CN107078675A - 逆变器控制装置以及电机驱动系统 - Google Patents

逆变器控制装置以及电机驱动系统 Download PDF

Info

Publication number
CN107078675A
CN107078675A CN201580058309.9A CN201580058309A CN107078675A CN 107078675 A CN107078675 A CN 107078675A CN 201580058309 A CN201580058309 A CN 201580058309A CN 107078675 A CN107078675 A CN 107078675A
Authority
CN
China
Prior art keywords
voltage
presumption
high frequency
current
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201580058309.9A
Other languages
English (en)
Inventor
茂田智秋
谷口峻
铃木健太郎
结城和明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN107078675A publication Critical patent/CN107078675A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/047V/F converter, wherein the voltage is controlled proportionally with the frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明提供一种逆变器控制装置以及电机驱动系统,其能够高精度地推定电机的旋转相位角。一个实施方式所涉及的逆变器控制装置具备逆变器主电路、电流指令生成部、电压指令生成部、推定部以及高频叠加部。逆变器主电路能够与规定的旋转驱动对象电连接。电流指令生成部生成电流指令。电压指令生成部生成使从逆变器主电路输出的电流等于电流指令的电压指令。推定部计算出旋转驱动对象的推定旋转相位角。高频叠加部根据旋转驱动对象的特征量与阈值之间的关系,在电流指令或者电压指令上叠加高频。

Description

逆变器控制装置以及电机驱动系统
技术领域
本发明的实施方式涉及逆变器控制装置。
背景技术
以往,在永磁同步电机(PMSM)和同步磁阻电机(SynRM)的无旋转相位角传感器控制中,使用了在高速区域中利用感应电压的旋转相位角的推定方法。然而,在磁铁磁通较小的PMSM和SynRM中,即使是高速区域,在低负载的状态下由交链磁通产生的感应电压也较小,因此存在旋转相位角的推定精度不良的问题。
在先技术文献
专利文献
专利文献1:日本特开2011-244655号公报
专利文献2:日本特开2002-58294号公报
专利文献3:日本特开2009-153347号公报
专利文献4:日本特开2010-154598号公报
发明内容
发明所要解决的技术问题
本发明提供一种逆变器控制装置以及电机驱动系统,其能够高精度地推定电机的旋转相位角。
用于解决技术问题的方案
一个实施方式所涉及的逆变器控制装置具备逆变器主电路、电流指令生成部、电压指令生成部、推定部以及高频叠加部。逆变器主电路能够与规定的旋转驱动对象电连接。电流指令生成部生成电流指令。电压指令生成部生成使从逆变器主电路输出的电流等于电流指令的电压指令。推定部计算出旋转驱动对象的推定旋转相位角。高频叠加部根据旋转驱动对象的特征量与阈值之间的关系,在电流指令或者电压指令上叠加高频。
附图说明
图1是示出第一实施方式所涉及的电机驱动系统的结构的图。
图2是说明三相固定坐标系以及dcqc轴旋转坐标系的图。
图3是示出图1的电流指令生成部的结构的图。
图4是示出图3的电感数据表的图。
图5是示出图3的电流相位角数据表的图。
图6是示出图1的电压指令生成部的结构的图。
图7是示出图1的速度-旋转相位角推定部的结构的图。
图8是示出以往的PMSM以及SynRM的高负载时的特性的图。
图9是示出以往的PMSM以及SynRM的低负载时的特性的图。
图10是示出高频叠加的切换方法的一例的图。
图11是示出图1的高频叠加部的一例的图。
图12是示出图11的判定部的一例的图。
图13是示出图7的高频检测部的结构的图。
图14是说明图13的带通滤波器的动作的图。
图15是示出图13的FFT解析部的动作的图。
图16是示出高频电流idc'、iqc'的一例的图。
图17是说明图11的高频叠加部的动作的一例的图。
图18是示出高频叠加部的变形例的结构的图。
图19是说明图18的高频叠加部的动作的一例的图。
图20是说明图18的高频叠加部的动作的其他例子的图。
图21是说明图18的高频叠加部的动作的其他例子的图。
图22是示出第二实施方式所涉及的电机驱动系统的结构的图。
图23是示出图22的电压指令生成部的结构的图。
图24是示出图22的控制方式切换部的结构的图。
图25是示出图22的速度-旋转相位角推定部的结构的图。
图26是说明图22的逆变器控制装置的动作的图。
具体实施方式
下面,参照附图,对本发明的实施方式进行说明。
(第一实施方式)
参照图1至图21,对第一实施方式所涉及的逆变器控制装置进行说明。图1是示出本实施方式所涉及的电机驱动系统的结构的图。如图1所示,本实施方式所涉及的电机驱动系统具备电机1和逆变器控制装置2(以下称为“控制装置2”)。
电机1是控制装置2的旋转驱动对象,连接于控制装置2。下面,以电机1为同步磁阻电机(以下称为“SynRM1”)的情况为例进行说明。SynRM1具备定子和转子。定子具有三个励磁相(U相、V相以及W相)。定子通过流向各励磁相的三相交流电流产生磁场。转子不具有永磁体,通过与定子产生的磁场之间的磁相互作用而旋转。
控制装置2以无旋转相位传感器的方式控制SynRM1的旋转相位角θ。如图1所示,本实施方式所涉及的控制装置2具备逆变器主电路21、电流检测器22、坐标变换部23、电流指令生成部24、电压指令生成部25、坐标变换部26、PWM调制部27、速度-旋转相位角推定部28、加法器29以及高频叠加部30。
逆变器主电路21是具备开关元件的电路。逆变器主电路21通过切换开关元件的通/断,从而将来自电源(省略图示)的电力转换为交流,并供给至SynRM1。逆变器主电路21从PWM调制部27被输入控制各开关元件的通/断的控制信号。
电流检测器22检测流向SynRM1的定子的三相交流电流中的、两相或者三相的电流。图1示出了检测两相(U相以及W相)的电流iu、iw的结构。此外,流向SynRM1的定子的三相交流电流也可以根据逆变器主电路21的直流侧电流通过计算求得。
坐标变换部23将电流检测器22检测出的电流iu、iw从三相固定坐标系变换到dcqc轴旋转坐标系,生成电流idc、iqc。电流idc为流向定子的电流的dc轴成分,电流iqc为流向定子的电流的qc轴成分。在此,参照图2,对三相固定坐标系以及dcqc轴旋转坐标系进行说明。
如图2所示,三相固定坐标系是由α轴和β轴构成的固定坐标系。在图2中,α轴设定为U相方向,β轴设定为与α轴垂直的方向。由电流检测器22检测出的电流iu、iw表示在这种三相固定坐标上。
与此相对地,dcqc轴旋转坐标系是由dc轴和qc轴构成的旋转坐标系。dc轴设定成由控制装置2推定为d轴方向(转子的电感最小的方向)的方向,qc轴设定成由控制装置2推定为q轴方向(转子的电感最大的方向)的方向。图2的电感椭圆表示转子的电感。
如图2所示,dcqc轴和dq轴未必一定一致。用从α轴到d轴的角度表示转子实际的旋转相位角θ。另外,用从α轴到dc轴的角度表示控制装置2推定出的转子的推定旋转相位角θest。在以下的说明中,将旋转相位角θ与推定旋转相位角θest之间的误差称为误差Δθ。
坐标变换部23通过使用速度-旋转相位角推定部28输出的推定旋转相位角θest,能够将三相固定坐标系变换为dcqc轴旋转坐标系。
电流指令生成部24根据扭矩指令T*以及推定速度ωest,生成电流指令idc*、iqc*。扭矩指令T*是指要使转子产生的扭矩值。在本实施方式中,扭矩指令T*为从外部装置输入的值。推定速度ωest是指控制装置2推定出的转子的速度ω。电流指令idc*是指流向SynRM1的电流的dc轴成分。电流指令iqc*是指流向SynRM1的电流的qc轴成分。
在此,图3是示出电流指令生成部24的结构的图。如图3所示,电流指令生成部24具备电感数据表31和电流相位角数据表32。
电感数据表31是表示电流指令与电感之间的关系的数据表。如图4所示,在电感数据表31中包括表示电流指令idc*与电感Ld之间的关系的数据表、和表示电流指令iqc*与电感Lq之间的关系的数据表。电感Ld为SynRM1的电感的d轴成分,电感Lq为SynRM1的电感的q轴成分。电感数据表31可以被反馈电流指令idc*、iqc*,并分别输出与电流指令idc*、iqc*相应的电感Ld、Lq。
如图5所示,电流相位角数据表32是表示扭矩指令T*以及推定角速度ω*与电流相位角β之间的关系的数据表。电流相位角β是与流向定子的电流相对应的电流矢量的相位角。电流相位角数据表32被输入扭矩指令T*以及推定角速度ω*,并输出与扭矩指令T*以及推定角速度ω*相应的电流相位角β。
首先,电流指令生成部24根据扭矩指令T*、电感Ld、Lq以及电流相位角β,计算出电流Idq。电流Idq为流向定子的电流的大小。电流Idq通过下式计算。
[数学式1]
在式(1)中,P为SynRM1的极对数。
接下来,电流指令生成部24根据电流Idq和电流相位角β生成电流指令idc*、iqc*。电流指令idc*是大小为电流Idq、且相位角为电流相位角β的电流矢量的dc轴成分。另外,电流指令iqc*是大小为电流Idq、且相位角为电流相位角β的电流矢量的qc轴成分。
此外,电流指令idc*、iqc*的计算方法并不仅限于上述方法,能够任意选择。
电流指令生成部25(电流控制部)根据电流idc、iqc、电流指令idc*、iqc*以及推定速度ωest,以使从逆变器主电路21输出的电流(即、流向SynRM1的电流)变为电流指令idc*、iqc*的方式,生成电压指令vdc*、vqc*。电压指令vdc*为施加到SynRM1的定子上的电压的dc轴成分。电压指令vqc*为施加到SynRM1的定子上的电压的qc轴成分。
图6是示出电压指令生成部25的结构的图。如图6所示,电压指令生成部25具备PI控制器41、前馈指令生成部42以及加法器43、44。
PI控制器41被输入电流idc、iqc以及电流指令idc*、iqc*,通过PI控制计算出使电流idc、iqc变为电流指令idc*、iqc*的电压ACRd、ACRq。电压ACRd、ACRq是根据误差Δθ生成的电压,在设定的电机参数与真值一致并且误差Δθ为0的情况下均为0。PI控制器41输出的电压ACRd、ACRq被分别输入到加法器43、44。
前馈指令生成部42被输入电流指令idc*、iqc*和推定速度ωest,并生成前馈电压Vd_FF、Vq_FF。前馈电压Vd_FF、Vq_FF例如通过下式计算。
[数学式2]
在式(2)中,R为定子的绕线电阻。前馈指令生成部42输出的前馈电压Vd_FF、Vq_FF被分别输入到加法器43、44。
加法器43将电压ACRd以及前馈电压Vd_FF相加,生成电压指令vdc*。加法器44将电压ACRq以及前馈电压Vq_FF相加,生成电压指令vdq*。
坐标变换部26将电压指令生成部25输出的电压指令vdc*以及加法器29输出的电压从dcqc轴旋转坐标系变换到三相固定坐标系。坐标变换部26与坐标变换部23同样地,通过使用推定旋转相位角θest,能够将dcqc轴旋转坐标系变换为三相固定坐标系。
下面,将由坐标变换部26进行了坐标变换的电压称为电压指令vu*、vv*、vw*。电压指令vu*为施加到定子的U相上的电压,电压指令vv*为施加到定子的V相上的电压,电压指令vw*为施加到定子的W相上的电压。
PWM调制部27通过使用了三角波的PWM(Pulse-Width Modulation:脉冲宽度调制)对电压指令vu*、vv*、vw*进行调制,生成与逆变器主电路21的各开关元件的通或者断相对应的二值的控制信号。PWM调制部27将生成的控制信号输入到逆变器主电路21。
速度-旋转相位角推定部28(以下称为“推定部28”)根据电压指令vdc*、vqc*以及电流idc、iqc,推定SynRM1的转子的速度ω以及旋转相位角θ,并计算出推定速度ωest以及推定旋转相位角θest。推定部28输出的推定速度ωest被输入到电流指令生成部24、电压指令生成部25以及高频叠加部30。另外,推定旋转相位角θest被输入到坐标变换部23、26,并被用于坐标变换。
本实施方式所涉及的推定部28使用扩展感应电压来推定速度ω以及旋转相位角θ。下面,对使用扩展感应电压的推定方法进行说明。
在旋转相位角θ与推定旋转相位角θest之间的误差Δθ为0的情况下,即dq轴与dcdq轴一致的情况下,以下的电压方程式成立。
[数学式3]
在式(3)中,vd为施加到SynRM1上的电压的d轴成分,vq为施加到SynRM1上的电压的q轴成分,id为流向SynRM1的电流的d轴成分,iq为流向SynRM1的电流的q轴成分,p为微分算子(d/dt)。
与此相对地,在产生了误差Δθ而dq轴与dcdq轴偏离的情况下,以下的电压方程式成立。
[数学式4]
Ldc=L0+L1cos2Δθ···(5)
Lqc=L0-L1cos2Δθ···(6)
Ldqc=L1sin2Δθ···(8)
在式(4)中,vdc为施加到SynRM1上的电压的dc轴成分,vqc为施加到SynRM1上的电压的qc轴成分。
根据式(4)至式(8),式(4)的各项中包含的电感取决于误差Δθ而变化。因此,难以直接由式(3)、(4)求出Δθ。当将式(3)改写成扩展感应电压表达时,式(3)表达如下。
[数学式5]
同样地,当将式(4)至式(8)改写成扩展感应电压表达时,表达如下。
[数学式6]
Ex=(Ld-Lq)(pid+ωiq)···(12)
将由上式(12)表达的电压Ex称为扩展感应电压。
在此,将式(10)变形为如下。
[数学式7]
由于式(11)与式(13)相等,因此下式成立。
[数学式8]
当对式(14)的各项进行除法计算时,下式成立。
[数学式9]
进一步,当取式(15)的反正切时,变成如下。
[数学式10]
推定部28根据式(16)计算出误差Δθ,并通过以使误差Δθ变为0的方式进行PLL控制,由此能够推定出速度ω,并计算出推定速度ωest。另外,通过对推定速度ωest进行积分,能够推定出旋转相位角θ,并计算出推定旋转相位角θest。
图7是示出用上述方法推定速度ω以及旋转相位角θ的推定部28的结构的图。如图7所示,推定部28具备高频检测部51、Δθ计算部52、PLL控制部53以及积分器54。
高频检测部51检测电流idc、iqc的高频成分,计算出电流微分项pidc、piqc。高频检测部51输出的电流微分项pidc、piqc被输入到Δθ计算部52。Δθ计算部52计算出的误差Δθ被输入到PLL控制部53。此外,将在后面说明高频检测部51的细节。
PLL控制部53以使误差Δθ变为0的方式进行PLL控制,计算出推定速度ωest。PLL控制部53输出的推定速度ωest被输入到积分器54。
积分器54对推定速度ωest进行积分,计算出推定旋转相位角θest。
加法器29将电压指令生成部25输出的电压指令vdc*与高频叠加部30输出的高频电压vh相加。由此,在电压指令vdc*上叠加高频电压vh。被叠加了高频电压vh的电压指令vdc*被输入到坐标变换部26。
高频叠加部30在SynRM1的电压振幅指令Vdqc*或者功率Pm低于阈值的情况下,输出高频电压vh。在此所说的电压振幅指令Vdqc*是指通过电压指令vdc*、vqc*设定的SynRM1的端子电压,Vdqc*=(vdc*2+vdc*2)1/2。另外,功率Pm是指SynRM1的额定输出(轴输出)。输出的高频电压vh通过加法器29被叠加在电压指令vdc*上。下面,对在电压指令vdc*上叠加高频电压vh的理由进行说明。
如上所述,推定部28使用扩展感应电压Ex计算出误差Δθ,并推定速度ω以及旋转相位角θ。然而,在SynRM1的负载较小的情况下,式(12)的扩展感应电压Ex会变小。
在此,图8以及图9是示出扭矩、功率Pm以及电压振幅指令Vdqc*相对于以往的PMSM以及SynRM的速度的特性的图。图8表示各电机输出较大扭矩的高负载时的特性。图9表示各电机输出较小扭矩的低负载时的特性。
如图8所示,以往的PMSM以及SynRM在高负载时能够获得足够的扩展感应电压Ex。因此,控制PMSM以及SynRM的控制装置即使以某个速度ωn为基准,停止对电压指令vdc*叠加高频电压vh,也能够继续进行稳定的控制,而不会使PMSM以及SynRM失步。
另外,如图9所示,以往的PMSM即使是在低负载时,也产生与旋转速度相应的磁铁电压,因此可获得比较大的扩展感应电压Ex。因此,控制PMSM的控制装置即使以某个速度ωn为基准,停止对电压指令vdc*叠加高频电压vh,也能够进行控制,而不会使PMSM失步。
与此相对地,如图9所示,以往的SynRM在低负载时扩展感应电压Ex会变小。这点如上所述。因此,当控制SynRM的控制装置以某个速度ωn为基准,停止对电压指令vdc*叠加高频电压vh时,旋转相位的推定变得困难,有可能造成SynRM失步和控制不稳定。
因此,如图10所示,本实施方式所涉及的控制装置2在SynRM1的电压振幅指令Vdqc*或者功率Pm低于阈值的情况下,在电压指令vdc*上叠加高频电压vh,从而增大扩展感应电压Ex,使SynRM1的控制稳定。当叠加高频电压vh时,式(4)的dc轴的电流微分项在Δθ极小的情况下变成如下所示。
[数学式11]
另外,在电流Idp较小的情况下,式(12)的扩展感应电压Ex变成如下所示。
[数学式12]
Ex=(Ld-Lq)pid···(18)
根据式(17)以及式(18),扩展感应电压Ex变成如下所示。
[数学式13]
根据式(19)可知,通过叠加高频电压vh,扩展感应电压Ex会变大。因此,能够使用扩展感应电压Ex推定出旋转相位角θ。此时,误差Δθ用下式表示。
[数学式14]
在此,图11是示出高频叠加部30的结构的一例的图。图11的高频叠加部30根据SynRM1的功率Pm,对高频叠加的有无进行切换。如图11所示,高频叠加部30具备判定部60。
判定部60根据SynRM1的功率Pm,判定是否叠加高频电压vh。判定部60输出与判定结果相应的信号。下面,假设判定部60在判定为扩展感应电压Ex较大的情况下输出0,在判定为扩展感应电压Ex较小的情况下输出1。
高频叠加部30在判定部60判定为扩展感应电压Ex较大(输出了0)的情况下,不输出高频电压vh。在这种情况下,向坐标变换部26输入电压指令vdc*。
与此相对地,高频叠加部30在判定部60判定为负载较小(输出了1)的情况下,输出高频电压vh。在这种情况下,向坐标变换部26输入通过加法器29加上了高频电压vh的电压指令vdc*。此外,高频电压vh用下式表示。
[数学式15]
vh=Vhsinωt=Vhsin2πfh···(21)
在式(20)中,Vh为振幅的设定值,fh为频率的设定值。
图12是示出图11的判定部60的一例的图。如上所述,该判定部60根据SynRM1的功率Pm,判断是否需要进行高频叠加。具体而言,判定部60根据扭矩指令T*以及推定速度ωest,计算出SynRM1的功率Pm,并比较功率Pm与规定的阈值Pr。判定部60在功率Pm小于阈值Pr的情况下(Pm<Pr),判定为负载较小。
对阈值Pr进行设定,从而使速度ω以及旋转相位角θ的推定精度得以提高。例如,当假设能够使用扩展感应电压Ex高精度地推定出旋转相位角θ的最低值为n时,与电机极对数为1的情况的阈值Pr相对应的扩展感应电压Ex用下式表示。
[数学式16]
另外,SynRM1的功率Pm用下式表示。
[数学式17]
Pm=ωest(Ld-Lq)idiq···(23)
因此,根据式(22)、(23),满足能够高精度地推定出旋转相位角θ的扩展感应电压最低值n的阈值Pr如下。
[数学式18]
判定部60只要逐次或者事先计算出满足式(24)的阈值Pr,再与功率Pm进行比较即可。由此,在功率Pm小于阈值Pr的情况下,高频电压vh被叠加到电压指令vdc*上。
此外,除式(23)以外,功率Pm也可以使用下面的数学式计算出来。
[数学式19]
Pm=Vdcidc+Vqciqc···(25)
另外,高频叠加部30也可以根据SynRM1的电压振幅指令Vdqc*对高频叠加的有无进行切换。在这种情况下,代替扭矩指令T*以及推定速度ωest,向高频叠加部30输入电压指令vdc*、vqc*。
而且,如图13所示,判定部60也可以根据电压指令vdc*、vqc*计算出SynRM1的电压振幅指令Vdqc*,并比较电压振幅指令Vdqc*与阈值Vr,在Vdqc*<Vr的情况下判定为负载较小。由此,在电压振幅指令Vdqc*小于阈值Vr的情况下,高频电压vh被叠加到电压指令vqc*上。
这样,在负载较小的情况下,高频叠加部30将高频电压vh叠加到电压指令vdc*上,由此能够增大扩展感应电压Ex,提高使用扩展感应电压Ex的速度ω以及旋转相位角θ的推定精度。
在此,对推定部28的高频检测部51的细节进行说明。如上所述,高频叠加部30在SynRM1的负载较小的情况下,在电压指令vqc*上叠加高频电压vh。在未叠加高频电压vh的情况下,推定部28通过式(16)计算出误差Δθ,在叠加了高频电压vh的情况下,推定部28通过式(20)计算出误差Δθ。
根据式(20)可知,在叠加了高频电压vh的情况下,为了计算出Δθ,电流微分项pidc、piqc是必需的。高频检测部51计算出该电流微分项pidc、piqc。推定部28将高频检测部51计算出的电流微分项pidc、piqc代入式(20),从而计算出误差Δθ。
图14是示出高频检测部51的结构的图。如图14所示,高频检测部51具备带通滤波器55和FFT解析部56。
如图15所示,带通滤波器55使输入的电流idc、iqc中包含高频电压vh的频率fh在内的规定范围的频率成分通过,而使范围外的频率成分衰减。由此,带通滤波器55从电流idc、idq中检测出具有频率fh的高频电流idc'、iqc'。带通滤波器55输出的高频电流idc'、iqc'被输入到FFT解析部56。
FFT解析部56分别计算出带通滤波器55检测出的高频电流idc'、iqc'的振幅idc'p-p、iqc'p-p。如图16所示,FFT解析部56例如相对于高频电流idc'、iqc'在高频电压vh的一个周期(=1/fh)中进行四次采样,并根据采样的四个电流值分别计算出振幅idc'p-p、iqc'p-p。
通过带通滤波器55对高频电流idc'、iqc'除去多余的频率成分。因此,如图17所示,FFT解析部56能够高精度地计算出振幅idc'p-p、iqc'p-p。
高频检测部51用采样期间dt分别除以由FFT解析部56计算出的振幅idc'p-p、iqc'p-p,从而计算出电流微分项pidc、piqc。
如上所述,本实施方式所涉及的逆变器控制装置2在SynRM1的负载较低的情况下,在电压指令vqc*上叠加高频电压vh。由此,即使在SynRM1的负载较低、由交链磁通产生的感应电压较小的情况下,也能够增大扩展感应电压Ex,从而使用扩展感应电压Ex高精度地推定出SynRM1的旋转相位角θ以及速度ω。因此,能够抑制SynRM1的控制不稳定和失步。
此外,在上述说明中,虽然对逆变器控制装置2控制SynRM1的动作的情况进行了说明,但是该逆变器控制装置2也能够用作PMSM、或通过二次绕组供给磁场磁通的绕组磁场式同步电机的控制装置。
另外,逆变器控制装置2既可以将高频电压vh叠加到电压指令vqc*上,也可以将高频电流叠加到电流指令idc*、iqc*上。在任意一种情况下,都能够增大扩展感应电压Ex,因此都能够得到上述效果。
另外,高频叠加部30也可以根据SynRM1的旋转相位角的误差Δθ,对高频叠加的有无进行切换。在这种情况下,代替扭矩指令T*以及推定速度ωest,向高频叠加部30输入推定部28计算出的误差Δθ。
然后,判定部60可以比较误差Δθ与阈值Δθr,在|Δθ|>Δθr的情况下判定为负载较小。由此,如图18所示,在误差Δθ大于阈值Δθr的情况下,高频电压vh被叠加到电压指令vqc*上。
在无传感器控制中,旋转相位角的误差Δθ被控制为接近零,在误差Δθ超过阈值的情况下进行高频叠加,由此能够容易使相位角误差向零收敛,能够抑制SynRM1的控制不稳定和失步。
另外,不仅限于使用了扩展感应电压Ex的无传感器控制,逆变器控制装置2也能够应用于使用了观测器和PWM高频的无传感器控制。
另外,逆变器控制装置2也可以不具备电流检测器22,而以无电流传感器的方式控制SynRM1。在这种情况下,也能够得到同样的效果。
(第一实施方式的变形例)
接下来,参照图19至图21,对第一实施方式所涉及的高频叠加部30的变形例进行说明。该高频叠加部30根据SynRM1的负载改变叠加的高频电压vh的振幅Vh。图19是示出该高频叠加部30的结构的图。如图19所示,高频叠加部30进一步具备振幅计算部61。
振幅计算部61根据SynRM1的功率Pm或者电压振幅指令Vdqc*,计算出高频电压vh的振幅Vh。振幅计算部61以使SynRM1的功率Pm或者电压振幅指令Vdqc*越小振幅Vh越大的方式进行计算。
例如,如图19所示,在判定部60使用SynRM1的功率Pm进行判定的情况下,振幅计算部61根据扭矩指令T*以及推定速度ωest,通过下式计算出振幅Vh。
[数学式20]
由此,如图20所示,功率Pm越小,振幅Vh越大。只要以满足式(24)的关系的方式确定振幅Vh的值即可。
另外,在使用电压振幅指令Vdqc*改变高频电压vh的振幅Vh的情况下,振幅计算部61也可以通过下式计算出振幅Vh。
[数学式21]
由此,在流通一定的电流的情况下,振幅Vh不依存于电压振幅指令Vdqc*,而与速度ω成反比地减少,变为如图21所示的特性。
通过这样的结构,逆变器控制装置2使用速度ω和扩展感应电压Ex的关系能够使叠加的高频电压vh可变。
此外,该高频叠加部30也可以根据SynRM1的负载改变高频电流vh的频率fh。另外,不仅限于功率Pm和电压振幅指令Vdqc*,高频叠加部30也可以根据推定速度ωest和扭矩指令T*改变振幅Vh。
(第二实施方式)
接下来,参照图22至图26,对第二实施方式所涉及的逆变器控制装置2进行说明。本实施方式所涉及的逆变器控制装置2利用两种旋转相位角θ以及速度ω的推定方法,并根据SynRM1的负载切换这两种推定方法。
图22是示出本实施方式所涉及的电机驱动系统的结构的图。如图22所示,本实施方式所涉及的逆变器控制装置2进一步具备控制方式切换部70。下面,对与第一实施方式不同之处进行说明。
如图23所示,电压指令生成部25输出电压指令vdc*、vqc*,并且输出电压ACRd。电压指令生成部25输出的电压ACRd被输入到推定部28。
控制方式切换部70根据SynRM1的电压振幅指令Vdqc*或者功率Pm输出二值的控制切换信号。在本实施方式中,通过该控制切换信号,对旋转相位角θ以及速度ω的推定方法等的控制方式进行切换。下面,假设控制方式切换部70在电压振幅指令Vdqc*或者功率Pm较小的情况下输出0,在电压振幅指令Vdqc*或者功率Pm较大的情况下输出1。
如图24所示,控制方式切换部70可以根据电压指令vdc*、vqc*计算出SynRM1的电压振幅指令Vdqc*,并比较电压振幅指令Vdqc*与阈值Vr,在Vdqc*<Vr的情况下判定为负载较小。
另外,控制方式切换部70也可以根据扭矩指令T*以及推定速度ωest计算出SynRM1的功率Pm,并比较功率Pm与规定的阈值Pr,在Pm<Pr的情况下判定为负载较小。
进一步,控制方式切换部70也可以比较推定速度ωest与规定的阈值ωr,在ωest<ωr的情况下判定为需要叠加高频电压vh。
高频叠加部30从控制方式切换部70被输入控制切换信号。作为控制切换信号而被输入0时,高频叠加部30输出高频电压vh,作为控制切换信号而被输入1时,高频叠加部30不输出高频电压vh。高频叠加部30输出的高频电压vh被输入到推定部28以及加法器29。
加法器29将电压指令vdc*与高频电压vh相加,并输入到坐标变换部26。由此,高频电压vh被叠加到电压指令vdc*上。
如图25所示,推定部28具备PLL控制部53、积分器54、第一推定部57、第二推定部58以及开关59。第一推定部57以及第二推定部58分别用不同的方法计算误差Δθ。
第一推定部57根据高频电压vh和电流idc,计算出误差Δθ。在电压指令vdc*上叠加了高频电压vh的情况下,电流微分项pidc用下式表示。
[数学式22]
在误差Δθ足够小的情况下,根据式(28),误差Δθ用下式表示。
[数学式23]
第一推定部57根据式(29)计算出误差Δθ。
第二推定部58使用PI控制器41输出的电压ACRd与前馈电压Vd_FF、Vq_FF之间的关系,计算出误差Δθ。具体而言,第二推定部58根据电流idc、iqc以及电压ACRd,计算出误差Δθ。
在产生误差Δθ的情况下,根据式(2),前馈电压Vd_FF、Vq_FF用下式表示。
[数学式24]
在此,当关注式(30)的dc轴成分时,下式成立。
[数学式25]
Δvdc*=-ωestL1sin2ΔθidcestL1(1-cos2Δθ)iqc···(31)
在误差Δθ足够小的情况下,根据式(31),误差Δθ用下式表示。
[数学式26]
第二推定部58根据式(32)计算出误差Δθ。
开关59根据控制切换信号,切换向PLL控制部53输入的误差Δθ。在作为控制切换信号而被输入0时,开关59将第一推定部57输出的误差Δθ输入到PLL控制部53。在作为控制切换信号而被输入1时,开关59将第一推定部58输出的误差Δθ输入到PLL控制部53。
PLL控制部53相对于误差Δθ进行PLL控制,计算出推定速度ωest。积分器54对推定速度ωest进行积分,计算出推定旋转相位角θest。
如上所述,本实施方式所涉及的逆变器控制装置2如图26所示,使用第一控制方式和第二控制方式两种控制方式控制SynRM1,在所述第一控制方式中使用通过叠加高频电压vh而产生的高频电流来推定旋转相位,在所述第二控制方式中使用基于交链磁通的电压来推定旋转相位。
在第一控制方式中,逆变器控制装置2在电压指令vdc*上叠加高频电压vh,并根据叠加了高频电压vh的电压指令vdc*计算出误差Δθ,再根据该误差Δ推定旋转相位角θ以及速度ω。由此,逆变器控制装置2能够增大扩展感应电压Ex,提高旋转相位角θ以及速度ω的推定精度。
另外,在第二控制方式中,逆变器控制装置2以不在电压指令vdc*上叠加高频电压vh的方式,推定旋转相位角θ以及速度ω。由此,逆变器控制装置2能够降低扭矩脉动和由此产生的噪音、噪声以及高频损耗。
此外,作为通过第二推定部58计算误差Δθ的计算方法,能够选择不使用高频电压vh的任意的方法。例如,第二推定部58可以使用观测器和电压ACRd、ACRq来计算误差Δθ。
另外,控制方式切换部70也可以构成为,通过滞后动作来避免频繁地变更控制切换信号。
此外,本发明并不仅限于上述各实施方式本身,在实施阶段能够在不脱离其宗旨的范围内对构成要素进行变形加以具体化。另外,能够通过对上述各实施方式中公开的多个构成要素进行适当组合来形成各种发明。另外,例如也可以考虑从各实施方式示出的全部构成要素中删除若干个构成要素而得到的结构。进一步,也可以对记载于不同实施方式中的构成要素进行适当组合。
附图标记说明
1:电机(SynRM)
2:逆变器控制装置
21:逆变器主电路
22:电流检测器
23:坐标变换部
24:电流指令生成部
25:电压指令生成部
26:坐标变换部
27:PWM调制器
28:速度-旋转相位角推定部
29:加法器
30:高频叠加部
31:电感数据表
32:电流相位角数据表
41:PI控制器
42:前馈指令生成部
43、44:加法器
51:高频检测部
52:Δθ计算部
53:PLL控制部
54:积分器
55:带通滤波器
56:FFT解析部
57:第一推定部
58:第二推定部
59:开关
60:判定部
61:振幅计算部
70:控制方式切换部

Claims (12)

1.一种逆变器控制装置,具备:
逆变器主电路,能够与规定的旋转驱动对象电连接;
电流指令生成部,生成电流指令;
电压指令生成部,生成使从所述逆变器主电路输出的电流等于所述电流指令的电压指令;
推定部,计算出所述旋转驱动对象的推定旋转相位角;以及
高频叠加部,根据所述旋转驱动对象的特征量与阈值之间的关系,在所述电流指令或者所述电压指令上叠加高频。
2.根据权利要求1所述的逆变器控制装置,其特征在于,
所述特征量为所述旋转驱动对象的功率。
3.根据权利要求1所述的逆变器控制装置,其特征在于,
所述特征量为输出至所述旋转驱动对象的电压振幅指令。
4.根据权利要求2所述的逆变器控制装置,其特征在于,
所述高频叠加部在所述功率小于规定的阈值时,叠加所述高频。
5.根据权利要求3所述的逆变器控制装置,其特征在于,
所述高频叠加部在所述电压振幅指令小于规定的阈值时,叠加所述高频。
6.根据权利要求1至5中任一项所述的逆变器控制装置,其特征在于,
所述高频叠加部在所述推定旋转相位角的误差大于规定的阈值时,叠加所述高频。
7.根据权利要求1至6中任一项所述的逆变器控制装置,其特征在于,
所述高频叠加部根据所述特征量的大小改变所述高频的振幅。
8.根据权利要求1至7中任一项所述的逆变器控制装置,其特征在于,
所述推定部使用扩展感应电压计算出所述推定旋转相位角。
9.根据权利要求1至8中任一项所述的逆变器控制装置,其特征在于,
所述推定部具备:
第一推定部,根据所述高频计算出所述推定旋转相位角;以及
第二推定部,用与所述第一推定部不同的方法计算出所述推定旋转相位角。
10.根据权利要求9所述的逆变器控制装置,其特征在于,
当所述旋转驱动对象的功率小于规定的阈值时,使用所述第一推定部计算出的所述推定旋转相位角进行控制。
11.根据权利要求9所述的逆变器控制装置,其特征在于,
当输出至所述旋转驱动对象的电压振幅指令小于规定的阈值时,使用所述第一推定部计算出的所述推定旋转相位角进行控制。
12.一种电机驱动系统,具备:
电机;
逆变器主电路,连接于所述电机;
电流指令生成部,生成电流指令;
电压指令生成部,生成使从所述逆变器主电路输出的电流等于所述电流指令的电压指令;
推定部,计算出所述电机的推定旋转相位角;以及
高频叠加部,根据所述电机的特征量与阈值之间的关系,在所述电流指令或者所述电压指令上叠加高频。
CN201580058309.9A 2015-01-28 2015-12-09 逆变器控制装置以及电机驱动系统 Withdrawn CN107078675A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015-014734 2015-01-28
JP2015014734 2015-01-28
PCT/JP2015/084540 WO2016121237A1 (ja) 2015-01-28 2015-12-09 インバータ制御装置及びモータ駆動システム

Publications (1)

Publication Number Publication Date
CN107078675A true CN107078675A (zh) 2017-08-18

Family

ID=56542871

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580058309.9A Withdrawn CN107078675A (zh) 2015-01-28 2015-12-09 逆变器控制装置以及电机驱动系统

Country Status (5)

Country Link
US (1) US20170264227A1 (zh)
EP (1) EP3252942A1 (zh)
JP (1) JPWO2016121237A1 (zh)
CN (1) CN107078675A (zh)
WO (1) WO2016121237A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574438A (zh) * 2018-04-02 2018-09-25 江苏大学 一种飞跨电容开绕组三相永磁同步电机的逆变器开路混合调制容错控制方法
CN109560742A (zh) * 2017-09-26 2019-04-02 株式会社东芝 马达驱动系统
CN111149290A (zh) * 2017-09-22 2020-05-12 西门子股份公司 用于磁阻电机的监控装置和监控方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6776066B2 (ja) * 2016-09-05 2020-10-28 東芝インフラシステムズ株式会社 インバータ制御装置および電動機駆動システム
JP6767213B2 (ja) * 2016-09-05 2020-10-14 東芝インフラシステムズ株式会社 インバータ制御装置および電動機駆動システム
TWI654827B (zh) 2016-09-05 2019-03-21 日商東芝股份有限公司 換流器控制裝置及馬達驅動系統
CN111543003B (zh) * 2018-01-12 2023-12-12 三菱电机株式会社 旋转机的控制装置
KR102262010B1 (ko) * 2019-02-25 2021-06-09 영남대학교 산학협력단 전류벡터에 기반한 속도 센서리스 모터 제어 시스템 및 풍력 발전 시스템
DE102021205649A1 (de) 2021-06-02 2022-12-08 Volkswagen Aktiengesellschaft Verfahren und Vorrichtung zum Regeln einer elektrischen Maschine
WO2023223436A1 (ja) * 2022-05-17 2023-11-23 三菱電機株式会社 回転機の制御装置
US11848629B1 (en) * 2022-05-26 2023-12-19 GM Global Technology Operations LLC Method and apparatus for electric motor control

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1502163A (zh) * 2001-03-26 2004-06-02 ��ʽ���簲����� 同步电动机的磁极位置推定方法及控制装置
JP2007185080A (ja) * 2006-01-07 2007-07-19 C & S Kokusai Kenkyusho:Kk 交流電動機の回転子位相推定装置
CN101779371A (zh) * 2007-08-20 2010-07-14 飞思卡尔半导体公司 用于确定ac电机的转子的位置的电机控制器、ac电机系统和确定ac电机的转子的位置的方法
US7932692B2 (en) * 2006-11-13 2011-04-26 Denso Corporation Control system for rotary electric machine with salient structure
WO2014157628A1 (ja) * 2013-03-28 2014-10-02 アイシン・エィ・ダブリュ株式会社 回転電機制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435252B2 (ja) * 2008-01-30 2014-03-05 株式会社ジェイテクト 車両用操舵装置
JP5151965B2 (ja) * 2008-12-24 2013-02-27 アイシン・エィ・ダブリュ株式会社 センサレス電動機制御装置
JP5321614B2 (ja) * 2011-02-28 2013-10-23 株式会社デンソー 回転機の制御装置
JP5652664B2 (ja) * 2011-10-21 2015-01-14 アイシン・エィ・ダブリュ株式会社 回転電機制御装置
JP5644820B2 (ja) * 2012-08-17 2014-12-24 株式会社安川電機 モータ制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1502163A (zh) * 2001-03-26 2004-06-02 ��ʽ���簲����� 同步电动机的磁极位置推定方法及控制装置
JP2007185080A (ja) * 2006-01-07 2007-07-19 C & S Kokusai Kenkyusho:Kk 交流電動機の回転子位相推定装置
US7932692B2 (en) * 2006-11-13 2011-04-26 Denso Corporation Control system for rotary electric machine with salient structure
CN101779371A (zh) * 2007-08-20 2010-07-14 飞思卡尔半导体公司 用于确定ac电机的转子的位置的电机控制器、ac电机系统和确定ac电机的转子的位置的方法
WO2014157628A1 (ja) * 2013-03-28 2014-10-02 アイシン・エィ・ダブリュ株式会社 回転電機制御装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111149290A (zh) * 2017-09-22 2020-05-12 西门子股份公司 用于磁阻电机的监控装置和监控方法
CN111149290B (zh) * 2017-09-22 2023-08-22 西门子股份公司 用于磁阻电机的监控装置和监控方法
CN109560742A (zh) * 2017-09-26 2019-04-02 株式会社东芝 马达驱动系统
CN109560742B (zh) * 2017-09-26 2022-02-08 株式会社东芝 马达驱动系统
CN108574438A (zh) * 2018-04-02 2018-09-25 江苏大学 一种飞跨电容开绕组三相永磁同步电机的逆变器开路混合调制容错控制方法

Also Published As

Publication number Publication date
EP3252942A1 (en) 2017-12-06
US20170264227A1 (en) 2017-09-14
WO2016121237A1 (ja) 2016-08-04
JPWO2016121237A1 (ja) 2017-08-24

Similar Documents

Publication Publication Date Title
CN107078675A (zh) 逆变器控制装置以及电机驱动系统
JP4958431B2 (ja) 電動機制御装置
JP4988329B2 (ja) 永久磁石モータのビートレス制御装置
JP6583109B2 (ja) 交流電動機の制御装置
Jevremovic et al. Speed-sensorless control of induction motor based on reactive power with rotor time constant identification
JP6754661B2 (ja) 交流電動機の制御装置および制御方法、並びに交流電動機駆動システム
CN112542955B (zh) 功率转换系统、控制器及计算机可读介质
JP3843391B2 (ja) 同期電動機駆動装置
US9935568B2 (en) Control apparatus of rotary electric machine
JP5549751B1 (ja) インバータ装置、インバータ装置の制御方法、及び電動機ドライブシステム
JP6075090B2 (ja) モータ制御装置
JP2000175492A (ja) 誘導電動機の制御装置
JP6115250B2 (ja) モータ制御装置
JP4596906B2 (ja) 電動機の制御装置
JP6115251B2 (ja) モータ制御装置
Fan et al. Comparative study of back EMF based sensorless control methods for dual three-phase PMSM
Dannier et al. Integral sliding-mode direct torque control of sensorless induction motor drives
Setiana et al. Speed Sensorless Control of Dual Induction Motor using Direct Torque Control-Space Vector Modulation
JP7479128B2 (ja) 電力変換装置
CN111801886B (zh) 电力转换装置
JP2018042315A (ja) インバータ制御装置
Alsofyani et al. Torque ripple reduction and fast torque control in DTC of induction machine using overlapping triangular-based constant frequency torque controller
Xiao et al. Sensorless direct torque and flux control for matrix converter-fed interior permanent magnet synchronous motor using adaptive sliding mode observer
Meberate Design and MATLAB Simulation Modeling using Digital control system Techniques of Direct Torque Control drive of Three Phase Induction Motor
Ide et al. High frequency injection method improved by flux observer for sensorless control of an induction motor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20170818

WW01 Invention patent application withdrawn after publication