经干细胞相比,令人吃惊地产生数目显著增加的GAD65阳性的GABA能神经元。
本公开还提供了一种神经干细胞(例如稳定的人类神经干细胞),其包含编码生长因子的外源多核苷酸。所述神经干细胞表达、包括例如稳定地过表达所述生长因子。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述生长因子是选自胰岛素样生长因子1(IGF-1)、神经胶质细胞系来源的神经营养因子(GDNF)、脑源神经营养因子(BDNF)、神经营养蛋白-3(NT-3)和血管内皮生长因子(VEGF)的神经营养因子。
在上面提到或下面提到的实施方式的任一者的实施方式中,IGF-1是IGF-1同工型例如IGF-1同工型4。在上面提到或下面提到的实施方式的任一者的其他实施方式中,所述IGF-1同工型4具有如SEQ ID NO1所示的核苷酸序列。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述IGF-1同工型包含N-端信号肽、成熟的IGF-1蛋白和E-肽。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述人类神经干细胞源自于选自下述的组织:皮层,海马,丘脑,中脑,小脑,后脑,脊髓和背根神经节。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述人类神经干细胞是从胎儿或胚胎获得的。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述人类神经干细胞是从具有约5至约20周胎龄的胎儿获得的。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述人类神经干细胞能够分化成神经元和/或神经胶质。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述人类神经干细胞能够移植到脑和/或脊髓中。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述人类神经干细胞被永生化。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述人类神经干细胞通过用携带永生化基因的反转录病毒感染而被永生化。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述编码生长因子的外源多核苷酸被可操作地连接到泛素C(UbC)启动子(例如具有如SEQ ID NO:3所示的核苷酸序列的泛素C(UbC)启动子)、人磷酸甘油酸激酶1启动子、人突触蛋白启动子或合成的CAG启动子。
本公开还提供了一种人类神经干细胞,其包含编码胰岛素样生长因子1(IGF-1)的外源多核苷酸,其中IGF-1包含如SEQ ID NO:1所示的核苷酸序列,并且其中所述IGF-1核苷酸序列被稳定地表达。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述人类神经干细胞被永生化。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述编码IGF-1的外源多核苷酸被连接到泛素C(UbC)启动子(例如具有如SEQ ID NO:3所示的核苷酸序列的泛素C(UbC)启动子)、人磷酸甘油酸激酶1启动子、人突触蛋白启动子或合成的CAG启动子。
本公开还提供了一种治疗神经变性疾病或障碍的方法,所述方法包括向对象(例如患有神经变性疾病或障碍的人类对象)给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的神经干细胞(例如稳定的人类神经干细胞)。
本公开还提供了一种治疗神经变性疾病或障碍的方法,所述方法包括向对象(例如患有神经变性疾病或障碍的人类对象)给药治疗有效量的一种或多种包含编码生长因子的外源多核苷酸的神经干细胞(例如稳定的人类神经干细胞)。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述生长因子是选自胰岛素样生长因子1(IGF-1)、神经胶质细胞系来源的神经营养因子(GDNF)、脑源神经营养因子(BDNF)、神经营养蛋白-3(NT-3)和血管内皮生长因子(VEGF)的神经营养因子。
在上面提到或下面提到的实施方式的任一者的实施方式中,IGF-1是IGF-1同工型例如IGF-1同工型4。在上面提到或下面提到的实施方式的任一者的其他实施方式中,所述IGF-1同工型4具有如SEQ ID NO1所示的核苷酸序列。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述IGF-1同工型包含N-端信号肽、成熟的IGF-1蛋白和E-肽。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述治疗有效量的一种或多种人类神经干细胞能够分化成神经元和/或神经胶质。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述治疗有效量的一种或多种人类神经干细胞能够移植到脑或脊髓中。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述编码生长因子的外源多核苷酸被可操作地连接到泛素C(UbC)启动子(例如具有如SEQ ID NO:3所示的核苷酸序列的泛素C(UbC)启动子)、人磷酸甘油酸激酶1启动子、人突触蛋白启动子或合成的CAG启动子。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述神经变性疾病或障碍是肌萎缩性侧索硬化症(ALS)、脊髓损伤(SCI)、创伤性脑损伤(TBI)、阿尔兹海默氏病(AD)、痴呆症、轻度认知缺损、糖尿病、与糖尿病相关的CNS并发症、周围神经病、视网膜神经病或多发性硬化症。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述脊髓损伤是创伤性脊髓损伤或缺血性脊髓损伤。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述治疗有效量的一种或多种神经干细胞被注射到神经变性区域中。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述治疗有效量的一种或多种神经干细胞被给药到神经变性区域中的约5至约50个位点。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述一个或多个位点相隔大约100微米至约5000微米的距离。
在上面提到或下面提到的实施方式的任一者的实施方式中,至少20%、30%、40%、50%、60%、70%、80%、90%、95%或更多的所述治疗有效量的一种或多种神经干细胞能够在神经变性区域处产生神经元。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述对象是人。
本公开还提供了制造包含编码生长因子的外源多核苷酸的人类神经干细胞的方法,其中所述生长因子被稳定地表达,所述方法包括:获得一种或多种人类神经干细胞;将所述一种或多种神经干细胞铺在用聚D-赖氨酸和纤连蛋白预包被的组织培养物处理的平皿上;在生长培养基(例如无血清生长培养基)中培养所述一种或多种神经干细胞;扩增所述一种或多种神经干细胞以产生扩增的神经干细胞群体;以及用编码生长因子的载体感染所述神经干细胞。在实施方式中,通过用编码永生化基因的反转录病毒感染所述扩增的神经干细胞,使所述扩增的神经干细胞永生化。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述生长因子是选自胰岛素样生长因子1(IGF-1)、神经胶质细胞系来源的神经营养因子(GDNF)、脑源神经营养因子(BDNF)、神经营养蛋白-3(NT-3)和血管内皮生长因子(VEGF)的神经营养因子。
在上面提到或下面提到的实施方式的任一者的实施方式中,IGF-1是IGF-1同工型例如IGF-1同工型4。在上面提到或下面提到的实施方式的任一者的其他实施方式中,所述IGF-1同工型4具有如SEQ ID NO1所示的核苷酸序列。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述IGF-1同工型包含N-端信号肽、成熟的IGF-1蛋白和E-肽。
在上面提到或下面提到的实施方式的任一者的实施方式中,所述人类神经干细胞是从来自于流产人类胎儿的死后分离的组织获得的。
在上面提到或下面提到的实施方式的任一者的实施方式中,将所述人类神经干细胞用带有Myc-ER融合基因拷贝的复制缺陷型反转录病毒感染。
本公开提供了减少对象脑中的β-淀粉样蛋白(Αβ)沉积、清除对象脑(例如海马和/或皮层)中的Αβ沉积物或防止Αβ在对象脑中积累的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。
本公开提供了增加对象脑(例如海马和/或皮层)中胆碱能神经元数目的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。
本公开还提供了恢复对象脑中的突触的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。
本公开提供了恢复对象的记忆和/或认知的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。
附图简述
在结合附图阅读时,上面的概述以及下面的本公开的详细描述将被更好地理解。出于说明本公开的目的,附图中示出的是目前优选的实施方式。然而,应该理解,本公开不限于所示出的准确排列方式、实施例和工具。
图1.HK532和HK532-IGF-I细胞中的IGF-I生产和信号转导。(A)在整个早期分化期间HK532和HK532-IGF-I中的IGF-I生产。(B)用DAPI(蓝色)和IGF-IR(绿色)标记的D7HK532和HK532-IGF-I的代表性ICC图像。标尺条50μm。(C)未分化的和分化的(D7)HK532和HK532-IGF-I中的IGF-I信号转导的Western印迹分析。将细胞用LY、U或NVP的抑制剂组处理1h,然后用IGF-I处理30min。所有印迹用pIGF-IR、IGF-IR、pERK、ERK、pAKT和AKT进行探测。β-肌动蛋白用作载样对照。
图2.诱导的IGF-I表达不影响HK532增殖和迁移。(A)在D0、D3和D7,HK532和HK532-IGF-I培养物中EdU阳性细胞的百分数的定量。(B-E)用DAPI(蓝色)和EdU(绿色)标记的D0和D7HK532和HK532-IGF-I的代表性ICC图像。标尺条200μm。(F-G)在D0和D7,迁移的HK532和HK532-IGF-I的吸光度的定量。
图3.诱导的IGF-I表达不影响分化期间祖细胞状态的维持或神经突生长。(A-B)用DAPI(蓝色)和巢蛋白(红色)标记的D0HK532和HK532-IGF-I的代表性ICC图像。(C)巢蛋白阳性的D0HK532和HK532-IGF-I的定量。(D-E)用DAPI(蓝色)和TUJ1(红色)标记的D7HK532和HK532-IGF-I的代表性ICC图像。(F)神经指数测量(μm2/细胞)的定量。标尺条200μm。
图4.HK532和HK532-IGF-I细胞的终末表型。(A-B)用DAPI(蓝色)和GAD65(绿色)标记的D7HK532和HK532-IGF-I细胞的代表性ICC图像。(C-D)用DAPI(蓝色)和VGLUT(红色)标记的D7细胞的代表性ICC图像。标尺条200μm。(E)HK532和HK532-IGF-I细胞中GAD65阳性的GABA能神经元的定量。HK532-IGF-I细胞优先分化成GABA能神经元(*p<0.05)。(F)HK532和HK532-IGF-I细胞中VGLUT阳性的谷氨酸能神经元的定量。
图5.HK532-IGF-I细胞是神经保护性的并在移植到APP/PS1AD和WT小鼠中后能够存活。(A)在原代CN、HK532和HK532-IGF-I中对Aβ毒性作出响应的凋亡和CC3活化的定量。两种HK532细胞系都比CN更具有抗性(*p<0.05)。(B-D)用DAPI和CC3标记的原代CN的代表性ICC图像(标尺条200μm)。(B)没有用Aβ处理的对照CN,(C)用Aβ处理的CN,(D)与HK532共培养的用Aβ处理的CN,(E)与HK532-IGF-I共培养的用Aβ处理的CN。(F)CN/HK532共培养物中Aβ介导的凋亡和CC3活化的定量。HK532-IGF-I与HK532相比表现出提高的神经保护能力(*p<0.05)。(G-H)在移植到穹窿海马伞中之后10周,(G)APP/PS1AD动物和(H)WT动物的海马区域中人类早期神经前体的DAPI、HuNu和DCX标记的代表性图像(10X标尺条200μm;60X标尺条50μm)。
图6.在HK532-IGF-I移植后Aβ水平显著降低。荧光显微术显示出在APP/PSI介质处理的小鼠的海马(A-C)和皮层(D-F)中Aβ斑块(箭头)的不同形成。使用HK532-IGF-I处理,所述斑块明显减少。在所有切片中,用DAPI(蓝色)对核进行染色。标尺条:100μm。(G)与介质和NSC处理的组的non-tg相比荧光强度(A.U.)变化的定量显示,与假给药组相比,在HK532-IGF-I处理的小鼠中Aβ的水平显著降低,表明HK532-IGF-I介导Aβ积累。***P<0.001。(H)具体在皮层和海马中的Aβ荧光水平的比较显示,与介质注射的小鼠相比,NSC注射的小鼠的皮层切片中Aβ沉积显著减少,***P<0.001,但是在海马切片中的水平降低不显著。
图7.HK532-IGF-I的移植挽救了纹状体中的胆碱能神经元。(A-C)每个组中对ChAT进行免疫染色(绿色)的纹状体的荧光图像。标尺条100μm。(D)ChAT阳性细胞的高放大倍数图像。用DAPI(蓝色)对核进行染色。标尺条:50μm。(E)遍及所有小鼠的纹状体的细胞计数揭示出与non-tg小鼠相比,在介质注射的APP/PSI小鼠中胆碱能神经元的显著损失。*P<0.05。(F)与non-tg小鼠相比胆碱能神经元的倍数变化的计算揭示出在用HK532-IGF-I处理的APP/PSI小鼠中显著更高的量。*P<0.05。
图8.HK532-IGF-I提高突触前活性并与内源神经元形成突触。(A-C)对突触小泡蛋白进行染色的海马切片的荧光显微术揭示出与介质注射的APP/PSI小鼠相比,在non-tg和NSC注射的APP/PSI小鼠中荧光信号强度的明显提高。标尺条:100μm。(D-F)齿状回的颗粒细胞层附近的突触小泡蛋白的高放大倍数图像。标尺条:50μm。(G-J)来自于NSC处理组的对人类NuMA(红色)、突触小泡蛋白(绿色)和DAPI(蓝色)进行免疫染色的切片的荧光图像,显示出围绕NSC的突触前功能。标尺条:50μm。
图9.冷冻免疫组织化学显示出人类细胞移植物在腹角中的存在和在整个灰质和白质中的广泛分布(图9a-c)。在每个图像中,SC121(绿色)显示出所有人类细胞质,DAPI(蓝色)显示出所有细胞核。A中插图被显示在A’中,A’中的插图被显示在A”中。
详细描述
本公开提供了神经干细胞(例如源自于胎儿或胚胎的人类神经干细胞),其包含编码生长因子、包括例如神经营养因子的外源多核苷酸,其中所述生长因子被所述神经干细胞稳定地表达。本发明人已发现,神经干细胞令人吃惊地能够移植在神经元细胞损失的位点处,并以治疗有效量稳定地表达生长因子,包括例如神经营养因子例如成熟的IGF-1。神经营养因子可以包括例如胰岛素样生长因子1(IGF-1)(例如具有如SEQ ID NO:1所示的序列的IGF-1同工型)、神经胶质细胞系来源的神经营养因子(GDNF)、脑源神经营养因子(BDNF)、神经营养蛋白-3(NT-3)或血管内皮生长因子(VEGF)。然而,可以由神经干细胞分泌的任何蛋白质都被设想用于本公开。这些人类神经干细胞可以从神经干细胞系获得,并且可用于治疗神经变性疾病或障碍,包括各种不同的CNS适应症,包括但不限于肌萎缩性侧索硬化症(ALS)、脊髓损伤(SCI)、创伤性脑损伤(TBI)、阿尔兹海默氏病(AD)、痴呆症、轻度认知缺损、糖尿病、与糖尿病相关的CNS并发症、周围神经病、视网膜神经病和多发性硬化症。
令人吃惊的是,本发明人已发现,包含编码IGF-1的外源多核苷酸并且其中IGF-1被神经干细胞稳定地表达的人类神经干细胞,与不包含所述编码IGF-1的外源多核苷酸的神经干细胞相比,产生(即可以分化成和/或支持其生长)数目显著增加的GAD65阳性的GABA能神经元。这在治疗上与阿尔兹海默氏病相关,因为在小鼠模型和人类患者中已报道了GABA能神经元特异性的变性(Loreth等,(2012)Neurobiol Dis,2012.47(1):p.1-12;Schwab等,(2013)J Alzheimers Dis,2013.33(4):p.1073-88)。因此,稳定地表达IGF-1的神经干细胞的移植提供了重新产生的GABA能神经元的来源,以代替在阿尔兹海默氏病中选择性损失的GABA能神经元,并恢复脑中关键的神经回路。
本公开的表达生长因子的神经干细胞可能是稳定和多能的,因为它们高效地移植到脑和脊髓中,一起分化成神经元和神经胶质,并与宿主组织整合。这种整合包括在宿主神经元与移植的干细胞来源的神经元之间形成突触连接。在CNS中稳定的移植和整合的优点在于只要所述细胞是活的,则细胞移植以及因此生长因子的生产可能是恒定和稳定的。此外,宿主神经元与移植的神经元之间突触接触的形成能够将生长因子直接递送到与受损或患病神经元相邻的突触和间质空间中。此外,所述神经干细胞本身是治疗性的,产生广泛种类的已知生长因子并替换在疾病过程中可能损失的神经元。
另外,本公开的神经干细胞提供的优点在于它们的神经胶质后代在整个脑和脊髓中广泛迁移,而它们的神经元后代保持定位在它们被注入的位点附近。这种性质能够使人们选择性地靶向通过神经元进行的生长因子的定位递送或通过神经胶质进行的在整个CNS中的广泛分布的递送。生长因子例如神经营养因子如IGF-1、GDNF、BDNF、NT3、NGF、VEGF等的神经元分泌的优点在于即使是少量的生长因子也能达到治疗剂量,因为它被持续释放到与靶细胞相邻的细胞外空间中,包括与高浓度的相应受体紧邻的突触间隙的有限空间中,随后它可以被靶细胞内化并逆行转运(Rind等,(2005),J Neurosci 25:539-549)。
此外,公开了作为其起源或其生长条件的结果,能够产生所需比例的神经元和/或神经胶质(例如产生60%神经元和40%神经胶质)的神经干细胞。根据需要,那些产生较高比例神经元的神经干细胞可用于将生长因子局部递送到特定靶区域,而那些产生较高比例神经胶质的神经干细胞可用于更加全局性地递送生长因子。可能希望局部给药的生长因子的实例包括但不限于具有多效性效果的神经营养因子例如IGF-1、NGF、NT3、或BDNF。可能希望全局性给药的生长因子的实例包括但不限于用于酶置换例如用于治疗溶酶体疾病的蛋白质、针对细胞因子、细胞因子受体或生长因子受体的单克隆抗体。
在实施方式中,所述生长因子是神经营养因子例如IGF-1,包括例如图1中所示的IFG1同工型。所述IGF-1同工型可以是IGF-1同工型4。在实施方式中,所述IGF-1同工型4具有如SEQ ID NO 1所示的核苷酸序列(如SEQ ID NO:2所示的氨基酸序列)。这种同工型含有三种不同的潜在生物学效应物:成熟的IGF-1蛋白,其能够结合各种不同的IGF结合蛋白以及IGF-1受体;在pro-IGF-1加工期间释放的羧基(C-)端MGF肽,其可以通过不依赖于IGF-1受体的机制充当对抗缺血和其他有害病症的神经保护剂;以及在pre-pro-IGF-1加工期间释放的氨基(N-)端信号肽。
IGF-1生物学是复杂的。在两个不同启动子控制之下产生6种不同形式的人类IGF-1mRNA转录本(在Barton(2006),J Appl Physiol100:1778-1784中综述),它们都产生单个成熟的IGF-1蛋白。所述各种不同的转录本被翻译成成熟的IGF-1蛋白,在此期间产生独特的切割产物。已知所述转录本同工型和各种不同的切割产物是组织特异性的。因此,尽管75%的循环中的成熟IGF-1蛋白由肝脏产生,但几种其他组织(包括肌肉、肾脏和脑/脊髓)也产生它们自己的IGF-1转录本和蛋白。此外,例如脑中的IGF-1水平的调控不依赖于血浆IGF-1水平(Adams等,(2009),Growth Factors 27:181-188)。值得注意的是,大鼠和小鼠IGF-1基因的调控不同于人类IGF-1基因,在所述物种之间产生不等同的IGF-1同工型(Barton(2006),Appl.Physiol.Nutr.Metab.31:791-797)。
CNS中生长因子的剂量(例如治疗有效剂量)和定位可以通过使用不同启动子,也可以通过使用具有不同的分化和迁移特性的不同神经干细胞系来改变。例如,突触蛋白启动子可用于驱动主要在神经元后代中的低至中水平的表达,由此确保定位分布于靶神经元群体。相反,泛素C启动子可用于指导向神经元和神经胶质细胞后代两者的表达,能够使所述生长因子更广泛地分布。另外,由融合到鸡β-肌动蛋白启动子的巨细胞病毒(CMV)增强子构成的合成的CAG启动子,可以指导所述生长因子的非常高水平的表达。此外,根据需要,产生较高比例神经元的神经干细胞可用于将生长因子局部递送到特定靶区域,而那些产生较高比例神经胶质的神经干细胞可用于更加全局性地递送生长因子。可能希望局部给药的生长因子的实例包括但不限于具有多效性效果的神经营养因子例如IGF-1、NGF、NT3、或BDNF。可能希望全局性给药的生长因子的实例包括但不限于用于酶置换例如用于治疗溶酶体疾病的蛋白质、针对细胞因子、细胞因子受体或生长因子受体的单克隆抗体。
神经干细胞
提供了包含编码生长因子例如神经营养因子的外源多核苷酸的神经干细胞(例如稳定的人类神经干细胞)。所述神经营养因子可以是胰岛素样生长因子1(IGF-1)、神经胶质细胞系来源的神经营养因子(GDNF)、脑源神经营养因子(BDNF)、神经营养蛋白-3(NT-3)或血管内皮生长因子(VEGF)。还提供了包含具有编码生长因子的外源多核苷酸的神经干细胞的神经干细胞系。所述神经干细胞优选是稳定的,并且在培养中即使在超过60次细胞倍增后也不分化。
本公开提供了包含编码胰岛素样生长因子1(IGF-1)的外源多核苷酸的神经干细胞(例如稳定的人类神经干细胞)。所述神经干细胞表达、包括例如稳定地过表达IGF-1。所述包含编码IGF-1的外源多核苷酸的神经干细胞与不包含编码IGF-1的外源多核苷酸的神经干细胞相比,令人吃惊地产生数目显著增加的GAD65阳性的GABA能神经元。所述神经干细胞优选是稳定的,并且在培养中即使在超过60次细胞倍增后也不分化。
本公开提供了一种稳定的人类神经干细胞,其表达编码胰岛素样生长因子1(IGF-1)的外源多核苷酸。
在实施方式中,所述神经营养因子是IGF-1,包括例如IGF-1同工型,例如具有如SEQ ID NO:1所示的序列的IGF-1同工型4。令人吃惊的是,本发明人已发现,具有如SEQ IDNO:1所示的序列的IGF-1同工型4,当被神经干细胞表达时是有功能的(例如,它结合它的受体并启动具有生理影响的信号转导过程)。这一发现完全是出人意料的,因为一些现有报道指出,表达成熟IGF-1的神经干细胞的给药在提供功能性益处中是无效的(即所述神经干细胞在治疗疾病或障碍中是无效的)。
当在本文中使用时,术语“神经干细胞”或“NSC”是指可以根据其分化成中枢神经系统(CNS)的三种主要细胞类型中的每一种的能力在功能上定义的多能干细胞,所述三种主要细胞类型是:神经元,星形细胞和少突细胞。当在本文中使用时,术语“干细胞”是指能够自我更新的未分化细胞,这意味着通过每次细胞分裂,至少一个子代细胞也将是干细胞。NSC也可指称神经或神经元祖细胞或神经上皮细胞前体。
本公开还提供了制造包含编码生长因子的外源多核苷酸的人类神经干细胞的方法,其中所述生长因子被稳定地表达,所述方法包括:获得一种或多种人类神经干细胞;将所述一种或多种神经干细胞铺在用聚D-赖氨酸和纤连蛋白预包被的组织培养物处理的平皿上;在无血清生长培养基中培养所述一种或多种神经干细胞;扩增所述一种或多种神经干细胞以产生扩增的神经干细胞群体;用编码永生化基因的反转录病毒感染所述扩增的神经干细胞;以及用编码生长因子的载体感染先前用反转录病毒感染的神经干细胞。这种永生化的神经干细胞以及制造所述神经干细胞的方法被公开在美国专利号7,544,511中。
在一个实施方式中,所述NSC是多能的,使得每个细胞具有分化成神经元、星形细胞或少突细胞的能力。在另一个实施方式中,所述NSC是双能的,使得每个细胞具有分化成所述CNS的三种细胞类型中的两种细胞类型的能力。在另一个实施方式中,所述NSC至少包括在体外产生神经元和星形细胞两者的双能细胞,并至少包括在体内产生神经元的单能细胞。
生长条件可以影响细胞朝着一种或另一种细胞类型分化的方向,表明所述细胞不被指派给单一谱系。在有利于神经元分化的培养条件中,细胞、特别是来自于人类CNS的细胞大部分是对神经元和星形细胞双能的,极少分化成少突细胞。因此,所公开的方法的分化的细胞培养物可以产生神经元和星形细胞。
在实施方式中,从CNS分离NSC。当在本文中使用时,术语“分离的”在指称细胞时,是指处于与细胞天然存在(例如细胞在生物体中天然存在)的环境不同的环境中的细胞,并且将所述细胞从其天然环境中取出。
可以从所需神经元群体天然神经起源的区域以及从胚胎、胎儿、新生儿、青少年或成年人的组织分离NSC。所需细胞群体可以包括具有特定神经元表型的细胞,其可以替换或补充这种在疾病进展过程中失去或失活的表型。在实施方式中,从室下区(SVZ)或从齿状回(DG)的颗粒下层(subgranular zone)分离NSC。在优选实施方式中,从其中腹侧运动神经元的神经发生显著的脊髓分离NSC,并且在人类胎儿发育期间腹侧运动神经元的神经发生显著的胎龄时获得所述NSC。
因此,在实施方式中,从处于约6.5至约20周胎龄的脊髓分离NSC。优选地,从处于约7至约9周胎龄的脊髓分离NSC。在另一个实施方式中,从胚胎脊髓组织分离NSC。在又一个实施方式中,从人类分离神经干细胞。应该认识到,可分离的NSC群体的比例可以随着供体的年龄而变。细胞群体的扩增能力也可以随着供体年龄而变。
例如,中脑腹侧的NSC不同于从处于相同妊娠阶段的脊髓获得的NSC。具体来说,来自于中脑腹侧的NSC可以产生表达酪氨酸羟化酶的多巴胺能神经元,而来自于脊髓的NSC可以产生产乙酰胆碱的胆碱能神经元。然而,两种细胞类型都同时产生更加普遍的产谷氨酸和GABA的神经元。因此,在实施方式中,所公开的方法包括从脊髓获得NSC,以治疗通过产乙酰胆碱的胆碱能神经元的植入而被至少部分改善或减弱的病症。
也可以从新生儿和成年人组织分离NSC。源自于新生儿和成年人组织的NSC在它们分化成神经元和神经胶质的能力以及它们的生长和分化特征方面是定量等同的。然而,从各种不同的新生儿和成年人CNS体外分离NSC的效率可能远低于从具有更丰富的NSC群体的胎儿组织分离NSC。然而,与使用胎儿来源的NSC相同,本公开的方法能够使至少约30%的源自于新生儿和成年人来源的NSC在体外分化成神经元。因此,新生儿和成年人组织可以如上面在胎儿来源的NSC的情形中所描述的来使用。
在实施方式中,将人类胎儿脊髓组织在显微镜下剖开。分离对应于下颈椎/上胸椎区段的组织区域。将NSC分离,合并,并在聚D-赖氨酸包被的培养容器上,在含有纤连蛋白和碱性成纤维细胞生长因子(bFGF;FGF-2)的培养基中扩增。将细胞扩增,然后在无防腐剂和抗生素的培养基中浓缩到每微升约10,000个细胞的所需靶细胞密度。浓缩的细胞可以新鲜地用于移植或冷冻以备晚些时候使用。
在实施方式中,所述NSC源自于胚胎干细胞或诱导的多能干细胞。当在本文中使用时,术语“胚胎干细胞”是指从发育中的胚胎分离的干细胞,其可以产生身体的所有细胞(例如外胚层、中胚层和/或内胚层细胞谱系的细胞)。当在本文中使用时,术语“诱导的多能干细胞”是指源自于体细胞(例如分化的体细胞)的干细胞,其具有比所述体细胞更高的潜能。胚胎干细胞和诱导的多能干细胞能够分化成更加成熟的细胞(例如神经干细胞或神经祖细胞)。用于在体外生长胚胎干细胞或诱导的多能干细胞并将其分化成NSC的方法,可以是例如在Daadi等,PLoS One.3(2):e1644(2008)中描述的那些方法。
存在几种标准的分子生物学技术可用于在本文中公开的神经干细胞中调控编码生长因子的多核苷酸的表达。例如,可以使用不同启动子来调控所述生长因子的表达水平和/或调控所述神经干细胞的哪些后代表达所述因子。例如,人类泛素C(UbC)、PGK或CAG启动子在本文公开的人类神经干细胞的分化的神经元和神经胶质后代中提供生长因子的不同表达水平。PGK启动子能够产生每24小时每百万个细胞约0.5ng蛋白的低的生长因子水平,UbC启动子能够产生每24小时每百万个细胞约2ng蛋白的更大量的生长因子,并且CAG启动子能够产生每24小时每百万个细胞约14ng蛋白的更大量的生长因子。此外或可替选地,表达可以被驱动并限制到神经干细胞的某些后代。例如,人突触蛋白启动子可用于指导神经干细胞的神经元后代的生长因子表达。
治疗方法
本文所公开的神经干细胞可用于治疗疾病或障碍的方法中,所述疾病或障碍包括神经变性疾病或障碍例如肌萎缩性侧索硬化症(ALS)、脊髓损伤(SCI)、创伤性脑损伤(TBI)、阿尔兹海默氏病(AD)、痴呆症、轻度认知缺损、糖尿病、与糖尿病相关的CNS并发症、周围神经病、视网膜神经病或多发性硬化症。这些方法可以包括向对象给药治疗有效量的本文中公开的神经干细胞,包括例如通过注射。在实施方式中,用所述公开的神经干细胞治疗的对象在所述神经干细胞给药之前、期间和/或之后被免疫抑制。
在某些实施方式中,疾病、障碍或病症的“治疗”至少部分包括:(1)预防所述疾病、障碍或病症,即在暴露于或易感所述疾病、障碍或病症但尚未经历或表现出所述疾病、障碍或病症的症状的哺乳动物中导致所述疾病、障碍或病症的临床症状不发生;(2)抑制所述疾病、障碍或病症,即中止或减轻所述疾病、障碍或病症或其临床症状的发生;或(3)缓解所述疾病、障碍或病症,即引起所述疾病、障碍或病症或其临床症状消退。如果给药所述公开的神经干细胞的对象与未用所述公开的神经干细胞治疗的对象相比在海马依赖性行为任务中表现出改善,则可以认为神经变性疾病或障碍得到治疗。
当在本文中使用时,术语“预防”、“遏制”、“抑制”是指一种行动过程(例如给药本文所公开的NSC),其发起的方式(例如在疾病状态或病症的临床症状例如Aβ的沉积物发作之前)使得可以暂时或永久地预防、遏制或减少所述疾病状态或病症的临床表现(例如Aβ沉积物的形成)的发生。这种预防、遏制或减少不必定是绝对有用的。
在某些实施方式中,本文中使用的“有效量”是指在所述对象上提供治疗效果所需的脊髓来源的神经干细胞的量。当在本文中使用时,“治疗有效量”是指所给药的将在某种程度上缓解待治疗的疾病、障碍或病症的一种或多种症状的充足量的脊髓来源的神经干细胞。在某些实施方式中,结果是疾病的征兆、症状或病因的减轻和/或缓和,或生物系统的任何其他所需变化。例如,在某些实施方式中,对于治疗用途来说,“有效量”是提供疾病症状的临床显著降低而没有过多不良副作用所需的脊髓来源的神经干细胞的量。在某些实施方式中,使用诸如剂量递增研究的技术来确定任何个体病例中的适合的“有效量”。术语“治疗有效量”包括例如预防有效量。在其他实施方式中,脊髓来源的神经干细胞的“有效量”是有效地实现所需药理效果或治疗改进而没有过多不良副作用的量。在其他实施方式中,应该理解,“有效量”或“治疗有效量”随对象而变,这是由于对象的代谢、年龄、体重、总体状况,待治疗的病症,待治疗的病症的严重性以及处方医生的判断不同。
所述神经干细胞可以被移植到运动皮层和/或脊髓灰质中以在ALS中挽救变性的上和下运动神经元,移植到梗塞位点中以在缺血性或出血性中风的急性和慢性阶段中挽救受影响的神经元并减小半影区的尺寸,移植到Meynert基底核中以在痴呆症和阿尔兹海默氏病患者中保护胆碱能神经元,移植到海马或脑的其他区域中以在衰老期间或阿尔兹海默氏病中减缓痴呆症的发展或在癫痫中减少癫痫发作,移植到白质纤维束例如内囊和胼胝体中用于创伤性脑损伤或中风中的神经保护。所述神经干细胞可以从这些位置在整个脑中径向迁移以分配IGF-1蛋白,用于治疗其他适应症例如糖尿病和与糖尿病相关的CNS并发症。所述神经干细胞可以被移植到肋间肌和/或膈肌中,以增加ALS或颈部脊髓损伤患者的肌肉终板并提高呼吸量。所述神经干细胞可以被移植到骨骼肌中以在肌肉萎缩症和各种不同的运动神经元疾病中增加肌纤维。所述神经干细胞可以被移植到小脑和/或脑干中,以挽救被包括脊髓性肌萎缩、延髓性肌萎缩和小脑性共济失调的病症所影响的运动神经元。所述神经干细胞可以被脊柱内移植,用于在多发性硬化症中再生具髓鞘的少突细胞。所述神经干细胞可以被移植到鞘内空间或蛛网膜下空间中以获得IGF-1的全局分布,用于酶缺陷疾病中的神经保护。
本公开提供了减少对象脑(例如海马和/或皮层)中的β-淀粉样蛋白(Aβ)沉积(例如Aβ沉积水平)的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。所述对象脑中的Aβ水平可以被降低5%、10%、15%、20%、25%、30%、40%、50%、60%、70%、80%、90%、100%、150%、200%或更多,包括当与未给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞的对象脑相比时。所述对象脑中的Aβ水平可以被降低2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍或更多倍,包括当与未给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞的对象脑相比时。在某些实施方式中,所述对象患有阿尔兹海默氏病。
本公开提供了清除对象脑(例如海马和/或皮层)中的Aβ沉积物或防止Aβ在对象脑(例如海马和/或皮层)中积累的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。在某些实施方式中,所述对象患有阿尔兹海默氏病。
本公开提供了防止Aβ在对象脑(例如海马和/或皮层)中积累的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。在某些实施方式中,所述对象患有阿尔兹海默氏病。
本公开提供了提高对象脑(例如海马和/或皮层)中的胆碱能神经元数目的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。所述对象脑中的胆碱能神经元数目可以被提高5%、10%、15%、20%、25%、30%、40%、50%、60%、70%、80%、90%、100%、150%、200%或更多,包括当与未给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞的对象脑相比时。所述对象脑中的胆碱能神经元数目可以被提高2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍或更多倍,包括当与未给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞的对象脑相比时。在某些实施方式中,所述对象患有阿尔兹海默氏病。
本公开还提供了恢复对象脑中的突触的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。在某些实施方式中,所述对象患有阿尔兹海默氏病。
本公开提供了恢复对象的记忆和/或认知的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。在某些实施方式中,所述对象患有阿尔兹海默氏病。
在实施方式中,所述NSC可以用可接受的药用载体稀释。当在本文中使用时,术语“可药用载体”是指本公开的细胞与其一起给药,并且被联邦或州政府的管理机构批准或列于美国药典或其他公认药典中可用于动物、更具体来说用于人类的稀释剂、佐剂、赋形剂或介质。这些药用载体可以是液体例如水和油,包括石油、动物、植物或合成起源的油,例如花生油、大豆油、矿物油、芝麻油等。所述药用载体可以是盐水、阿拉伯胶、明胶、淀粉糊、滑石、角蛋白、胶体二氧化硅、尿素等。当给药到患者时,所述神经干细胞和可药用载体可以是无菌的。当所述细胞被静脉内给药时,水是有用的载体。盐水溶液和右旋糖水溶液和甘油溶液也可用作液体载体,特别是用于注射溶液。适合的药用载体还包括赋形剂例如葡萄糖、乳糖、蔗糖、单硬脂酸甘油酯、氯化钠、甘油、丙烯、二醇、水、乙醇等。如果需要,本发明的组合物还可以含有少量润湿剂或乳化剂或pH缓冲剂。在有利情况下,本发明的组合物可以采取溶液、乳液、缓释制剂的形式或任何其他适合于使用的形式。适合的载体的选择在普通技术人员的技巧范围之内。
从在培养中扩增的神经干细胞的操作,可以获得各种不同的神经元亚型。因此,如有需要,在所公开的方法的基础上,可以将特定神经元亚型从其他无关或不想要的细胞中分离和纯化出来以改善结果,并且可将其用于认知功能障碍的治疗。
本公开的方法中的NSC可以源自于一个位点,并作为自体移植物移植到同一对象内的另一个位点。此外,本公开的方法中的NSC可以源自于遗传一致的供体并作为同系异体移植物(isograft)移植。此外,本公开的方法中的NSC可以源自于同一物种的遗传不一致的成员并作为同种异体移植物移植。或者,NSC可以源自于非人类来源并作为异种移植物移植。通过开发强有力的免疫抑制剂,同种异体移植物和非人类神经前体细胞例如猪来源的神经前体细胞的异种移植物可以被移植到人类对象中。
样品组织可以通过任何标准方法来解离。在一个实施方式中,使用移液器和不含二价阳离子的缓冲液(例如盐水),通过轻柔研磨将组织解离以形成解离细胞的悬液。为了避免过高的局部细胞浓度,充分解离以主要获得单细胞是合乎需要的。
为了NSC的成功商业应用,维持通过多次连续传代后仍具有稳定的扩增和分化能力的稳健(robust)和一致的培养物是合乎需要的。如上所述,可以优化培养方法以实现来自于不同区域和CNS发育年龄的NSC的各个细胞系的长期稳定的扩增,同时维持它们独特的祖细胞性质。在一个实施方式中,干细胞可以按照在U.S.8,460,651、U.S.8,236,299、U.S.7,691,629、U.S.5,753,506、U.S.6,040,180或U.S.7,544,511中陈述的方法来培养,所述专利整体通过参考并入本文。
在实施方式中,本公开的方法的NSC可以包括用于移植的预分化细胞。为了获得细胞的最大得率并简化程序,收获汇合的培养物用于移植,其主要包含未分化细胞的群体。然而,应该认识到,由于细胞密度提高,也可以存在少量刚刚开始自发分化的细胞群体。
在实施方式中,将NSC浓缩在溶液例如上面描述的可临床使用的休眠或冷冻溶液中。在实施方式中,将NSC浓缩至适合的细胞密度,其可以与用于所述细胞给药的细胞密度相同或不同。在实施方式中,取决于多种因素例如注射位点、有益效果所必需的最低剂量和毒性副作用考量,用于给药的细胞密度可以在每微升约1,000个细胞至每微升约1,000,000个细胞之间变化。
使用已知方法时供体细胞的低的细胞存活率,使得有必要向相对小的区域递送大量细胞以尝试有效治疗。然而,注射体积是施加在宿主组织上的静水压,并且与大的注射体积相伴的延长的注射时间加重手术风险。另外,供体细胞的过量注射引起宿主实质组织的压缩和随后的损伤。在补偿体积限制的尝试中,已知方法要求制备高细胞密度的注射用悬液。然而,高细胞密度促进被移植细胞的紧密簇集并抑制细胞迁移或扩散,阻止了超出有限区域之外的有效治疗并损害了在宿主组织中的无缝整合。
相反,作为通过本公开的方法制备的细胞的体内存活率提高的结果,每次注射需要较少数目的细胞。事实上已显示,从注射时起6个月后存在高达3至4倍的注射细胞数目,证实了使用本公开的方法时的显著定量存活率。此外,由于所述定量存活率,可以实现所需细胞剂量的可重复的给药。因此,在一个实施方式中,将NSC浓缩至每微升约1,000至约1,000,000个细胞的密度。在一个实施方式中,将NSC浓缩至每微升约2,000至约80,000个NSC的密度。在另一个实施方式中,每微升约5,000至约50,000个NSC已被用于有效移植。在另一个实施方式中,使用每微升约10,000至30,000个NSC。在优选实施方式中,将NSC浓缩至每微升约70,000个NSC的密度。
在另一个实施方式中,将NSC浓缩至每微升约1,000至约10,000个细胞、每微升约10,000至约20,000个细胞、每微升约20,000至约30,000个细胞、每微升约30,000至约40,000个细胞、每微升约40,000至约50,000个细胞、每微升约50,000至约60,000个细胞、每微升约60,000至约70,000个细胞、每微升约70,000至约80,000个细胞、每微升约80,000至约90,000个细胞或每微升约90,000至约100,000个细胞的密度。
在另一个实施方式中,将NSC浓缩至每微升约100,000至约200,000个细胞、每微升约200,000至约300,000个细胞、每微升约300,000至约400,000个细胞、每微升约400,000至约500,000个细胞、每微升约500,000至约600,000个细胞、每微升约600,000至约700,000个细胞、每微升约700,000至约800,000个细胞、每微升约800,000至约900,000个细胞、每微升约900,000至约1,000,000个细胞的密度。
在另一个实施方式中,可以将悬浮在每个注射位点小于约100微升注射体积中的NSC递送到治疗区域。例如,在可以进行多次注射的人类对象的认知功能障碍的治疗中,可以使用每个注射位点0.1和约100微升的注射体积。在优选实施方式中,可以将悬浮在每个注射位点约1微升注射体积中的NSC递送到治疗区域。
在实施方式中,本公开的方法包括将NSC以每微升约1,000至约10,000个细胞、每微升约10,000至约20,000个细胞、每微升约20,000至约30,000个细胞、每微升约30,000至约40,000个细胞、每微升约40,000至约50,000个细胞、每微升约50,000至约60,000个细胞、每微升约60,000至约70,000个细胞、每微升约70,000至约80,000个细胞、每微升约80,000至约90,000个细胞或每微升约90,000至约100,000个细胞的细胞密度注射到对象脑的一个或多个区域中。
在某些实施方式中,本公开的方法包括将NSC以每微升约100,000至约200,000个细胞、每微升约200,000至约300,000个细胞、每微升约300,000至约400,000个细胞、每微升约400,000至约500,000个细胞、每微升约500,000至约600,000个细胞、每微升约600,000至约700,000个细胞、每微升约700,000至约800,000个细胞、每微升约800,000至约900,000个细胞或每微升约900,000至约1,000,000个细胞的细胞密度注射到对象脑的一个或多个区域中。
在实施方式中,本公开的方法包括将NSC以每微升约5,000至约50,000个细胞的细胞密度注射。在优选实施方式中,本公开的方法包括将NSC以每微升约70,000个细胞的细胞密度注射。
在实施方式中,本公开的方法包括NSC的多次注射,将约4,000至约40,000个细胞、约40,000至约80,000个细胞、约80,000至约120,000个细胞、约120,000至约160,000个细胞、约160,000至约200,000个细胞、约200,000至约240,000个细胞、约240,000至约280,000个细胞、约280,000至约320,000个细胞、约320,000至约360,000个细胞或约360,000至约400,000个细胞的总细胞数目引入到对象脑的一个或多个区域中。
在某些实施方式中,本公开的方法包括NSC的多次注射,将约400,000至约800,000个细胞、约800,000至约1,200,000个细胞、约1,200,000至约1,600,000个细胞、约1,600,000至约2,000,000个细胞、约2,000,000至约2,400,000个细胞、约2,400,000至约2,800,000个细胞、约2,800,000至约3,200,000个细胞、约3,200,000至约3,600,000个细胞或约3,600,000至约4,000,000个细胞的总细胞数目引入到对象脑的一个或多个区域中。
扩增的NSC被悬浮在其中用于递送到治疗区域的介质的体积在本文中可以被称为注射体积。注射体积取决于注射位点和组织的变性状态。更具体来说,注射体积的下限可以由高细胞密度的粘稠悬液的实际液体操作以及细胞簇集的倾向性决定。注射体积的上限可以由避免损伤宿主组织所必需的由注射体积施加的压力限度以及实际手术时间决定。
在本公开的方法中可以使用任何适用于将细胞注射到所需区域中的装置。在实施方式中,使用能够在一定时间段内以基本上恒定的流速递送亚微升体积的注射器。细胞可以通过针头或柔性管线或任何其他适合的转移装置而被装载在所述装置中。
在另一个实施方式中,将细胞注射在脑中约2至约5个之间的位点处。在实施方式中,将细胞注射在脑中约5至约10个之间的位点处。在实施方式中,将细胞注射在脑中约10至约30个之间的位点处。在实施方式中,将细胞注射在脑中约10至约50个之间的位点处。所述位点中的至少两个位点可以相隔大约100微米至约5,000微米的距离。在实施方式中,注射位点之间的距离为约400至约600微米。在实施方式中,注射位点之间的距离为约100至约200微米、约200至约300微米、约300至约400微米、约400至约500微米、约500至约600微米、约600至约700微米、约700至约800微米、约800至约900微米或约900至约1,000微米。在实施方式中,注射位点之间的距离为约1,000至约2,000微米、约2,000至约3,000微米、约3,000至约4,000微米或约4,000至约5,000微米。注射位点之间的距离可以在整个脊髓组织中产生基本上不中断且连续的供体细胞存在的基础上并在平均注射体积被证实在动物模型例如大鼠或猪中实现约2-3个月存活的基础上确定。在人类中的实际注射次数和注射间距可以从动物模型中的结果外推。
本公开的方法的NSC可以在体内产生大量神经元。当NSC在移植之前没有明显预分化时,所述NSC在分化之前可以在体内增殖多达2至4次细胞分裂,由此进一步增加有效供体细胞的数目。在分化后,神经元分泌特定神经递质。此外,神经元在体内移植物周围的环境中分泌对不同病症有益的生长因子、酶和其他蛋白质或物质。因此,由于移植的细胞在体内产生大量神经元的能力,并且由于认知功能障碍可能由失去的要素(包括神经元来源的要素)引起或导致所述要素损失,通过本公开的方法可以治疗多种病症。因此,患有由缺少这些神经元来源的要素例如生长因子、酶和其他蛋白质而造成的认知功能障碍的对象,可以通过本公开的方法有效地治疗。
在实施方式中,包含一定量NSC的组合物可以按照已知方法给药到对象,例如静脉内给药如快速浓注或通过在一段时间内连续输注,通过肌内、腹膜内、脑和脊髓内、静脉内、皮下、关节内、滑膜内或鞘内途径。细胞的脑和脊髓内、鞘内、静脉内、腹膜内或皮下给药是优选的,其中脑和脊髓内、鞘内或静脉内途径是特别优选的;然而,也可以使用本领域中公知的其他细胞给药范式。
在一个实施方式中,本发明的NSC组合物被配制成注射制剂,并包含例如适合于脑和脊髓内递送的活性成分的水性溶液或悬液。当制备注射用、特别是用于脑内递送的组合物时,可以存在连续相,其包含渗涨度调节剂(tonicity modifier)的水性溶液,所述溶液被缓冲到低于约7或低于约6例如约2至约7、约3至约6或约3至约5的pH。所述渗涨度调节剂可以包含例如氯化钠、葡萄糖、甘露糖醇、海藻糖、甘油或使所述制剂的渗透压与血液等渗的其他药剂。或者,当在制剂中使用较大量渗涨度调节剂时,可以将它在注射之前用可药用稀释剂稀释,以使所述混合物与血液等渗。
在任何上述方法的某些实施方式中,包含NSC的组合物被给药一次。在任何上述方法的某些实施方式中,在所述包含NSC的组合物的初始剂量给药后,进行一次或多次后续剂量的给药。可以在本公开的方法中使用的给药方案(例如首次给药与一次或多次后续给药之间的间隔)的实例包括约每周一次至约每12个月一次的间隔、约每两周一次至约每6个月一次的间隔、约每月一次至约每6个月一次的间隔、约每月一次至约每3个月一次的间隔或约每3个月一次至约每6个月一次的间隔。在某些实施方式中,给药为每月、每两个月、每三个月、每四个月、每五个月、每六个月或在疾病复发后进行。
在实施方式中,将NSC注射在约5至约50个之间的位点处。在实施方式中,将NSC注射在约10至约30个之间的位点处。所述位点中的至少两个位点可以相隔大约100微米至约5000微米的距离。在实施方式中,注射位点之间的距离为约400至约600微米。在人类中的实际注射次数可以从动物模型中的结果外推。
本公开的方法可以包括在NSC注射之前、同时或之后给药一种或多种免疫抑制药物。
在某些实施方式中,所述NSC和免疫抑制药物可以被共同给药。构成所述疗法的NSC和免疫抑制药物可以是组合剂型或在旨在基本上同时给药的分开的剂型中。所述NSC和免疫抑制药物也可以被顺序给药,其中NSC或免疫抑制药物通过要求多步给药的方案来给药。因此,方案可能要求NSC和免疫抑制药物的顺序给药,其中将分开的活性剂分开给药。多个给药步骤之间的时间长度可以在例如几分钟至几小时至数日的范围内,这取决于NSC和免疫抑制药物的性质例如治疗性化合物的效力、溶解性、生物利用度、血浆半衰期和动力学曲线,并且取决于食物摄入的影响和对象的年龄和状况。靶分子浓度的昼夜变化也可能决定最佳给药间隔。不论是同时、基本上同时还是顺序给药,NSC和免疫抑制药物都可能涉及要求将NSC通过静脉内途径给药并且将免疫抑制药物通过口服途径、经皮途径、静脉内途径、肌内途径或通过例如粘膜组织的直接吸收给药的方案。如果所述神经干细胞和免疫抑制药物被分开或一起地通过口服、吸入喷雾、直肠内、表面、颊(例如舌下)或肠胃外(例如皮下、肌内、静脉内和真皮内注射或输注技术)给药,每种这些治疗性化合物都将被包含在可药用赋形剂、稀释剂或其他制剂组分的适合的药用制剂中。
无需多言,相信本领域普通技术人员使用前面的描述和后面的说明性实施例,可以制造和利用本公开的药剂并实践所要求保护的方法。提供下面的工作例是为了便于本公开的实践,并且不应被解释为以任何方式限制本公开的剩余部分。
实施例
本发明由下面的实施例进一步说明,所述实施例不应被解释为以任何方式进行限制。下面描述后面的实验例中所使用的材料和方法。
实施例1:材料和方法
HK532制备
人类HK532NSC细胞系(NSI-HK532和NSI-HK532.UbC-IGF-I)由Neuralstem,Inc.(Rockville,MD)提供。简单来说,从获自选择性流产后的8周胎龄的人类胎儿的皮层组织制备HK532。所述材料在符合国立卫生研究院(NIH)和FDA的指南的知情同意下捐献给Neuralstem,Inc.。指南由外部独立评审团如所述进行评审并批准(Johe等,(1996)GenesDev.10(24):3129-40)。使用含有永生化基因和新霉素抗性基因的反转录病毒载体将皮层NSC有条件地永生化。所述永生化基因包含在3’末端融合有编码人类雌激素受体的c-端配体结合结构域的cDNA片段的人类c-myc cDNA。选择具有新霉素抗性的细胞并作为单一细胞系繁殖(HK532)。然后将所述细胞系用复制缺陷型重组慢病毒载体转导,以诱导由人类泛素C(UbC)启动子驱动的人类IGF-I的表达。得到的细胞不需进一步选择就作为单一细胞系进行繁殖(HK532.UbC-IGF-I)。使用在相同UbC启动子下表达绿色荧光蛋白(GFP)的对照构建物转导HK532,产生大约90-95%的GFP阳性增殖细胞。
HK532培养和分化
HK532和HK532-IGF-I细胞两者的培养如以前所描述来进行[42]。简单来说,将细胞生长在用10mM Hepes缓冲液中的100μg/mL聚D-赖氨酸(Millipore,Billerica,MA)包被24h,然后用PBS中的25μg/mL纤连蛋白包被1小时的培养瓶上。或者,将细胞接种在用聚L-赖氨酸包被的插片上,然后与皮层神经元(CN)共培养。将细胞在增补有10ng/mL成纤维细胞生长因子(FGF)的N2B+培养基(由Neuralstem,Inc.,Rockville,MD提供)中培养,用于祖细胞状态生长和维持。对于分化来说,将细胞在不含FGF的NSDM分化培养基(增补有4mM L-谷氨酰胺、20μM L-丙氨酸、6μM L-天冬酰胺、67μM L-脯氨酸、250nM维生素B12、25mg/L胰岛素、100mg/L转铁蛋白、20nM孕酮、100μM腐胺和30nM亚硒酸钠的DMEM)中培养。分化细胞的数据作为分化后的天数(即未分化的(D0)、第1天(D1)、第3天(D3)等)示出。每2天进行培养基更换,更换50%的培养基。
IGF-I生产和信号转导
HK532和HK532-IGF-I细胞中的IGF-I表达和信号转导按照以前的描述通过ELISA和western印迹来确定(Vincent等,Endocrine Society Abstracts(2003)P3-316p.548;以及Chia等,Am J Epidemiol(2008)167(12):1438-45)。简单来说,为了确认IGF-I生产,从未分化的(D0)和分化的(D3和D7)HK532和HK532-IGF-I细胞收集调制过的培养基,使用Centricon滤器(3KDa截留分子量;Millipore,Billerica,MA)浓缩10倍至1mL,并在人类特异性IGF-I ELISA(Assay Designs,Enzo Life Sciences Inc.,Farmingdale,NY)上按照制造商的说明书运行。对于IGF-I信号转导分析来说,将HK532和HK532-IGF-I细胞在处理培养基(不添加胰岛素的NSDM分化培养基)中培养4小时,然后添加选择抑制剂培养1小时,随后添加外源IGF-I(20nM)培养30min。抑制剂包括Akt途径抑制剂LY294002(LY;20μM;Sigma-Aldrich,St.Louis,MO)、MAPK抑制剂U0126(U;20μM;Calbiochem,La Jolla,CA)或IGF-IR抑制剂NVPAEW541(NVP;1μM;Sigma-Aldrich)。对于western印迹来说,将全细胞蛋白提取在冰冷的RIPA缓冲液(20mM Tris,pH 7.4,150mM NaCl,1mM EDTA,0.1%SDS,1mM去氧胆酸钠,1%Triton X-100,0.1胰蛋白酶单位/L抑肽酶,10mg/mL的亮抑肽酶,以及50mg/mL PMSF)中,测定蛋白质浓度,将样品在SDS-PAGE凝胶上电泳并转移到硝酸纤维素膜。第一抗体(除非另有指明,否则从Cell Signaling Technology,Inc.(Danvers,MA)获得)包括:phospho-IGF-IR(pIGF-IR),IGF-IRβ(Tyr1135/1136),phospho-Akt(Ser473)(pAkt),Akt,phospho-ERK(pERK),ERK和β-肌动蛋白(Chemicon,Temecula,CA)。在第一抗体4℃温育过夜后,将膜与适合的偶联到辣根过氧化物酶的第二抗体(Cell Signaling Technology,Danvers,MA)在22℃温育1小时,用化学发光底物(SuperSignal West Pico;Pierce,FisherScientific,Hampton,NH)显色,并暴露到Kodak BioMax XAR胶片(Sigma-Aldrich)。
细胞迁移
将未分化的HK532和HK532-IGF-I细胞在4℃过夜储存(1x 106个细胞/mL或3x 106个细胞/管)后添加到迁移插片,或可选地在6孔板上培养并在分化的D7移动到插片。在插片下方添加含有或不含IGF-I(终浓度为10nM)的NSDM加上10%FBS。24小时后,将迁移通过插片的细胞用QCM 24孔比色法细胞迁移测定试剂(Millipore)染色。使用标准的LabSystemsFluoroskan Ascent FL微孔板读板器在530和590nm处对迁移进行定量。
细胞增殖和分化
细胞增殖和分化使用标准的实验室免疫细胞化学(ICC)方案(Kim等,Journal ofBiological Chemistry(1997)272:21268-21273;Lunn等,Neurobiol Dis(2012)46(1):59-68)来评估。简单来说,将HK532和HK532-IGF-I细胞在24孔板中,在聚L-赖氨酸和纤连蛋白包被的玻璃盖片上培养。在D0、D3和D7,如前所述[45]通过将细胞与10μM 5’-乙炔基-2’-脱氧尿苷(EdU)温育2小时,然后固定并按照Click-It EdU试剂盒(Invitrogen)的制造商提供的流程进行处理,来测量细胞增殖。EdU掺入通过对使用装备有数字相机的Olympus BX-51显微镜捕获的荧光图像进行定量来测量。对于所有样品(n=3)来说,每个增殖实验计数约2.5–2.7x 103个细胞。
为了评估分化,将细胞用4%PFA固定,用0.1%Triton/PBS通透化,并在5%正常驴血清/0.1%Triton/PBS中阻断。接下来,除非另有指明,否则将Ki67(Novus,Littleton,CO)、TUJ1(Neuromics,Edina,MN)、巢蛋白(Chemicon,Millipore)、GAD65/67(Millipore)、VGLUT2(Millipore)或IGF-IRβ(1:500,Sigma)第一抗体以1:1000的稀释倍数在4℃温育过夜。然后将细胞在Cy3、Cy5或FITC偶联的第二抗体(Jackson ImmunoResearch,Westgrove,PA)中温育,然后使用含有DAPI的ProLong Gold抗褪色试剂(Molecular Probes,Invitrogen,Carlsbad,CA)固定在玻璃载片上。使用Olympus BX-51显微镜捕获图像,并且对于所有样品(n=3)来说,每个分化实验计数约2.5–2.7x 103个细胞。
接下来,我们使用以前所描述的我们建立的神经指数测量(Lunn等,Stem CellsDev(2010)19(12):1983-93),检查了诱导的IGF-I表达对祖细胞状态的维持和轴突生长的影响。简单来说,在分化的前7天将细胞在玻璃盖片上单层培养,并在D0、D3和D7用巢蛋白免疫标记以鉴定神经祖细胞或用TUJ1免疫标记以观察原初神经元过程。对于所有巢蛋白标记的样品(n=3)来说,每个实验计数超过2.5x 103个细胞。或者,使用MetaMorph(MolecularDevices,Sunnyvale,CA)分析TUJ1标记的图像和它们相应的DAPI图像。设定阈值并使用区域统计测量被神经突覆盖的区域。使用“计数核”插件计数细胞数目并进行手动调整,以校正任何错误计数的细胞。神经元数目和神经突长度使用复合神经指数测量值来分析,所述测量值被表示为完整的神经元面积除以核的数目。数据被呈现为每个细胞的神经突面积(μm2/细胞)(Lunn等,Stem Cells Dev(2010)19(12):1983-93)。每种条件计数总共6个图像,其代表了约7.5x 103个DAPI标记的细胞(n=3)。
原代CN制备和神经保护作用的评估
按照我们以前发表的流程来分离原代CN(Lunn等,Stem Cells Dev(2010)19(12):1983-93)。简单来说,从E15Sprague-Dawley大鼠胚胎收集CN,移除膜,并将组织切成2–3mm小块。通过将组织在0.5%胰蛋白酶/EDTA中在37℃下温育10分钟,然后用血清包被的玻璃移液管研磨1分钟,将细胞解离。将得到的细胞悬液施加到24孔板中的聚L-赖氨酸包被的玻璃盖片,并在生长培养基中温育,所述培养基包含增补有2.5mg/ml白蛋白、2.5μg/ml过氧化氢酶、2.5μg/ml SOD、0.01mg/ml转铁蛋白、15μg/ml半乳糖、6.3ng/ml孕酮、16μg/ml腐胺、4ng/ml硒、3ng/mlβ-雌二醇、4ng/ml氢化可的松、1X青霉素/链霉素/新霉素(Gibco BRL)和1X B-27添加剂(Gibco BRL)的Neurobasal培养基(Gibco BRL,Invitrogen)。
为了检查CN、HK532和HK532-IGF-I对有毒的AD微环境的易感性,将细胞用10μM Aβ(1-42)(rPeptide)处理约72小时。细胞损伤通过切开的半胱天冬酶-3活化(CC3)来评估,其通过对ICC后CC3阳性细胞的百分数进行计数来确定。对于所有样品(n=3)来说,每个实验计数约2.5x 103个细胞。为了评估神经保护效果,将分化的D7HK532-IGF-I接种在插片上并与原代CN培养物在常规生长培养基中共培养。24小时后,将共培养物用10μM Aβ(1-42)(rPeptide)处理72小时。将原代CN固定,使用CC3抗体(1:1000,Cell Signaling)如上所述进行ICC分析。
体内移植
为了证实在体内移植后HK532-IGF-I细胞存活并整合在海马区中,从JacksonLaboratory(Bar Harbor,ME)获得6周龄的B6C3-Tg(APPswe/PSEN1ΔE9)85Dbo/J(APP/PS1;n=5)和野生型B6C3F1/J(WT;n=8)小鼠。在11周龄时,小鼠接受皮下他克莫司颗粒(FK-506;由Neuralstem,Inc.供应),并在12周龄时进行细胞移植手术。简单来说,将小鼠用异氟烷麻醉并置于标准的立体定向框(Stoelting Company,Wood Dale,IL)中。将皮肤切开,并在预测的注射区域处进行大型开颅手术。将HK532-IGF-I细胞悬液通过双侧注射给药到穹窿海马伞中的3个位点处(总共6次注射),所述位点由下述从前卤测量的坐标(分别为后部/侧向/腹侧)表示:-0.82/±0.75/2.5,-1.46/±2.3/2.9,-1.94/±2.8/2.9。每次注射由1μL体积构成(在60秒内给药,在针头抽出之前停留60秒),细胞浓度为30,000个细胞/μL。然后使用可吸收缝合线将皮肤封闭。在手术后,小鼠被给药腹膜内麻醉性疼痛药物2天,并在整个研究中继续给药他克莫司颗粒。在细胞移植后2周和10周将小鼠处死以备分析。简单来说,将动物麻醉并灌注冰冷的盐水,将脑剖开并沿着半球间边界切开。将脑在4%PFA中后固定过夜并在30%蔗糖中低温保存,用于免疫组织化学(IHC)。
对于IHC来说,将固定的脑组织用最佳切割温度化合物(OCT)包埋,并使用低温恒温器切片成14μm薄片。每只动物选择10个海马切片用于IHC,以检测移植的细胞并确认准确靶向到穹窿海马伞。将切片在PBS中重新水合,在含有0.5%Triton X-100的PBS中通透化20分钟,并在含有5%驴血清和0.1%Triton X-100的1X PBS中阻断30min。将针对双皮层蛋白(Doublecortin)(DCX;Millipore)和人类核(HuNu;Millipore)的第一抗体在阻断液中1:200稀释,并与切片在4℃温育过夜。在第一抗体温育后,将切片在PBS中洗涤三次,并与荧光偶联的在驴中产生的第二抗体(Alexa 488和Alexa 594;1:500;Invitrogen)温育1小时。在染色完成后,使用含有DAPI核染料的ProLong Gold抗褪色固定培养基(Molecular Probes,Invitrogen)将载片用玻璃盖片固定。使用Leica SP2共聚焦显微镜捕获荧光图像。
统计分析
所有数据被呈现为平均值±标准偏差(SD),n=3,或呈现为三个独立实验的代表性图像。使用GraphPad Prism(GraphPad Software,Inc.,La Jolla,CA)进行统计分析。配对t-检验被用于成对比较。p<0.05的值被认为是统计学显著性的(*p<0.05)。
实施例2:IGF-I生产和信号转导
HK532细胞是以前尚未描述过的新的皮层NSC。为了提高它们作为细胞治疗剂的潜在功效并确定IGF-I生产对它们的神经保护能力的影响,使用编码全长人类IGF-I的慢病毒载体产生HK532-IGF-I细胞系。调制过的培养基的ELISA分析证实亲代HK532细胞产生非常低到不可检测的基础水平的IGF-I,而HK532-IGF-I细胞在D0至D7之间产生3-5ng/mL的IGF-I,提高约50倍(图1A)。因此,HK532-IGF-I细胞产生相当可观水平的IGF-I,该水平在整个早期分化中被维持,证实了稳健和稳定的IGF-I表达。
进行了生长因子受体水平和活化如何受到自分泌IGF-I表达的调控的研究。通过IHC,在D7观察到沿着亲代HK532细胞和HK532-IGF-I两者的细胞表面的IGF-IR表达(图1B)。Western印迹分析证实了该表达并且也揭示出在两种细胞系中,在分化后受体表达显著增加(图1C)。尽管在D0和D7,在HK532-IGF-I中观察到相对于HK532略微降低的IGF-IR表达水平,但IGF-IR磷酸化和信号转导的激活在所述细胞系之间没有显著差异,并且添加外源IGF-I引起受体磷酸化的增加(图1C);在分化后这种激活明显更加显著。
考虑到IGF-I信号转导激活了有丝分裂原活化的细胞外信号调控的激酶/细胞外信号调控的激酶(MEK/ERK)、有丝分裂原活化的蛋白激酶(MAPK)和磷脂酰肌醇3-激酶(PI3K)/Akt途径,因此在HK532和HK532-IGF-I细胞中评估了这些关键途径的磷酸化和下游激活(图1C)。尽管在D0和D7存在基础的MAPK信号转导,但在细胞系之间不存在显著差异,并且IGF-I刺激仅在分化后提高信号转导。然而,在D0HK532-IGF-I细胞和分化后的两种细胞系中,基础Akt信号转导显著提高。在分化后的HK532细胞中外源IGF-I的添加促进Akt的稳健增加,而在HK532-IGF-I中,在IGF-I刺激后观察到非常少的Akt激活。这些数据证实了相对于亲代细胞,HK532-IGF-I对外源IGF-I的响应性降低。值得注意的是,MAPK信号转导的抑制提高Akt磷酸化并且Akt信号转导的抑制引起相反的观察结果,表明这些途径能够进行补偿性信号转导。然而,使用受体拮抗剂NVP抑制IGF-IR信号转导不影响MAPK信号转导,但将IGF-IR和Akt的活化显著降低至低于两种细胞系中的基础水平(图1C)。合在一起,这些数据证实了HK532-IGF-I细胞表现出正常的IGF-IR和MAPK/Akt信号转导概况。
实施例3:IGF-I表达不改变HK532增殖或迁移
EdU掺入被用于评估IGF-I对HK532和HK532-IGF-I细胞增殖的影响。分别有约36%和33%的未处理的D0HK532和HK532-IGF-I是EdU阳性的(图2A-E)。在D3,分别有6%和9%的HK532和HK532-IGF-I是EdU阳性的,并且到D7,少于3%的任一细胞系是EdU阳性的。因此,在D0、D3或D7没有观察到增殖概况的差异,并且两个细胞系在D7时表现出极小的增殖。这些数据证实在分化的初始阶段中IGF-I不促进或维持增殖。
也在D0和D7时评估了IGF-I对HK532和HK532-IGF-I迁移的影响。在两个时间点处,对HK532和HK532-IGF-I观察到可比的迁移水平(图2F-G)。此外,当在跨孔插片下方添加另外的IGF-I时,没有观察到变化。因此,诱导的IGF-I表达没有对祖细胞迁移产生可察觉的影响。
实施例4:表达IGF-I的HK532保留神经分化能力
接下来,检查了IGF-I对HK532祖细胞状态的维持和轴突生长的影响。分别有约92%和90%的D0HK532和HK532-IGF-I是巢蛋白阳性的,表明IGF-I表达不影响祖细胞状态的维持。还使用作为神经元分化的早期指示物的已建立的神经指数方法,评估了IGF-I对神经突生长的影响。对于HK532和HK532-IGF-I细胞两者来说,在D0至D7之间,随着细胞分化,神经指数增加,并且在测试的任何时间点处没有观察到所述细胞系之间的差异(图3F)。这些数据证实IGF-I不影响初始HK532分化。
实施例5:在HK532-IGF-I中是GABA能但不是谷氨酸能表型增加
为了确定IGF-I对终末分化的影响,确定了在D0、D3和D7时表现出谷氨酸能(VGLUT)和GABA能(GAD65)表型的细胞的比例。GAD65阳性细胞被定量,并且在HK532-IGF-I中与亲代HK532细胞相比显著增加,分别为总细胞的74%和67%(图4A、B、E)。HK532(61%)和HK532-IGF-I(67%)培养物中VGLUT阳性细胞的百分数没有显著差异(图4C、D、F)。这些数据证实了IGF-I的存在提高了由细胞分化产生的GABA能神经元的数目,但对谷氨酸能神经元的数目没有显著影响。
实施例6:HK532-IGF-I在体外对Aβ毒性有抗性并且保护原代CN
Aβ(1-42)是AD相关毒性的常用体外模型(Bruce等,(1996)PNAS93(6):2312-6)。当暴露于Aβ时,在原代CN和两种NSC细胞系中观察到显著的凋亡和CC3活化(图5A)。HK532和HK532-IGF-I中的凋亡水平显著低于在原代CN中观察到的水平(p<0.05;图5A)。为了检查改性的祖细胞的保护能力,也在与HK532和HK532-IGF-I间接共培养的原代CN中评估了Aβ毒性(图5B-E)。同样由CC3活化所指示的原代CN中的凋亡显著降低,当与HK532共培养时低于40%,当与HK532-IGF-I共培养时低于30%(p<0.05;图5F)。这些数据表明HK532-IGF-I细胞系是神经保护性的,并且能够防止Aβ诱导的原代CN的死亡。
实施例7:在AD小鼠模型中HK532-IGF-I能够在移植后存活并且掺入到体内
为了确立临床前试验的可行性,将HK532-IGF-I细胞移植到APP/PS1双重转基因小鼠这种常用的AD模型中(Cao等,J Biol Chem(2007)282(50):36275-82)。这种试验性研究用于确认细胞在海马的穹窿海马伞中的准确和正确的解剖学放置并评估移植的细胞随时间的存活。在所有注射的动物中实现了靶向准确性。在移植后2周(数据未示出)和10周(图5E、F)时,通过针对HuNu和DCX的IHC检测到移植的人类细胞。在AD(图5E)和WT动物(图6F)两者的海马区中,移植的细胞是明显的。DCX这种标记神经元前体的结合微管的磷酸化蛋白对HuNu标记的细胞的共染色指示了神经发生,并表明移植的皮层祖细胞处于早期神经元分化阶段。
实施例8:在AD小鼠模型中HK532-IGF-I的给药减少体内Aβ斑块形成
为了评估体内HK532-IGF-I移植对Aβ病理的全局影响,在每只小鼠多个海马和皮层切片上使用针对5种Aβ同工型(Aβ-37、38、39、40和42)的多克隆抗体进行免疫染色。在测量免疫反应性总面积和强度的基础上,对切片的荧光图像进行定量。正如预期,结果显示在介质注射的APP/PS1小鼠中存在明显的Aβ斑块形成,并且在non-tg动物中不存在Aβ(图6A-B、D-E)。此外,与介质注射的APP/PS1小鼠相比,用HK532-IGF-I处理的APP/PS1小鼠中的Aβ水平存在十分显著的降低(P<0.0001;非配对t-检验)(图6B-C、E-G)。该数据显示,HK532-IGF-I不仅起到保护神经元组织免于Aβ诱导的损伤的作用,而且通过清除Aβ沉积物和/或抗拒Aβ积累而减弱Aβ的沉积。
为了获得关于NSC处理的小鼠中Aβ减少的机制的更多见解,将海马和皮层中Aβ水平的差异分开进行考虑。在NSC处理的小鼠的皮层中Aβ显著减少(P<0.0005;非配对t-检验)(图6H)。然而,在NSC处理的小鼠的海马中Aβ的减少不显著(P=0.1061;非配对t-检验)(图6H)。
实施例9:在AD小鼠模型中HK532-IGF-I的给药在体内提高胆碱能活性
为了评估在我们的AD模型中胆碱能神经元的存在并调查HK532-IGF-I移植对这些神经元的影响,将来自于每只小鼠的纹状体切片用针对ChAT的抗体进行免疫染色,以鉴定表达高水平ChAT的胆碱能神经元(图7A-D)。我们对每个切片的纹状体整体成像,并为每个纹状体计数ChAT阳性细胞的数目。细胞计数表明与WT相比,APP/PS1小鼠中纹状体胆碱能神经元显著损失(P=0.0115;非配对t-检验)(图7E)。此外,与介质注射的AD小鼠相比,NSC处理的APP/PS1小鼠中胆碱能神经元的数目存在显著增加(P=0.0366;非配对t-检验)(图7F)。这些结果表明在APP/PS1小鼠中通过HK532-IGF-I移植挽救了纹状体中的胆碱能功能。
实施例10:在AD小鼠模型中HK532-IGF-I的给药在体内提高突触前活性
为了确定在APP/PS1小鼠中HK532-IGF-I是否提高突触密度,将来自于所有动物的海马切片用突触前标志物突触小泡蛋白进行免疫染色。与介质注射的转基因小鼠相比,在移植有HK532-IGF-I的APP/PS1小鼠的海马处发现荧光强度的可察觉的提高(图8A-F)。这种提高的强度与在未注射和假注射处理的两种non-tg小鼠中发现的水平可比。这些数据表明,在AD中HK532-IGF-I移植通过恢复突触而挽救了记忆和认知。
为了调查HK532-IGF-I细胞是否与内源神经元形成突触,在HK532-IGF-I处理的小鼠的海马切片上进行了针对人类NuMA和小鼠与人类两种起源的突触小泡蛋白的共同染色。在NSC所位于的多形层的区域中发现了相当多的突触小泡蛋白阳性染色(图8I)。此外,突触标志物明显地包围NuMA染色的细胞(图8G-J),表明人类NSC来源的细胞可以与内源神经元形成突触。
实施例11:HK532.UbC-IGF1在脊髓中的存活和整合
为了证实在脊髓中的存活和整合,将HK532.UbC-IGF1移植到SOD1G93A大鼠这种已建立的肌萎缩性侧索硬化症(ALS)的动物模型的颈部脊髓中。将总共1.8x105个细胞注射到每只动物中,靶向颈部脊髓(C4-C6脊椎水平)的腹角。将动物通过瞬时霉酚酸酯(在移植后的7天中30mg/kg IP)并通过连续他克莫司递送进行免疫抑制。在标准的灌注-固定之前,动物存活56天。冷冻免疫组织化学揭示出人类细胞移植物存在于腹角中并在整个灰质和白质中广泛分布(图9a-c)。
除非另有指明,否则在本说明书和权利要求书中用于表示成分、性质例如分子量、反应条件等的量的所有数字,都应被理解为在所有情况下用术语“约”来修饰。因此,在说明书和权利要求书中陈述的数值参数是近似值,其可能随着试图通过本公开获得的所需性质而变,除非指明不是如此。最起码,并且不试图将等同性原则的应用限于权利要求书的范围,每个数值参数至少应该根据所报道的有效数字的数目并应用常规的舍入技术进行解释。
尽管陈述本公开的广阔范围的数值范围和参数是近似值,但在具体实施例中陈述的数值被尽可能精确地报道。然而,任何数值固有地含有由它们相应的试验测量中存在的标准偏差必然引起的一定误差。
在描述本公开的情形中(特别是在权利要求书的情形中)使用的没有具体数量的指称,应该被解释为涵盖了单数和复数两者,除非在本文中另有指明或与上下文明显矛盾。本文中对值的范围的叙述仅仅打算用作对落于所述范围内的每个单独的值各个进行指称的简写方法。除非本文中另有指明,否则每个单个值被并入到本说明书中,如同它在本文中被单个地叙述。本文中描述的所有方法可以以任何适合的顺序进行,除非本文中另有指明或除非与上下文明显矛盾。本文中提供的任何和所有实例或示例性语言(如“例如”)的使用,仅打算更好地说明本公开,并且不对以其它方式要求保护的本公开的范围造成限制。本说明书中的所有语言都不应被解释为指示任何非权利要求要素对于本公开的实践来说是必不可少的。
本文公开的本公开的可替选要素或实施方式的分组不应被解释为限制。每个组成员可以被单个地或与所述组的其他成员或本文中存在的其他要素以任何组合形式被提到并要求保护。预计,组的一个或多个成员可以出于方便和/或专利性的原因被包含在组中或从组中删除。当发生任何这样的包含或删除时,本说明书被视为含有所述修改的组,由此完成了在权利要求书中使用的所有Markush组的书面描述。
本文中描述了本公开的某些实施方式,包括本发明人已知的用于执行本公开的最佳方式。当然,对于本领域普通技术人员来说,在阅读了上面的描述之后,对这些描述的实施方式的改变将变得显而易见。本发明人期望专业技术人员视情况利用这些改变,并且本发明人打算以本文中具体描述的之外的其他方式实践本公开。因此,本公开包括权利要求书中叙述的主题内容的被适用法律所容许的所有修改和等同物。此外,上述要素以其所有可能的变化形式的任何组合都被本公开所涵盖,除非本文中另有指示或除非与上下文明显矛盾。
本文中公开的特定实施方式在权利要求书中可以用“由……构成”或“基本上由……构成”的语言进一步限制。当在不论是提交的还是通过修改添加的权利要求中使用时,过渡性术语“由……构成”排除了在所述权利要求中没有指明的任何要素、步骤或成分。过渡性术语“基本上由……构成”将权利要求的范围限制到指明的材料或步骤以及不实质性影响基本和新颖特征的那些材料或步骤。如此要求的本公开的实施方式在本文中被固有或明确地描述并授予权利。
应该理解,本文中公开的本公开的实施方式说明了本公开的原理。可以使用的其他修改在本公开的范围内。因此,例如但不是限制性的,可以按照本文中的教导使用本公开的可替选配置。因此,本公开不限于具体示出和描述的内容。
尽管在本文中已参考各种不同的具体材料、程序和实施例对本公开进行了描述和说明,但应该理解,本公开不限于为此目的选择的材料和程序的特定组合。正如本领域技术人员将会认识到的,可以暗示这些详情的大量变化。所述说明书和实施例打算仅仅被当作示例性的,本公开的真实范围和精神由权利要求书指明。本申请中指出的所有参考文献、专利和专利申请通过参考以其整体并入本文。
序列表
<110> 神经干细胞公司
<120> 包含编码生长因子的外源多核苷酸的稳定的神经干细胞及其使用方法
<130> 3708869.00181US
<160> 3
<170> PatentIn version 3.5
<210> 1
<211> 477
<212> DNA
<213> Artificial sequence
<220>
<223> Synthesized: IGF-1 isoform 4 cDNA
<400> 1
atgggaaaaa tcagcagtct tccaacccaa ttatttaagt gctgcttttg tgatttcttg 60
aaggtgaaga tgcacaccat gtcctcctcg catctcttct acctggcgct gtgcctgctc 120
accttcacca gctctgccac ggctggaccg gagacgctct gcggggctga gctggtggat 180
gctcttcagt tcgtgtgtgg agacaggggc ttttatttca acaagcccac agggtatggc 240
tccagcagtc ggagggcgcc tcagacaggc atcgtggatg agtgctgctt ccggagctgt 300
gatctaagga ggctggagat gtattgcgca cccctcaagc ctgccaagtc agctcgctct 360
gtccgtgccc agcgccacac cgacatgccc aagacccaga agtatcagcc cccatctacc 420
aacaagaaca cgaagtctca gagaaggaaa ggaagtacat ttgaagaacg caagtag 477
<210> 2
<211> 158
<212> PRT
<213> Artificial sequence
<220>
<223> Synthesized: IGF-1 isoform 4 protein
<400> 2
Met Gly Lys Ile Ser Ser Leu Pro Thr Gln Leu Phe Lys Cys Cys Phe
1 5 10 15
Cys Asp Phe Leu Lys Val Lys Met His Thr Met Ser Ser Ser His Leu
20 25 30
Phe Tyr Leu Ala Leu Cys Leu Leu Thr Phe Thr Ser Ser Ala Thr Ala
35 40 45
Gly Pro Glu Thr Leu Cys Gly Ala Glu Leu Val Asp Ala Leu Gln Phe
50 55 60
Val Cys Gly Asp Arg Gly Phe Tyr Phe Asn Lys Pro Thr Gly Tyr Gly
65 70 75 80
Ser Ser Ser Arg Arg Ala Pro Gln Thr Gly Ile Val Asp Glu Cys Cys
85 90 95
Phe Arg Ser Cys Asp Leu Arg Arg Leu Glu Met Tyr Cys Ala Pro Leu
100 105 110
Lys Pro Ala Lys Ser Ala Arg Ser Val Arg Ala Gln Arg His Thr Asp
115 120 125
Met Pro Lys Thr Gln Lys Tyr Gln Pro Pro Ser Thr Asn Lys Asn Thr
130 135 140
Lys Ser Gln Arg Arg Lys Gly Ser Thr Phe Glu Glu Arg Lys
145 150 155
<210> 3
<211> 1217
<212> DNA
<213> Artificial sequence
<220>
<223> Synthesized: human ubiquitin C promoter
<400> 3
gatctggcct ccgcgccggg ttttggcgcc tcccgcgggc gcccccctcc tcacggcgag 60
cgctgccacg tcagacgaag ggcgcagcga gcgtcctgat ccttccgccc ggacgctcag 120
gacagcggcc cgctgctcat aagactcggc cttagaaccc cagtatcagc agaaggacat 180
tttaggacgg gacttgggtg actctagggc actggttttc tttccagaga gcggaacagg 240
cgaggaaaag tagtcccttc tcggcgattc tgcggaggga tctccgtggg gcggtgaacg 300
ccgatgatta tataaggacg cgccgggtgt ggcacagcta gttccgtcgc agccgggatt 360
tgggtcgcgg ttcttgtttg tggatcgctg tgatcgtcac ttggtgagta gcgggctgct 420
gggctggccg gggctttcgt ggccgccggg ccgctcggtg ggacggaagc gtgtggagag 480
accgccaagg gctgtagtct gggtccgcga gcaaggttgc cctgaactgg gggttggggg 540
gagcgcagca aaatggcggc tgttcccgag tcttgaatgg aagacgcttg tgaggcgggc 600
tgtgaggtcg ttgaaacaag gtggggggca tggtgggcgg caagaaccca aggtcttgag 660
gccttcgcta atgcgggaaa gctcttattc gggtgagatg ggctggggca ccatctgggg 720
accctgacgt gaagtttgtc actgactgga gaactcgggt ttgtcgtctg gttgcggggg 780
cggcagttat gcggtgccgt tgggcagtgc acccgtacct ttgggagcgc gcgcctcgtc 840
gtgtcgtgac gtcacccgtt ctgttggctt ataatgcagg gtggggccac ctgccggtag 900
gtgtgcggta ggcttttctc cgtcgcagga cgcagggttc gggcctaggg taggctctcc 960
tgaatcgaca ggcgccggac ctctggtgag gggagggata agtgaggcgt cagtttcttt 1020
ggtcggtttt atgtacctat cttcttaagt agctgaagct ccggttttga actatgcgct 1080
cggggttggc gagtgtgttt tgtgaagttt tttaggcacc ttttgaaatg taatcatttg 1140
ggtcaatatg taattttcag tgttagacta gtaaattgtc cgctaaattc tggccgtttt 1200
tggctttttt gttagac 1217

Claims (25)

1.一种稳定的人类神经干细胞,其包含编码胰岛素样生长因子1(IGF-1)的外源多核苷酸。
2.权利要求1的人类神经干细胞,其中所述干细胞与不包含编码IGF-1的外源多核苷酸的神经干细胞相比能够分化成数目显著增加的GAD65阳性的GABA能神经元。
3.一种人类神经干细胞,其包含编码生长因子的外源多核苷酸。
4.权利要求3的人类神经干细胞,其中所述生长因子是选自胰岛素样生长因子1(IGF-1)、神经胶质细胞系来源的神经营养因子(GDNF)、脑源神经营养因子(BDNF)、神经营养蛋白-3(NT-3)和血管内皮生长因子(VEGF)的神经营养因子。
5.权利要求4的人类神经干细胞,其中IGF-1是IGF-1同工型。
6.权利要求5的人类神经干细胞,其中所述IGF-1同工型是IGF-1同工型4。
7.权利要求4的人类神经干细胞,其中所述IGF-1同工型4包含如SEQ ID NO:1所示的核苷酸序列。
8.权利要求3的人类神经干细胞,其中人类神经干细胞源自于选自下述的组织:皮层,海马,丘脑,中脑,小脑,后脑,脊髓和背根神经节。
9.权利要求3的人类神经干细胞,其中所述人类神经干细胞是从胎儿或胚胎获得的。
10.权利要求9的人类神经干细胞,其中所述人类神经干细胞是从具有约5至约20周胎龄的胎儿获得的。
11.权利要求3的人类神经干细胞,其中所述编码生长因子的外源多核苷酸被可操作地连接到泛素C(UbC)启动子、人磷酸甘油酸激酶1启动子、人突触蛋白启动子或合成的CAG启动子。
12.一种人类神经干细胞,其包含编码胰岛素样生长因子1(IGF-1)的外源多核苷酸,其中IGF-1包含如SEQ ID NO:1所示的核苷酸序列,并且其中所述IGF-1核苷酸序列被稳定地表达。
13.一种治疗神经变性疾病或障碍的方法,所述方法包括向对象给药治疗有效量的一种或多种包含编码生长因子的外源多核苷酸的人类神经干细胞,其中所述生长因子被稳定地表达。
14.权利要求13的方法,其中所述生长因子是选自胰岛素样生长因子1(IGF-1)、神经胶质细胞系来源的神经营养因子(GDNF)、脑源神经营养因子(BDNF)、神经营养蛋白-3(NT-3)和血管内皮生长因子(VEGF)的神经营养因子。
15.权利要求14的方法,其中IGF-1是IGF-1同工型。
16.权利要求15的方法,其中所述IGF-1同工型是IGF-1同工型4。
17.权利要求16的方法,其中所述IGF-1同工型4包含如SEQ ID NO:1所示的核苷酸序列。
18.权利要求13的方法,其中所述神经变性疾病或障碍是肌萎缩性侧索硬化症(ALS)、脊髓损伤(SCI)、创伤性脑损伤(TBI)、阿尔兹海默氏病(AD)、痴呆症、轻度认知缺损、糖尿病、与糖尿病相关的CNS并发症、周围神经病、视网膜神经病或多发性硬化症。
19.权利要求18的方法,其中所述脊髓损伤是创伤性脊髓损伤或缺血性脊髓损伤。
20.一种减少对象脑中的β-淀粉样蛋白(Αβ)沉积物、清除对象脑中的Αβ沉积物或防止Αβ在对象脑中积累的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。
21.权利要求20的方法,其中所述脑的一个或多个区域包括海马和/或皮层。
22.一种增加对象脑中胆碱能神经元数目的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。
23.权利要求22的方法,其中所述脑的一个或多个区域包括海马和/或皮层。
24.一种恢复对象脑中的突触的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。
25.一种恢复对象的记忆和/或认知的方法,所述方法包括向所述对象脑的一个或多个区域给药治疗有效量的一种或多种包含编码IGF-1的外源多核苷酸的人类神经干细胞。
CN201580057196.0A 2014-10-20 2015-10-19 包含编码生长因子的外源多核苷酸的稳定的神经干细胞及其使用方法 Pending CN107148275A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201462066174P 2014-10-20 2014-10-20
US62/066,174 2014-10-20
US201562147950P 2015-04-15 2015-04-15
US62/147,950 2015-04-15
PCT/US2015/056226 WO2016064737A1 (en) 2014-10-20 2015-10-19 Stable neural stem cells comprising an exogenous polynucleotide coding for a growth factor and methods of use thereof

Publications (1)

Publication Number Publication Date
CN107148275A true CN107148275A (zh) 2017-09-08

Family

ID=55761367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580057196.0A Pending CN107148275A (zh) 2014-10-20 2015-10-19 包含编码生长因子的外源多核苷酸的稳定的神经干细胞及其使用方法

Country Status (9)

Country Link
US (2) US9750769B2 (zh)
EP (1) EP3209306B1 (zh)
JP (2) JP6983069B2 (zh)
KR (2) KR20190060016A (zh)
CN (1) CN107148275A (zh)
AU (2) AU2015336194B2 (zh)
CA (1) CA2964927C (zh)
MX (1) MX2017005186A (zh)
WO (1) WO2016064737A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110402285A (zh) * 2018-02-23 2019-11-01 再生生物医疗公司 用于将干细胞和药物滴注入人脑室系统的方法、装置和系统
CN111388654A (zh) * 2020-05-22 2020-07-10 南通大学 治疗脊髓损伤的药物、药物试剂盒及方法
CN112469732A (zh) * 2018-07-17 2021-03-09 赫利世弥斯株式会社 使用胰岛素样生长因子1-加密脱氧核糖核酸构建体及肝细胞生长因子-加密脱氧核糖核酸构建体的神经病变治疗
CN113302202A (zh) * 2018-07-17 2021-08-24 脑若脉仁股份有限公司 利用表达胰岛素样生长因子1异构体的脱氧核糖核酸构建体的神经病变的治疗

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112019015482A2 (pt) * 2017-01-31 2020-03-31 Regenxbio Inc. Método para tratar um indivíduo humano diagnosticado com mucopolissacaridose i (mps i)
KR102245539B1 (ko) * 2018-02-12 2021-04-29 주식회사 지앤피바이오사이언스 코어-쉘 구조의 마이크로 입자를 유효성분으로 포함하는 성장인자 유전자 발현 증가용 조성물
KR20210077634A (ko) * 2019-12-17 2021-06-25 코아스템(주) 인간 만능 줄기세포로부터 3d 오가노이드를 이용하여 미세교세포를 다량 확보하는 미세교세포의 분화방법
WO2023158214A1 (ko) * 2022-02-15 2023-08-24 주식회사 헬릭스미스 인슐린-유사 성장인자-1의 이형체를 이용한 근감소증 예방 또는 치료용 조성물

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030932A2 (en) * 2003-09-24 2005-04-07 The Board Of Trustees Of The Leland Stanford Junior University Igf-1 instructs multipotent adult cns neural stem cells to an oligodendroglial lineage

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0233838A3 (en) 1986-02-04 1990-01-31 Incyte Pharmaceuticals, Inc. Neurite-promoting factor and process for the manufacture thereof
US4753635A (en) 1986-05-23 1988-06-28 Jacqueline Sagen Inducing analgesia by implantation of cells releasing neuroactive substances
NZ226750A (en) 1987-10-29 1990-09-26 Amrad Corp Ltd Immortalisation of neural precursor cells by introducing a retrovirus vector containing a myc-oncogene
DE68928914T2 (de) 1988-08-04 1999-09-09 Amrad Corp. Ltd. (in vitro)-vermehrung von embryonalen stammzellen unter verwendung von leukämie-inhibitionsfaktor (lif)
US5082670A (en) 1988-12-15 1992-01-21 The Regents Of The University Of California Method of grafting genetically modified cells to treat defects, disease or damage or the central nervous system
US4980174A (en) 1988-12-23 1990-12-25 Jacqueline Sagen Method for alleviating depression
US5093317A (en) * 1989-06-05 1992-03-03 Cephalon, Inc. Treating disorders by application of insulin-like growth factor
AU6174490A (en) 1989-08-04 1991-03-11 Board Of Regents, The University Of Texas System Methods and compositions; purified preparation of neural progenitor regulatory factor
WO1991009936A1 (en) 1989-12-26 1991-07-11 Hana Biologics, Inc. Proliferated neuron progenitor cell product and process
US5411883A (en) 1989-12-26 1995-05-02 Somatix Therapy Corporation Proliferated neuron progenitor cell product and process
US5196315A (en) 1990-05-01 1993-03-23 The Johns Hopkins University Human neuronal cell line
US5612211A (en) 1990-06-08 1997-03-18 New York University Stimulation, production and culturing of hematopoietic progenitor cells by fibroblast growth factors
EP0594669B9 (en) 1991-07-08 2008-03-19 NeuroSpheres Holdings Ltd. Growth factor-responsive neural progenitor cells which can be proliferated in vitro.
US7361505B1 (en) 1991-07-08 2008-04-22 Neurospheres Holdings Ltd. Multipotent neural stem cell compositions
US5750376A (en) 1991-07-08 1998-05-12 Neurospheres Holdings Ltd. In vitro growth and proliferation of genetically modified multipotent neural stem cells and their progeny
US6294346B1 (en) 1991-07-08 2001-09-25 Neurospheres Holdings, Ltd. Use of multipotent neural stem cells and their progeny for the screening of drugs and other biological agents
US5981165A (en) 1991-07-08 1999-11-09 Neurospheres Holdings Ltd. In vitro induction of dopaminergic cells
US6497872B1 (en) 1991-07-08 2002-12-24 Neurospheres Holdings Ltd. Neural transplantation using proliferated multipotent neural stem cells and their progeny
US6399369B1 (en) 1991-07-08 2002-06-04 Neurospheres Holdings Ltd. Multipotent neural stem cell cDNA libraries
US5851832A (en) * 1991-07-08 1998-12-22 Neurospheres, Ltd. In vitro growth and proliferation of multipotent neural stem cells and their progeny
US6071889A (en) 1991-07-08 2000-06-06 Neurospheres Holdings Ltd. In vivo genetic modification of growth factor-responsive neural precursor cells
US5175103A (en) 1991-10-21 1992-12-29 Trustees Of University Of Pennsylvania Preparation of pure cultures of post-mitotic human neurons
JP4101284B2 (ja) 1991-11-22 2008-06-18 ジェネンテック・インコーポレーテッド 神経損傷を改善するtgf−beta
US5672499A (en) 1992-07-27 1997-09-30 California Institute Of Technology Immoralized neural crest stem cells and methods of making
NZ256154A (en) 1992-07-27 1997-02-24 California Inst Of Techn Production of mammalian multipotent neural stem cells, antibodies
US5849553A (en) 1992-07-27 1998-12-15 California Institute Of Technology Mammalian multipotent neural stem cells
US5589376A (en) 1992-07-27 1996-12-31 California Institute Of Technology Mammalian neural crest stem cells
WO1994003199A1 (en) 1992-08-04 1994-02-17 Regeneron Pharmaceuticals, Inc. Method of enhancing differentiation and survival of neuronal precursor cells
AU4950393A (en) 1992-08-19 1994-03-15 Richard Kroczek Dna sequence encoding a novel member of the steroid and thyroid hormone receptor family
AU5367694A (en) 1992-10-28 1994-05-24 Neurospheres Holdings Ltd Biological factors and neural stem cells
WO1995013364A1 (en) 1993-11-09 1995-05-18 Neurospheres Holdings Ltd. In situ modification and manipulation of stem cells of the central nervous system
WO1996009543A1 (en) 1994-09-23 1996-03-28 Neurospheres Holdings Ltd. In vitro models of cns function and dysfunction
CN1170435A (zh) 1994-11-14 1998-01-14 纽罗斯菲里斯控股有限公司 神经干细胞增殖的调节
US5843780A (en) 1995-01-20 1998-12-01 Wisconsin Alumni Research Foundation Primate embryonic stem cells
US5753505A (en) 1995-07-06 1998-05-19 Emory University Neuronal progenitor cells and uses thereof
US5770414A (en) 1996-02-20 1998-06-23 The Regents Of The University Of California Regulatable retrovirus system for genetic modification of cells
US7544511B2 (en) 1996-09-25 2009-06-09 Neuralstem Biopharmaceuticals Ltd. Stable neural stem cell line methods
US5753506A (en) 1996-05-23 1998-05-19 Cns Stem Cell Technology, Inc. Isolation propagation and directed differentiation of stem cells from embryonic and adult central nervous system of mammals
AU7258098A (en) 1997-04-24 1998-11-13 California Institute Of Technology Methods for differentiating neural stem cells
WO1999001159A1 (en) 1997-07-04 1999-01-14 University Of Utah Research Foundation Lineage-restricted neuronal precursors
US5968829A (en) 1997-09-05 1999-10-19 Cytotherapeutics, Inc. Human CNS neural stem cells
US5932473A (en) 1997-09-30 1999-08-03 Becton Dickinson And Company Preparation of a cell culture substrate coated with poly-D-lysine
US5958767A (en) 1998-08-14 1999-09-28 The Children's Medical Center Corp. Engraftable human neural stem cells
JP4709382B2 (ja) 1998-09-22 2011-06-22 ニューラルステム バイオファーマシューティカルズ、リミテッド 安定な神経幹細胞系
US6284539B1 (en) 1998-10-09 2001-09-04 Neuralstem Biopharmaceuticals, Ltd. Method for generating dopaminergic cells derived from neural precursors
US6531464B1 (en) 1999-12-07 2003-03-11 Inotek Pharmaceutical Corporation Methods for the treatment of neurodegenerative disorders using substituted phenanthridinone derivatives
US7250294B2 (en) * 2000-05-17 2007-07-31 Geron Corporation Screening small molecule drugs using neural cells differentiated from human embryonic stem cells
HN2001000224A (es) 2000-10-19 2002-06-13 Pfizer Compuestos de imidazol condensado con arilo o heteroarilo como agentes anti - inflamatorios y analgesicos.
TWI245764B (en) 2001-04-23 2005-12-21 Hank F Kung Amyloid plaque aggregation inhibitors and diagnostic imaging agents
UA74912C2 (en) 2001-07-06 2006-02-15 Merck & Co Inc Beta-aminotetrahydroimidazo-(1,2-a)-pyrazines and tetratriazolo-(4,3-a)-pyrazines as inhibitors of dipeptylpeptidase for the treatment or prevention of diabetes
PT1590467E (pt) 2003-01-28 2010-01-05 Hoffmann La Roche Utilização de sequências reguladoras para expressão específica transiente em células determinadas neuronais
RU2434636C2 (ru) 2004-11-17 2011-11-27 Ньюралстем, Инк. Трансплантация нервных клеток для лечения нейродегенеративных состояний
US7833513B2 (en) * 2004-12-03 2010-11-16 Rhode Island Hospital Treatment of Alzheimer's Disease
EP1991662B1 (en) * 2006-02-21 2018-02-07 The Trustees Of Princeton University High-yield activation of polymer surfaces for covalent attachment of molecules
JP2010540534A (ja) * 2007-09-28 2010-12-24 イントレキソン コーポレーション 生体治療分子の発現のための治療遺伝子スイッチ構築物およびバイオリアクター、ならびにその使用
JP2011521639A (ja) * 2008-08-12 2011-07-28 インダストリー‐アカデミック・コオペレイション・ファウンデイション,ヨンセイ・ユニバーシティ ヒト神経幹細胞及びこれを利用した中枢または末梢神経系疾患及び損傷治療用薬学的組成物
WO2013070796A2 (en) * 2011-11-07 2013-05-16 The Broad Institute, Inc. Propeptide-luciferase fusion proteins and methods of use thereof
CN102604894B (zh) * 2012-02-29 2014-07-30 中国科学院广州生物医药与健康研究院 用于制备神经干细胞的培养基及其用途
WO2014138003A1 (en) * 2013-03-04 2014-09-12 Neuralstem, Inc. Compositions comprising an immunosuppressive drug and/or neural stem cells and methods of using same for the treatment of neurodegenerative diseases and/or disorders

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005030932A2 (en) * 2003-09-24 2005-04-07 The Board Of Trustees Of The Leland Stanford Junior University Igf-1 instructs multipotent adult cns neural stem cells to an oligodendroglial lineage

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOJI OISHI等: "Selective induction of neocortical GABAergic neurons by the PDK1-Akt pathway through activation of Mash1", 《PNAS》 *
SUNGJU PARK等: "Growth factor-expressing human neural progenitor cell grafts protect motor neurons but do not ameliorate motor performance and survival in ALS mice", 《EXPERIMENTAL AND MOLECULAR MEDICINE》 *
佚名: "Homo sapiens insulin-like growth factor 1 (somatomedin C) (IGF1), transcript variant 1,mRNA", 《NCBI》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110402285A (zh) * 2018-02-23 2019-11-01 再生生物医疗公司 用于将干细胞和药物滴注入人脑室系统的方法、装置和系统
CN112469732A (zh) * 2018-07-17 2021-03-09 赫利世弥斯株式会社 使用胰岛素样生长因子1-加密脱氧核糖核酸构建体及肝细胞生长因子-加密脱氧核糖核酸构建体的神经病变治疗
CN113302202A (zh) * 2018-07-17 2021-08-24 脑若脉仁股份有限公司 利用表达胰岛素样生长因子1异构体的脱氧核糖核酸构建体的神经病变的治疗
CN113302202B (zh) * 2018-07-17 2024-01-30 赫利世弥斯株式会社 利用表达胰岛素样生长因子1异构体的脱氧核糖核酸构建体的神经病变的治疗
CN111388654A (zh) * 2020-05-22 2020-07-10 南通大学 治疗脊髓损伤的药物、药物试剂盒及方法

Also Published As

Publication number Publication date
EP3209306B1 (en) 2024-04-24
JP2017532068A (ja) 2017-11-02
CA2964927C (en) 2019-07-30
EP3209306A4 (en) 2018-07-04
US10702555B2 (en) 2020-07-07
KR20190060016A (ko) 2019-05-31
JP6983069B2 (ja) 2021-12-17
US9750769B2 (en) 2017-09-05
CA2964927A1 (en) 2016-04-28
AU2015336194A1 (en) 2017-05-04
MX2017005186A (es) 2017-07-26
JP2021045156A (ja) 2021-03-25
AU2018279014A1 (en) 2019-01-17
US20170319625A1 (en) 2017-11-09
WO2016064737A1 (en) 2016-04-28
AU2015336194B2 (en) 2019-01-03
KR20170067884A (ko) 2017-06-16
KR102100021B1 (ko) 2020-04-13
EP3209306A1 (en) 2017-08-30
US20160120942A1 (en) 2016-05-05

Similar Documents

Publication Publication Date Title
CN107148275A (zh) 包含编码生长因子的外源多核苷酸的稳定的神经干细胞及其使用方法
Conner et al. NGF is essential for hippocampal plasticity and learning
Velanac et al. Bace1 processing of NRG1 type III produces a myelin‐inducing signal but is not essential for the stimulation of myelination
US20050208027A1 (en) Methods and compositions for regeneration of aged tissues
CN102458472B (zh) 药物组合物、食品饮料以及与它们相关的方法
Tracy et al. Intravitreal implantation of TPP1-transduced stem cells delays retinal degeneration in canine CLN2 neuronal ceroid lipofuscinosis
JP2009528834A (ja) ヒト胚性幹細胞およびそれらの誘導体を含む組成物、使用方法、ならびに調製方法
CN105764926A (zh) 白介素-4受体结合融合蛋白及其应用
CN104884611A (zh) Nprcp、pfdnc和它们的应用
CN1833021A (zh) 少突胶质祖细胞和获得及培养它们的方法
US20110251133A1 (en) Blockade of gamma-secretase activity to promote myelination by oligodendrocytes
CN103028110B (zh) 抗分泌因子的新用途
US11622964B2 (en) Method for destroying cellular mechanical homeostasis and promoting regeneration and repair of tissues and organs, and use thereof
CN102625707A (zh) Hip/pap或其衍生物的新应用
CN101128212A (zh) 用于神经细胞再生的药物
Domínguez et al. Immunohistochemical localization of orexins (hypocretins) in the brain of reptiles and its relation to monoaminergic systems
KR101544398B1 (ko) FoxA2 및 Nurr1 도입을 이용한 중뇌 도파민성 신경세포로의 분화방법
JP2008542385A (ja) 神経損傷の抑制
US10214725B2 (en) Methods and compositions for somatic cell proliferation and viability
US20240325452A1 (en) Methods and compositions for dreadd-activatable cells for neural repair
KR20100061794A (ko) 경동맥체로부터 유래된 줄기세포 및 이의 용도
Pintwala Transplanting Immortal Orexin Cells in Narcoleptic Mice Rescues Cataplexy
CN116669747A (zh) 具有正常核型的新型nr1 es源性神经干细胞及其用途
WO2012035309A1 (en) Methods
Roberts et al. AggressionjImpulsivity: Neurobiological Correlates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170908

WD01 Invention patent application deemed withdrawn after publication