CN107004909A - 包含磺内酯和氟化溶剂的非水性电解质组合物 - Google Patents

包含磺内酯和氟化溶剂的非水性电解质组合物 Download PDF

Info

Publication number
CN107004909A
CN107004909A CN201580049223.XA CN201580049223A CN107004909A CN 107004909 A CN107004909 A CN 107004909A CN 201580049223 A CN201580049223 A CN 201580049223A CN 107004909 A CN107004909 A CN 107004909A
Authority
CN
China
Prior art keywords
electrolyte composition
carbonate
negative electrode
anode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580049223.XA
Other languages
English (en)
Other versions
CN107004909B (zh
Inventor
S.E.伯克哈特
K.考塔基斯
J.J.刘
M.G.勒洛夫斯
S-H.金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siensco
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay SA filed Critical Solvay SA
Publication of CN107004909A publication Critical patent/CN107004909A/zh
Application granted granted Critical
Publication of CN107004909B publication Critical patent/CN107004909B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

描述了包含氟化溶剂、有机碳酸酯、磺内酯、以及任选地硼酸盐的电解质组合物。该氟化溶剂可以是氟化的非环状羧酸酯、氟化的非环状碳酸酯、氟化的非环状醚、或其混合物。该有机碳酸酯可以是氟化的或非氟化的。这些电解质组合物在电化学电池如锂离子电池组中是有用的。

Description

包含磺内酯和氟化溶剂的非水性电解质组合物
相关申请的交叉引用
本申请要求于2014年8月14日提交的美国临时申请号62/037246的权益,将该临时申请以其全文通过援引方式并入本申请。
技术领域
本披露在此涉及含有氟化溶剂和磺内酯的电解质组合物,这些电解质组合物在电化学电池如锂离子电池组中是有用的。该电解质组合物可以附加地包含硼酸盐如双(草酸)硼酸锂。
背景
随着在便携式电子设备上的进步以及在插电式混合电动车辆上的强烈兴趣,存在增加锂离子电池组的能量和功率容量的极大需求。在这方面,增加操作电压是可行的策略。当前锂离子电池组电解质溶剂典型地含有一种或多种直链碳酸酯,如碳酸甲乙酯、碳酸二甲酯、或碳酸二乙酯;和环状碳酸酯,如碳酸亚乙酯。然而,在高于4.2V的阴极电势下,这些电解质可分解,这可导致电池组性能的损失。电解质分解还可能发生,产生可导致电池组溶胀的气体。需要的是一种电解质配制品,该电解质配制品将一种或多种溶剂与一种或多种添加剂结合并且可以使气体形成最小化而且还提供良好的电池组性能特征。
概述
在一个实施例中,提供了一种电解质组合物,该电解质组合物包含:
a)氟化溶剂;
b)有机碳酸酯;
c)饱和或不饱和的磺内酯,其任选地被一个或多个卤素,芳基,或直链、支链或环状的饱和或不饱和的烷基取代;以及
d)至少一种电解质盐。
在一个实施例中,该氟化溶剂是:
a)由下式表示的氟化的非环状羧酸酯:
R1-COO-R2
b)由下式表示的氟化的非环状碳酸酯:
R3-OCOO-R4,或
c)由下式表示的氟化的非环状醚:
R5-O-R6
或其混合物;
其中
i)R1是H、烷基、或氟烷基;
ii)R3和R5各自独立地是氟烷基并且可以或者是彼此相同或不同的;
iii)R2、R4、以及R6各自独立地是烷基或氟烷基并且可以或者是彼此相同或不同的;
iv)R1和R2中的任何一个或两者包括氟;并且
v)各自作为一对的R1和R2、R3和R4、以及R5和R6包含至少两个碳原子但不超过七个碳原子。
在一个实施例中,该磺内酯由下式表示:
其中每个A独立地是氢、氟、或氟化的烷基、乙烯基、烯丙基、炔基、或炔丙基。
在一些实施例中,该有机碳酸酯包括非氟化碳酸酯。在一些实施例中,该有机碳酸酯包括氟化碳酸酯。在一些实施例中,该磺内酯包括1,3-丙烷磺内酯。在一些实施例中,该电解质组合物进一步包含选自下组的硼酸盐,该组由以下各项组成:双(草酸)硼酸锂、二氟(草酸)硼酸锂、四氟硼酸锂、以及其混合物。
在另一个实施例中,提供了一种电化学电池,该电化学电池包括:
(a)壳体;
(b)被布置在所述壳体中并且与彼此离子导电接触的阳极和阴极;
(c)被布置在所述壳体中并提供在所述阳极与所述阴极之间的离子导电路径的如在此披露的电解质组合物;以及
(d)在所述阳极与所述阴极之间的多孔隔膜。
在另一个实施例中,提供了一种包括如在此披露的电化学电池的电子设备、运输设备、或电信设备。
在另一个实施例中,该电化学电池是锂离子电池组。
详细说明
如上文和贯穿本披露使用的,除非另外指明,以下术语应如下被定义:
如在此使用的术语“电解质组合物”是指适合于用作电化学电池中的电解质的化学组合物。
如在此使用的术语“电解质盐”是指至少部分地可溶于该电解质组合物的溶剂中并且至少部分地离解为该电解质组合物的溶剂中的离子以形成导电电解质组合物的离子盐。
术语“阳极”是指电化学电池的电极,在该电极处氧化发生。在原电池如电池组中,阳极是带负电的电极。在二次(即,可充电的)电池组中,阳极是在放电过程中氧化发生并且在充电过程中还原发生的电极。
术语“阴极”是指电化学电池的电极,在该电极处还原发生。在原电池如电池组中,阴极是带正电的电极。在二次(即,可充电的)电池组中,阴极是在放电过程中还原发生并且在充电过程中氧化发生的电极。
术语“锂离子电池组”是指一种类型的可充电电池组,其中锂离子在放电过程中从阳极移动至阴极并且在充电过程中从阴极移动至阳极。
在锂与锂离子之间的平衡电势是使用与含有锂盐的非水性电解质接触的锂金属的参比电极的电势,该锂盐在足以给出约1摩尔/升的锂离子浓度的浓度下并且经受足够小的电流,使得该参比电极的电势没有从其平衡值(Li/Li+)显著地改变。此种Li/Li+参比电极的电势在此被指定为0.0V的值。阳极或阴极的电势意指在阳极或阴极与Li/Li+参比电极的阳极或阴极之间的电势差。在此,电压意指在电池的阴极与阳极之间的电压差,其电极都不可以在0.0V的电势下操作。
如在此使用的术语“碳酸酯”确切地是指有机碳酸酯,其中该有机碳酸酯是碳酸的二烷基二酯衍生物,该有机碳酸酯具有通式R’OCOOR”,其中R’和R”各自独立地选自具有至少1个碳原子的烷基,其中烷基取代基可以是相同或不同的,可以是饱和或不饱和的、取代或未取代的,可以经由互连的原子形成环状结构,或包括环状结构作为这些烷基中的任何一个或两个的取代基。
如在此使用的术语“烷基”是指不含不饱和度的直链或支链的烃基。
如在此使用的术语“氟烷基”是指其中至少一个氢被氟替换的烷基。
在此披露了电解质组合物,这些电解质组合物包含:
a)氟化溶剂;
b)有机碳酸酯;
c)饱和或不饱和的磺内酯,其任选地被一个或多个卤素,芳基,或直链、支链或环状的饱和或不饱和的烷基取代;以及
d)至少一种电解质盐。
如在此使用的,术语“有机碳酸酯”和“氟化溶剂”是指不同的,即不是该电解质组合物的相同的化学化合物。
在该电解质组合物中可以使用一种或多种有机碳酸酯。合适的有机碳酸酯包括碳酸氟代亚乙酯、碳酸亚乙酯、碳酸甲乙酯、碳酸二氟代亚乙酯异构体、碳酸三氟代亚乙酯异构体、碳酸四氟代亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸亚丙酯、碳酸亚乙烯酯、2,2,3,3-四氟丙基甲基碳酸酯、双(2,2,3,3-四氟丙基)碳酸酯、双(2,2,2-三氟乙基)碳酸酯、2,2,2-三氟乙基甲基碳酸酯、双(2,2-二氟乙基)碳酸酯、2,2-二氟乙基甲基碳酸酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙基丙基亚乙烯酯、碳酸甲丁酯、碳酸乙丁酯、碳酸丙丁酯、碳酸二丁酯、碳酸乙烯基亚乙酯、碳酸二甲基亚乙烯酯、甲基2,3,3-三氟烯丙基碳酸酯、或其混合物。
在一个实施例中,该有机碳酸酯包括非氟化碳酸酯。一种或多种非氟化碳酸酯、或一种或多种有机碳酸酯与一种或多种非氟化碳酸酯的混合物可用于该电解质组合物中。合适的非氟化碳酸酯包括碳酸亚乙酯、碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸亚乙烯酯、碳酸二叔丁酯、碳酸乙烯基亚乙酯、碳酸二甲基亚乙烯酯、碳酸亚丙酯、碳酸二丙酯、碳酸甲丙酯、碳酸乙基丙基亚乙烯酯、碳酸甲丁酯、碳酸乙丁酯、碳酸丙丁酯、或其混合物。在一个实施例中,该非氟化碳酸酯包括碳酸亚乙酯、碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸亚乙烯酯、碳酸亚丙酯、或其混合物。在一个实施例中,该非氟化碳酸酯包括碳酸亚乙酯。在一个实施例中,该非氟化碳酸酯包括碳酸二甲酯。
在一个实施例中,该有机碳酸酯是环状碳酸酯。合适的环状碳酸酯包括碳酸氟代亚乙酯、碳酸亚乙酯、碳酸二氟代亚乙酯异构体、碳酸三氟代亚乙酯异构体、碳酸四氟代亚乙酯、碳酸亚丙酯、碳酸亚乙烯酯、碳酸乙基丙基亚乙烯酯、碳酸乙烯基亚乙酯、碳酸二甲基亚乙烯酯、或其混合物。在一个实施例中,该氟化的环状碳酸酯包括碳酸氟代亚乙酯,其还被称为4-氟-1,3-二氧环戊-2-酮。在一个实施例中,该有机碳酸酯包括4,5-二氟-1,3-二氧环戊-2-酮;4,5-二氟-4-甲基-1,3-二氧环戊-2-酮;4,5-二氟-4,5-二甲基-1,3-二氧环戊-2-酮;4,4-二氟-1,3-二氧环戊-2-酮;4,4,5-三氟-1,3-二氧环戊-2-酮;或其混合物。
在一个实施例中,该有机碳酸酯包括非氟化的环状碳酸酯。合适的非氟化环状碳酸酯包括碳酸亚乙酯、碳酸亚丙酯、碳酸亚乙烯酯、碳酸乙基丙基亚乙烯酯、碳酸乙烯基亚乙酯、碳酸二甲基亚乙烯酯、或其混合物。在一个实施例中,该非氟化环状碳酸酯是碳酸亚乙酯。在另一个实施例中,该非氟化环状碳酸酯包括碳酸亚乙酯和碳酸亚乙烯酯的混合物,其中该碳酸亚乙烯酯包括该配制的电解质的重量的0.2至3重量百分比。
在一个实施例中,该有机碳酸酯包括氟化碳酸酯。合适的氟化碳酸酯包括4-氟亚乙基碳酸酯、碳酸二氟代亚乙酯异构体、碳酸三氟代亚乙酯异构体、碳酸四氟代亚乙酯、2,2,3,3-四氟丙基甲基碳酸酯、双(2,2,3,3-四氟丙基)碳酸酯、双(2,2,2-三氟乙基)碳酸酯、2,2,2-三氟乙基甲基碳酸酯、双(2,2-二氟乙基)碳酸酯、2,2-二氟乙基甲基碳酸酯、或甲基2,3,3-三氟烯丙基碳酸酯、或其混合物。在一个实施例中,该氟化碳酸酯包括碳酸氟代亚乙酯。在一个实施例中,该氟化碳酸酯包括4,5-二氟-1,3-二氧环戊-2-酮;4,5-二氟-4-甲基-1,3-二氧环戊-2-酮;4,5-二氟-4,5-二甲基-1,3-二氧环戊-2-酮;4,4-二氟-1,3-二氧环戊-2-酮;4,4,5-三氟-1,3-二氧环戊-2-酮;或其混合物。
在此披露的电解质组合物中,取决于该电解质组合物的所希望的特性,该有机碳酸酯或其混合物可以是以各种量使用。在一个实施例中,以组合的该一种或多种有机碳酸酯包括该电解质组合物的按重量计的约0.5百分比至约95百分比,或者该电解质组合物的按重量计的约5百分比至约95百分比、或者约10百分比至约80百分比,或者该电解质组合物的按重量计的约20百分比至约40百分比,或者该电解质组合物的按重量计的约25百分比至约35百分比。在另一个实施例中,该一种或多种有机碳酸酯包括该电解质组合物的按重量计的约0.5百分比至约10百分比,或者按重量计约1百分比至约10百分比、或约5百分比至约10百分比。
该氟化溶剂可以是氟化的非环状羧酸酯、氟化的非环状碳酸酯、氟化的非环状醚、或其混合物。在该电解质组合物中可以使用一种或多种氟化溶剂。
合适的氟化非环状羧酸酯由下式表示
R1-COO-R2
其中
i)R1是H、烷基、或氟烷基;
ii)R2是烷基或氟烷基;
iii)R1和R2中的任何一个或两者包括氟;并且
iv)作为一对的R1和R2包含至少两个碳原子但不超过七个碳原子。
在一个实施例中,R1是H并且R2是氟烷基。在一个实施例中,R1是烷基并且R2是氟烷基。在一个实施例中,R1是氟烷基并且R2是烷基。在一个实施例中,R1是氟烷基并且R2是氟烷基,并且R1和R2可以或者是彼此相同或不同的。在一个实施例中,R1包括一个碳原子。在一个实施例中,R1包括两个碳原子。
在另一个实施例中,R1和R2是如在此上文所定义的,并且作为一对的R1和R2包含至少两个碳原子但不超过七个碳原子并且进一步包含至少两个氟原子,其条件是R1或R2都不含有FCH2-基团或-FCH-基团。
在一个实施例中,上式中R1中的碳原子的数目是1、3、4、或5。
合适的氟化的非环状羧酸酯的实例包括但不限于,CH3-COO-CH2CF2H(2,2-二氟乙基乙酸酯,CAS号1550-44-3)、CH3-COO-CH2CF3(2,2,2-三氟乙基乙酸酯,CAS号406-95-1)、CH3CH2-COO-CH2CF2H(2,2-二氟乙基丙酸酯,CAS号1 133129-90-4)、CH3-COO-CH2CH2CF2H(3,3-二氟丙基乙酸酯)、CH3CH2-COO-CH2CH2CF2H(3,3-二氟丙基丙酸酯)、HCF2-CH2-CH2-COO-CH2CH3(乙基4,4-二氟丁酸酯,CAS号1240725-43-2)、CH3-COO-CH2CF3(2,2,2-三氟乙基乙酸酯,CAS号406-95-1)、H-COO-CH2CF2H(二氟乙基甲酸酯,CAS号1 137875-58-1)、H-COO-CH2CF3(三氟乙基甲酸酯,CAS号32042-38-9)、以及其混合物。在一个实施例中,该氟化的非环状羧酸酯包括2,2-二氟乙基乙酸酯(CH3-COO-CH2CF2H)。在一个实施例中,该氟化的非环状羧酸酯包括2,2-二氟乙基丙酸酯(CH3CH2-COO-CH2CF2H)。在一个实施例中,该氟化的非环状羧酸酯包括2,2,2-三氟乙基乙酸酯(CH3-COO-CH2CF3)。在一个实施例中,该氟化的非环状羧酸酯包括2,2-二氟乙基甲酸酯(H-COO-CH2CF2H)。
合适的氟化的非环状碳酸酯由下式表示:
R3-OCOO-R4
其中
i)R3是氟烷基;
ii)R4是烷基或氟烷基;并且
iii)作为一对的R3和R4包含至少两个碳原子但不超过七个碳原子。
在一个实施例中,R3是氟烷基并且R4是烷基。在一个实施例中,R3是氟烷基并且R4是氟烷基,并且R3和R4可以或者是彼此相同或不同的。在一个实施例中,R3和R4独立地可以是支链或直链的。在一个实施例中,R3包括一个碳原子。在一个实施例中,R3包括两个碳原子。
在另一个实施例中,R3和R4是如在此上文所定义的,并且作为一对的R3和R4包含至少两个碳原子但不超过七个碳原子并且进一步包含至少两个氟原子,其条件是R3或R4都不含有FCH2-基团或-FCH-基团。
合适的氟化的非环状碳酸酯的实例包括但不限于,CH3-OC(O)O-CH2CF2H(甲基2,2-二氟乙基碳酸酯,CAS号916678-13-2)、CH3-OC(O)O-CH2CF3(甲基2,2,2-三氟乙基碳酸酯,CAS号156783-95-8)、CH3-OC(O)O-CH2CF2CF2H(甲基2,2,3,3-四氟丙基碳酸酯,CAS号156783-98-1)、HCF2CH2-OCOO-CH2CH3(2,2-二氟乙基乙基碳酸酯,CAS号916678-14-3)、以及CF3CH2-OCOO-CH2CH3(2,2,2-三氟乙基碳酸酯,CAS号156783-96-9)。
合适的氟化的非环状醚由下式表示:
R5-O-R6
其中
i)R5是氟烷基;
ii)R6是烷基或氟烷基;并且
iii)作为一对的R5和R6包含至少两个碳原子但不超过七个碳原子。
在一个实施例中,R5是氟烷基并且R6是烷基。在一个实施例中,R5是氟烷基并且R6是氟烷基,并且R5和R6可以或者是彼此相同或不同的。在一个实施例中,R5和R6独立地可以是支链或直链的。在一个实施例中,R5包括一个碳原子。在一个实施例中,R5包括两个碳原子。
在另一个实施例中,R5和R6是如在此上文所定义的,并且作为一对的R5和R6包含至少两个碳原子但不超过七个碳原子并且进一步包含至少两个氟原子,其条件是R5或R6都不含有FCH2-基团或-FCH-基团。
合适的氟化的非环状醚的实例包括但不限于,HCF2CF2CH2-O-CF2CF2H(CAS号16627-68-2)和HCF2CH2-O-CF2CF2H(CAS号50807-77-7)。
还可以使用这些氟化的非环状羧酸酯、氟化的非环状碳酸酯和/或氟化的非环状醚溶剂中的两种或更多种的混合物。如在此使用的,术语“混合物”
包括在溶剂类别内的混合物以及在溶剂类别之间的混合物两者,例如两种或更多种氟化的非环状羧酸酯的混合物,以及还有例如氟化的非环状羧酸酯和氟化的非环状碳酸酯的混合物。非限制性实例包括2,2-二氟乙基乙酸酯和2,2-二氟乙基丙酸酯的混合物、或2,2-二氟乙基乙酸酯和2,2-二氟乙基甲基碳酸酯的混合物。
在一个实施例中,该氟化溶剂是:
a)由下式表示的氟化的非环状羧酸酯:
R1-COO-R2
b)由下式表示的氟化的非环状碳酸酯:
R3-OCOO-R4
c)由下式表示的氟化的非环状醚:
R5-O-R6
或其混合物;
其中
i)R1是H、烷基、或氟烷基;
ii)R3和R5各自独立地是氟烷基并且可以或者是彼此相同或不同的;
iii)R2、R4、以及R6各自独立地是烷基或氟烷基并且可以或者是彼此相同或不同的;
iv)R1和R2中的任何一个或两者包括氟;并且
v)各自作为一对的R1和R2、R3和R4、以及R5和R6包含至少两个碳原子但不超过七个碳原子。
在另一个实施例中,该氟化溶剂是
a)由下式表示的氟化的非环状羧酸酯:
R1-COO-R2
b)由下式表示的氟化的非环状碳酸酯:
R3-OCOO-R4
c)由下式表示的氟化的非环状醚:
R5-O-R6
或其混合物;
其中
i)R1是H、烷基、或氟烷基;
ii)R3和R5各自独立地是氟烷基并且可以或者是彼此相同或不同的;
iii)R2、R4、以及R6各自独立地是烷基或氟烷基并且可以或者是彼此相同或不同的;
iv)R1和R2中的任何一个或两者包括氟;并且
v)各自作为一对的R1和R2、R3和R4、以及R5和R6包含至少两个碳原子但不超过七个碳原子并且进一步包含至少两个氟原子,其条件是R1、R2、R3、R4、R5都不、R6也不包含FCH2-基团或-FCH-基团。
在此披露的电解质组合物中,取决于该电解质组合物的所希望的特性,该氟化溶剂或其混合物可以是以各种量使用。在一个实施例中,该氟化溶剂包括该电解质组合物的按重量计从约1%至约95%。在另一个实施例中,该氟化溶剂包括该电解质组合物的按重量计约5%至约95%。在又另一个实施例中,该氟化溶剂包括该电解质组合物的按重量计约10%至约90%。在另一个实施例中,该氟化溶剂包括该电解质组合物的按重量计约10%至约80%。在另一个实施例中,该氟化溶剂包括该电解质组合物的按重量计约30%至约70%。在另一个实施例中,该氟化溶剂包括该电解质组合物的按重量计约50%至约70%。在另一个实施例中,该氟化溶剂包括该电解质组合物的按重量计约45%至约65%。在另一个实施例中,该氟化溶剂包括该电解质组合物的按重量计约6%至约30%。在另一个实施例中,该氟化溶剂包括该电解质组合物的按重量计约60%至约65%。在另一个实施例中,该氟化溶剂包括该电解质组合物的按重量计约20%至约45%。
适合于在此使用的氟化的非环状羧酸酯、氟化的非环状碳酸酯、以及氟化的非环状醚可以使用已知方法进行制备。例如,可以使乙酰氯与2,2-二氟乙醇(有或没有碱性催化剂)反应以形成2,2-二氟乙基乙酸酯。附加地,2,2-二氟乙基乙酸酯和2,2-二氟乙基丙酸酯可以使用由Wiesenhofer等人描述的方法(WO 2009/040367 A1,实例5)进行制备。可替代地,2,2-二氟乙基乙酸酯可以使用在此下面实例中描述的方法进行制备。其他氟化的非环状羧酸酯可以使用相同的方法使用不同的起始羧酸盐进行制备。类似地,可以使氯甲酸甲酯与2,2-二氟乙醇反应以形成甲基2,2-二氟乙基碳酸酯。HCF2CF2CH2-O-CF2CF2H的合成可以通过使2,2,3,3-四氟丙醇与四氟乙烯在碱(例如,NaH等)存在下反应来进行。类似地,2,2-二氟乙醇与四氟乙烯的反应产生了HCF2CH2-O-CF2CF2H。可替代地,在此披露的氟化溶剂的一些可以例如从如Matrix Scientific的公司商业地获得(Columbia SC)。为了最好的结果,令人希望的是纯化这些氟化的非环状羧酸酯和氟化的非环状碳酸酯至至少约99.9%、更特别地至少约99.99%的纯度水平。在此披露的氟化溶剂可以使用蒸馏方法如真空蒸馏或旋转带蒸馏来纯化。
在此披露的电解质组合物还包括饱和或不饱和的磺内酯,其任选地被一个或多个卤素,芳基,或直链、支链或环状的饱和或不饱和的烷基取代。还可以使用两种或更多种磺内酯的混合物。在一个实施例中,该磺内酯是饱和的,即,磺内酯环不含有不饱和键。在另一个实施例中,该磺内酯是不饱和的,即,磺内酯环含有不饱和键。
在一个实施例中,该磺内酯由下式表示:
其中每个A独立地是氢、氟、或任选地氟化的烷基、乙烯基、烯丙基、炔基、或炔丙基。乙烯基(H2C=CH-)、烯丙基(H2C=CH-CH2-)、炔基(HC≡C-)、或炔丙基(HC≡C-CH2-)基团可以各自是未取代的或部分或完全氟化的。每个A可以与其他A基团中的一个或多个相同或不同,并且A基团中的两个或三个可以一起形成环。还可以使用两种或更多种磺内酯的混合物。合适的磺内酯包括1,3-丙烷磺内酯、3-氟-1,3-丙烷磺内酯、4-氟-1,3-丙烷磺内酯、5-氟-1,3-丙烷磺内酯、以及1,8-萘磺内酯。在一个实施例中,该磺内酯包括1,3-丙烷磺内酯。在一个实施例中,该磺内酯包括3-氟-1,3-丙烷磺内酯。
在一个实施例中,该磺内酯是以该总电解质组合物的约0.01至约10重量百分比、或约0.1重量百分比至约5重量百分比、或约0.5重量百分比至约3重量百分比、或约1重量百分比至约3重量百分比或约1.5重量百分比至约2.5重量百分比、或约2重量百分比存在。
在此披露的电解质组合物可任选地进一步包含选自下组的硼酸盐,该组由以下各项组成:双(草酸)硼酸锂、二氟(草酸)硼酸锂、四氟硼酸锂、以及其混合物。在一些实施例中,该电解质组合物进一步包含双(草酸)硼酸锂。在其他实施例中,该电解质组合物进一步包含二氟(草酸)硼酸锂。在一些实施例中,该电解质组合物进一步包含四氟硼酸锂。在一个实施例中,该硼酸盐是以基于该电解质组合物的总重量的从约0.01至约10重量百分比的范围内存在于该电解质组合物中,例如在该总电解质组合物的从约0.1至约5重量百分比、或从约0.5重量百分比至约3重量百分比、或约1重量百分比至约3重量百分比、或约1.5重量百分比至约2.5重量百分比、或约2重量百分比的范围内。
在一个实施例中,该电解质组合物包含2,2-二氟乙基乙酸酯、至少一种氟化碳酸酯、以及1,3-丙烷磺内酯。在一个实施例中,该电解质组合物包含2,2-二氟乙基乙酸酯、至少一种非氟化碳酸酯、以及1,3-丙烷磺内酯。在一个实施例中,该电解质组合物包含2,2-二氟乙基乙酸酯、至少一种氟化碳酸酯、至少一种非氟化碳酸酯、以及1,3-丙烷磺内酯。在一个实施例中,该电解质组合物包含2,2-二氟乙基乙酸酯、碳酸亚乙酯、以及1,3-丙烷磺内酯,并且进一步包含双(草酸)硼酸锂。在一个实施例中,该电解质组合物包含2,2-二氟乙基乙酸酯、4-氟亚乙基碳酸酯、以及1,3-丙烷磺内酯。在一个实施例中,该电解质组合物包含2,2-二氟乙基乙酸酯、4-氟亚乙基碳酸酯、2,2-二氟乙基甲基碳酸酯、以及1,3-丙烷磺内酯。在一个实施例中,该电解质组合物包含2,2-二氟乙基甲基碳酸酯、4-氟亚乙基碳酸酯、以及1,3-丙烷磺内酯。在一个实施例中,该电解质组合物包含2,2-二氟乙基乙酸酯、碳酸亚乙酯、以及1,3-丙烷磺内酯,并且任选地进一步包含双(草酸)硼酸锂。在一个实施例中,该电解质组合物包含2,2-二氟乙基甲基碳酸酯、碳酸亚乙酯、以及1,3-丙烷磺内酯。
在一个实施例中,基于该电解质组合物的总重量,该电解质组合物包含约0.01重量百分比至约10重量百分比的该磺内酯、以及约10重量百分比至约80重量百分比的该氟化溶剂。在一些实施例中,基于该电解质组合物的总重量,该电解质组合物包含约1百分比至约90百分比、或约10百分比至约90百分比、或约20百分比至约80百分比的2,2-二氟乙基乙酸酯;约1百分比至约65百分比、或约5百分比至约50百分比的碳酸亚乙酯或碳酸氟代亚乙酯,以及约0.01百分比至约10百分比、或约0.1百分比至约10百分比的1,3-丙烷磺内酯。在一些实施例中,该电解质组合物进一步包含该电解质组合物的按重量计约0.01百分比至约15百分比、或该电解质组合物的按重量计约0.1百分比至约15百分比的硼酸盐,该硼酸盐选自下组,该组由以下各项组成:双(草酸)硼酸锂、二氟(草酸)硼酸锂、四氟硼酸锂、以及其混合物。在一些实施例中,该电解质组合物进一步包含该电解质组合物的按重量计约0.5百分比至约60百分比、或约1百分比至约50百分比的2,2-二氟乙基甲基碳酸酯。
在此披露的电解质组合物还含有至少一种电解质盐。合适的电解质盐包括但不限于,六氟磷酸锂(LiPF6)、
双(三氟甲基)四氟磷酸锂(LiPF4(CF3)2)、双(五氟乙基)四氟磷酸锂(LiPF4(C2F5)2)、三(五氟乙基)三氟磷酸锂(LiPF3(C2F5)3)、双(三氟甲烷磺酰基)酰亚胺锂、双(全氟乙烷磺酰基)酰亚胺锂、(氟磺酰基)(九氟丁烷磺酰基)酰亚胺锂、双(氟磺酰基)酰亚胺锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂、三氟甲烷磺酸锂、三(三氟甲烷磺酰基)甲基化锂、双(草酸)硼酸锂、二氟(草酸)硼酸锂、Li2B12F12-xHx(其中x等于0至8)、以及氟化锂和阴离子受体如B(OC6F5)3的混合物。
还可以使用这些或可比较的电解质盐中的两种或更多种的混合物。在一个实施例中,该电解质盐是六氟磷酸锂。该电解质盐可以是以约0.2至约2.0M、更特别地约0.3至约1.5M、并且更特别地约0.5至约1.2M的量存在于该电解质组合物中。
在此披露的电解质组合物可任选地包含本领域普通技术人员已知的在常规电解质组合物中有用的、特别地用于锂离子电池组中的添加剂。例如,在此披露的电解质组合物还可以包含气体减少添加剂,这些添加剂对于减少在锂离子电池组的充电和放电过程中产生的气体的量是有用的。气体减少添加剂可以是以任何有效量使用,但是可以被包括在内以包含该电解质组合物的从约0.05重量百分比至约10重量百分比、可替代地从约0.05重量百分比至约5重量百分比,或者可替代地该电解质组合物的从约0.5重量百分比至约2重量百分比。
常规已知的合适的气体减少添加剂包括,例如:卤苯,如氟苯、氯苯、溴苯、碘苯或卤烷基苯;琥珀酸酐;乙炔基磺酰基苯;2-磺基苯甲酸环酐;二乙烯基砜;三苯基磷酸酯(TPP);磷酸二苯基单丁酯(DMP);γ-丁内酯;2,3-二氯-1,4-萘醌;1,2-萘醌;2,3-二溴-1,4-萘醌;3-溴-l,2-萘醌;2-乙酰基呋喃;2-乙酰基-5-甲基呋喃;2-甲基咪唑1-(苯基磺酰基)吡咯;2,3-苯并呋喃;氟-环三膦腈,如2,4,6-三氟-2-苯氧基-4,6-二丙氧基-环三膦腈和2,4,6-三氟-2-(3-(三氟甲基)苯氧基)-6-乙氧基-环三膦腈;苯并三唑;全氟乙烯碳酸酯;苯甲醚;二乙基膦酸酯;氟烷基-取代的二氧戊环,如2-三氟甲基二氧戊环和2,2-双三氟甲基-1,3-二氧戊环;硼酸三亚甲酯;二氢-3-羟基-4,5,5-三甲基-2(3H)-呋喃酮;二氢-2-甲氧基-5,5-二甲基-3(2H)-呋喃酮;二氢-5,5-二甲基-2,3-呋喃二酮;丙烯磺内酯;二甘醇酸酸酐;二-2-丙炔基草酸酯;4-羟基-3-戊烯酸γ-内酯;CF3COOCH2C(CH3)(CH2OCOCF3)2;CF3COOCH2CF2CF2CF2CF2CH2OCOCF3;α-亚甲基-γ-丁内酯;3-甲基-2(5H)-呋喃酮;5,6-二氢-2-吡喃酮;二甘醇、二乙酸酯;三甘醇二甲基丙烯酸酯;三甘醇二乙酸酯;1,2-乙烷二磺酸酐;1,3-丙烷二磺酸酐;2,2,7,7-四氧化物1,2,7-氧杂二噻庚环;3-甲基-2,2,5,5-四氧化物1,2,5-氧杂二硫戊环;六甲氧基环三磷腈;4,5-二甲基-4,5-二氟-1,3-二氧环戊-2-酮;2-乙氧基-2,4,4,6,6-五氟-2,2,4,4,6,6-六氢-1,3,5,2,4,6-三氮杂三磷杂苯;2,2,4,4,6-五氟-2,2,4,4,6,6-六氢-6-甲氧基-1,3,5,2,4,6-三氮杂三磷杂苯;4,5-二氟-1,3-二氧环戊-2-酮;1,4-双(次乙基磺酰基)-丁烷;双(乙烯基磺酰基)-甲烷;1,3-双(次乙基磺酰基)-丙烷;1,2-双(次乙基磺酰基)-乙烷;以及1,1’-[氧基双(亚甲基磺酰基)]双-乙烯。
可以使用的其他合适的添加剂是HF清除剂,如硅烷、硅氮烷(Si-NH-Si)、环氧化物、胺、氮杂环丙烷(含有两个碳)、碳酸的盐(如草酸锂)、B2O5、ZnO、以及氟化的无机盐。
在另一个实施例中,在此提供了一种电化学电池,该电化学电池包括壳体、被布置在该壳体中并且与彼此离子导电接触的阳极和阴极、如在此以上描述的电解质组合物(提供了在该阳极与该阴极之间的离子导电路径)、以及在该阳极与该阴极之间的多孔或微孔隔膜。该壳体可以是收容电化学电池部件的任何合适的容器。取决于电化学电池的类型,该阳极和该阴极可以由任何合适的导电材料组成。阳极材料的合适实例包括但不限于,锂金属、锂金属合金、钛酸锂、铝、铂、钯、石墨、过渡金属氧化物、以及锂化的氧化锡。阴极材料的合适实例包括但不限于,石墨、铝、铂、钯、包含锂或钠的电活性过渡金属氧化物、铟锡氧化物、以及导电聚合物如聚吡咯和聚乙烯二茂铁。
该多孔隔膜用于防止在该阳极与该阴极之间的短路。该多孔隔膜典型地由微孔聚合物如聚乙烯、聚丙烯、或其组合的单层或多层片材组成。该多孔隔膜的孔径是足够大的以允许传输离子,但是足够小以防止阳极和阴极或者直接接触或者由于可能来自阳极和阴极上的颗粒渗透或枝状晶体的接触。
在另一个实施例中,该电化学电池是锂离子电池组。用于锂离子电池组的合适的阴极材料包括但不限于,包含锂和过渡金属的电活性化合物,如LiCoO2、LiNiO2、LiMn2O4、LiCo0.2Ni0.2O2或LiV3O8
LiaCoGbO2(0.90≤a≤1.8,并且0.001≤b≤0.1);
LiaNibMncCOdReO2-fZf,其中0.8≤a≤1.2,0.1<b<0.9,
0.0≤c≤0.7,0.05≤d≤0.4,0≤e≤0.2,其中b+c+d+e的总和是约1,并且0≤f≤0.08;
LiaA1-b,RbD2(0.90≤a≤1.8并且0≤b≤0.5);
LiaE1-bRbO2-cDc(0.90≤a≤1.8,0≤b≤0.5并且0≤c≤0.05);
LiaNi1-b-cCobRcO2-dZd,其中0.9≤a≤1.8,0≤b≤0.4,0≤c≤0.05,并且0≤d≤0.05;
Li1+zNi1-x-yCoxAlyO2,其中0<x<0.3,0<y<0.1,并且0<z<0.06;
LiNi0.5Mn1.5O4;LiFePO4、LiMnPO4、LiCoPO4、以及LiVPO4F。
在以上化学式中,A是Ni、Co、Mn、或其组合;D是O、F、S、P、或其组合;E是Co、Mn、或其组合;G是Al、Cr、Mn、Fe、Mg、La、Ce、Sr、V、或其组合;R是Al、Ni、Co、Mn、Cr、Fe、Mg、Sr、V、Zr、Ti、稀土元素、或其组合;Z是F、S、P、或其组合。合适的阴极包括在美国专利号5,962,166、6,680,145、6,964,828、7,026,070、7,078,128、7,303,840、7,381,496、7,468,223、7,541,114、7,718,319、7,981,544、8,389,160、8,394,534、以及8,535,832、以及在此的参考文件中披露的那些。通过“稀土元素”意指从La到Lu的镧系元素,以及Y和Sc。在另一个实施例中,该阴极材料是NMC阴极;即,LiNiMnCoO阴极,更确切地说,其中Ni:Mn:Co的原子比是1:1:1(LiaNi1-b-cCObRcO2-dZd,其中0.98≤a≤1.05,0≤d≤0.05,b=0.333,c=0.333,其中R包括Mn)或其中Ni:Mn:Co的原子比是5:3:2(LiaNi1-b-cCObRcO2-dZd,其中0.98≤a≤1.05,0≤d≤0.05,c=0.3,b=0.2,其中R包括Mn)的阴极。
在另一个实施例中,在此披露的锂离子电池组中的阴极包括具有式LiaMnbJcO4Zd的复合材料,其中J是Ni、Co、Mn、Cr、Fe、Cu、V、Ti、Zr、Mo、B、Al、Ga、Si、Li、Mg、Ca、Sr、Zn、Sn、稀土元素、或其组合;Z是F、S、P、或其组合;并且0.9≤a≤1.2,1.3≤b≤2.2,0≤c≤0.7,0≤d≤0.4。
在另一个实施例中,在此披露的锂离子电池组中的阴极包括展示出在对比Li/Li+参比电极大于4.6V的电势范围内的大于30mAh/g容量的阴极活性材料。此种阴极的一个实例是包含具有尖晶石结构的含锂的锰复合氧化物作为阴极活性材料的稳定的锰阴极。在适合于在此使用的阴极中的含锂的锰复合氧化物包括具有式LixNiyMzMn2-y-zO4-d的氧化物,其中x是0.03至1.0;x根据在充电和放电过程中的锂离子和电子的释放和吸收而改变;y是0.3至0.6;M包括Cr、Fe、Co、Li、Al、Ga、Nb、Mo、Ti、Zr、Mg、Zn、V、以及Cu中的一种或多种;z是0.01至0.18;并且d是0至0.3。在上式中的一个实施例中,y是0.38至0.48,z是0.03至0.12,并且d是0至0.1。在上式中的一个实施例中,M是Li、Cr、Fe、Co和Ga中的一种或多种。稳定的锰阴极还可以包括尖晶石层状复合材料,其含有含锰的尖晶石组分和富锂的层状结构,如在美国专利号7,303,840中描述的。
在另一个实施例中,在此披露的锂离子电池组中的阴极包括由下式的结构表示的复合材料:
x(Li2-wA1-vQw+vO3-e)·(1-x)(LiyMn2-zMzO4-d)
其中:
x是约0.005至约0.1;
A包括Mn或Ti中的一种或多种;
Q包括Al、Ca、Co、Cr、Cu、Fe、Ga、Mg、Nb、Ni、Ti、V、Zn、Zr或Y中的一种或多种;
e是0至约0.3;
v是0至约0.5。
w是0至约0.6;
M包括Al、Ca、Co、Cr、Cu、Fe、Ga、Li、Mg、Mn、Nb、Ni、Si、Ti、V、Zn、Zr或Y中的一种或多种;
d是0至约0.5;
y是约0至约1;并且
z是约0.3至约1;并且
其中该LiyMn2-zMzO4-d组分具有尖晶石结构并且该Li2-wQw+vA1-vO3-e组分具有层状结构。
在另一个实施例中,在式
x(Li2-wA1-vQw+vO3-e)·(1-x)(LiyMn2-zMzO4-d)中,
x是约0至约0.1,并且其他变量的所有范围是如在此以上陈述的。
在另一个实施例中,在此披露的锂离子电池组中的阴极包括
LiaA1-xRxDO4-fZf
其中:
A是Fe、Mn、Ni、Co、V、或其组合;
R是Al、Ni、Co、Mn、Cr、Fe、Mg、Sr、V、Zr、Ti、稀土元素、或其组合;
D是P、S、Si、或其组合;
Z是F、Cl、S、或其组合;
0.8≤a≤2.2;
0≤x≤0.3;并且
0≤f≤0.1。
在另一个实施例中,在此披露的锂离子电池组中的阴极包括阴极活性材料,该阴极活性材料被充电至对比Li/Li+参比电极大于或等于约4.1V、或大于或等于4.35V、或大于4.5V、或大于或等于4.6V的电势。其他实例是被充电到高于4.5V的较高的充电电势的层状-层状高容量氧释放阴极,如在美国专利号7,468,223中描述的那些。
适合于在此使用的阴极活性材料可以使用如通过Liu等人描述的氢氧化物前体方法(物理化学期刊C(J.Phys.Chem.C)13:15073-15079,2009)的方法进行制备。在该方法中,通过添加KOH从含有所要求量的锰、镍以及其他所希望的一种或多种金属乙酸盐的溶液中沉淀氢氧化物前体。将所得沉淀物烘干并且然后用所要求量的LiOH·H2O在约800℃至约1000℃下在氧气中烧制持续3至24小时。可替代地,该阴极活性材料可以使用如在美国专利号5,738,957(Amine)中描述的固相反应工艺或溶胶-凝胶工艺进行制备。
适合于在此使用的阴极(其中该阴极活性材料被包括在内)可以通过以下方法进行制备:如使有效量的阴极活性材料(例如约70wt%至约97wt%)、聚合物粘合剂(如聚偏二氟乙烯)以及导电碳在合适的溶剂如N-甲基吡咯烷酮中混合以产生糊剂,然后将其涂覆到集电体如铝箔上,并且干燥以形成该阴极。
如在此披露的锂离子电池组进一步含有阳极,该阳极包括能够储存并且释放锂离子的阳极活性材料。合适的阳极活性材料的实例包括但不限于,硅、锂金属、锂合金,如锂-铝合金、锂-铅合金、锂-硅合金、锂-锡合金等;碳材料如石墨和中间相碳微珠(MCMB);含磷材料,如黑磷、MnP4和COP3,金属氧化物,如SnO2、SnO和ΤiΟ2,含锑或锡的纳米复合材料,例如含锑的纳米复合材料,铝、钛、或钼的氧化物,以及碳,如由Yoon等人描述的那些(化学材料(Chem.Mater.)21,3898-3904,2009);以及钛酸锂如Li4Ti5Oi2和LiTi2O4。在一个实施例中,该阳极活性材料是钛酸锂、石墨、锂合金、硅、或其组合。在另一个实施例中,该阳极是石墨。
阳极可以通过与对于阴极以上描述的方法类似的方法制成,其中例如将粘合剂如偏二氟乙烯基共聚物、苯乙烯-丁二烯共聚物或羧甲基纤维素溶解或分散在有机溶剂或水中,然后将其与活性导电材料混合以获得糊剂。将该糊剂涂覆在有待被用作集电体的金属箔优选地铝或铜箔上。优选地用加热干燥该糊剂,使得该活性物质结合至该集电体上。合适的阳极活性材料和阳极是从如日立化学公司(Hitachi Chemical)(茨城町,日本)、NEI公司(NEI Inc.)(萨默塞特,新泽西州)、以及法拉赛斯能源公司(Farasis Energy Inc.)(海沃德,加利福尼亚州)的公司可商购的。
如在此披露的锂离子电池组还含有在该阳极与阴极之间的多孔隔膜。该多孔隔膜用于防止在该阳极与该阴极之间的短路。该多孔隔膜典型地由微孔聚合物如聚乙烯、聚丙烯、聚酰胺或聚酰亚胺、或其组合的单层或多层片材组成。该多孔隔膜的孔径是足够大的以允许传输离子以提供在该阳极与阴极之间的离子导电接触,但是足够小以防止阳极和阴极或者直接接触或者由于可能来自阳极和阴极上的颗粒渗透或枝状晶体的接触。适合于在此使用的多孔隔膜的实例是在美国专利申请公开号2012/0149852(现在美国专利号8,518,525)中披露的。
于此该锂离子电池组的壳体可以是收容以上描述的锂离子电池组部件的任何合适容器。此种容器可以是以小或大圆柱体、棱柱形箱或小袋的形状被制作。
在此披露的电解质组合物在很多类型的电化学电池和电池组(如电容器,非水性电池组,如锂电池组、液流电池组,以及燃料电池)中是有用的。
在此披露的电化学电池和锂离子电池组可用于网格存储或被用作在各种电子供能或电子辅助的设备(“电子设备”)(如计算机、照相机、无线电或电动工具)、各种电信设备、或各种运输设备(包括机动车辆、汽车、卡车、公共汽车、或飞机)中的电源。
在另一个实施例中,提供了一种方法,该方法包括将以下各项组合:
a)氟化溶剂;
b)有机碳酸酯;
c)饱和或不饱和的磺内酯,其任选地被一个或多个卤素,芳基,或直链、支链或环状的饱和或不饱和的烷基取代;以及
d)至少一种电解质盐;
以形成电解质组合物;
其中该氟化溶剂是:
A)由下式表示的氟化的非环状羧酸酯:
R1-COO-R2
B)由下式表示的氟化的非环状碳酸酯:
R3-OCOO-R4
C)由下式表示的氟化的非环状醚:
R5-O-R6
或其混合物;其中
i)R1是H、烷基、或氟烷基;
ii)R3和R5各自独立地是氟烷基并且可以或者是彼此相同或不同的;
iii)R2、R4、以及R6各自独立地是烷基或氟烷基并且可以或者是彼此相同或不同的;
iv)R1和R2中的任何一个或两者包括氟;并且
v)各自作为一对的R1和R2、R3和R4、以及R5和R6包含至少两个碳原子但不超过七个碳原子。
这些组分可以是以任何合适的顺序组合。
在另一个实施例中,提供了一种用于减少锂离子电池组中的气体形成的方法,该方法包括:
(a)制备如权利要求1所述的电解质组合物;
(b)将该电解质组合物放置于锂离子电池组中,该锂离子电池组包括
(i)壳体;
(ii)被布置在所述壳体中并且与彼此离子导电接触的阳极和阴极;以及
(iii)在所述阳极与所述阴极之间的多孔隔膜;由此该电解质组合物提供在所述阳极与所述阴极之间的离子导电路径;
(c)形成该锂离子电池组;并且
(d)对该锂离子电池组充电和放电至少一次。
如在此使用的,术语“形成该锂离子电池组”是指通过已知的方法(包括例如,如在以下实例中披露的)预处理该电池组。
实例
在以下实例中说明了在此披露的概念。根据以上讨论和这些实例,本领域技术人员可以确定在此披露的概念的基本特征,并且在不脱离其精神和范围的情况下,可以做出各种改变和修改以适应各种用途和条件。
所使用的缩写的含义如下:“g”意指克,“mg”意指毫克,“μg”意指微克,“L”意指升,“mL”意指毫升,“mol”意指摩尔,“mmol”意指毫摩尔,“M”意指摩尔浓度,“wt%”意指重量百分比,“mm”是毫米,“ppm”意指百万分率,“h”意指小时,“min”意指分钟,“A”意指安培,“mA”意指毫安,“mAh/g”意指毫安小时/克,“V”意指伏特,“kV”意指千伏特,“eV”意指电子伏特,“keV”意指千电子伏特,“xC”是指恒定电流(其是x与以A计的电流的乘积(其数字上等于以Ah表示的电池组的标称容量)),“Pa”意指帕斯卡,“kPa”意指千帕斯卡,“rpm”意指每分钟转数,“psi”意指磅/平方英寸,“NMR”意指核磁共振光谱法,“GC/MS”意指气相色谱法/质谱法,“Ex”意指实例并且“Comp.Ex”意指对比实例。
材料和方法
2,2-二氟乙基乙酸酯的代表性制备
在以下实例中使用的2,2-二氟乙基乙酸酯是通过使乙酸钾与HCF2CH2Br反应制备的。以下是用于该制备的典型程序。
将乙酸钾(奥德里奇公司(Aldrich),密尔沃基,威斯康辛州,99%)在100℃下在0.5-1mm的Hg(66.7-133Pa)的真空下干燥持续4至5h。该干燥的材料具有小于5ppm的水含量,如通过卡尔-费歇尔滴定确定的。在干燥箱中,将212g(2.16mol,8mol%过量)该干燥的乙酸钾放置至含有重磁力搅拌棒的1.0-L三颈圆底烧瓶内。将该烧瓶从该干燥箱中移除,转移至通风橱内,并且装备有热电偶套管、干冰冷凝器和附加漏斗。
将环丁砜(500mL,奥德里奇公司,99%,600ppm的水,如通过卡尔-费歇尔滴定确定的)熔融并在氮气流下作为液体添加至三颈圆底烧瓶中。开始搅拌并且使反应介质的温度达到约100℃。将HCF2CH2Br(290g,2mol,杜邦公司(E.I.du Pont de Nemours and Co.),99%)放置于加料漏斗中,并且缓慢添加至该反应介质中。该添加是温和放热的,并且在添加开始后在15-20min内使该反应介质的温度升至120℃-130℃。HCF2CH2Br的添加保持在将内部温度维持在125℃-135℃下的速率下。该添加耗费约2-3h。将该反应介质在120℃-130℃下搅拌持续附加的6h(典型地此时溴化物的转化率是约90%-95%)。然后,将该反应介质冷却至室温并且搅拌过夜。第二天早上,重新开始加热持续另一个8h。
此时,起始溴化物不是通过NMR可检测的,并且粗反应介质含有0.2%-0.5%的1,1-二氟乙醇。该反应烧瓶上的干冰冷凝器被具有阀的软管适配器替换,并且将该烧瓶通过冷阱(-78℃,干冰/丙酮)连接到机械真空泵上。将该反应产物转移到在1-2mm Hg(133至266Pa)的真空下在40℃-50℃下的冷阱内。该转移耗费约4-5h并且导致220-240g的约98%-98.5%纯度的粗HCF2CH2OC(O)CH3,其被少量的HCF2CH2Br(约0.1%-0.2%)、HCF2CH2OH(0.2%-0.8%)、环丁砜(约0.3%-0.5%)和水(600-800ppm)污染。使用在大气压下的旋转带蒸馏进行粗产物的进一步纯化。收集具有在106.5℃-106.7℃之间的沸点的馏分并且使用GC/MS(毛细管柱HP5MS,苯基-甲基硅氧烷,Agilent19091S-433,30m,250μm,0.25μm;载气-He,流速1mL/min;温度程序:40℃,4min,温度斜率30℃/min,230℃,20min)监测杂质分布。典型地,240g粗产物的蒸馏给出约120g的99.89%纯度的HCF2CH2OC(O)CH3(250-300ppm的H2O)以及80g的99.91%纯度的材料(含有约280ppm的水)。通过用3A分子筛处理从蒸馏产物中去除水,直到水通过卡尔-费歇尔滴定是不可检测的(即,<1ppm)。
双(草酸)硼酸锂纯化(LiBOB)
在氮气吹扫的干燥箱中,通过以下程序纯化双(草酸)硼酸锂(LiBOB,西格玛-奥德里奇公司(Sigma-Aldrich),密尔沃基,威斯康辛州)。将11.25g的LiBOB添加至具有50mL无水乙腈的400mL的烧杯中。将该混合物搅拌并加热至40℃持续约30分钟。将温热的混合物通过Whatman#1过滤器过滤并转移至第二个烧杯内并使其冷却至室温。获得澄清溶液。向该澄清溶液中添加约50mL冷无水甲苯(-30℃)。将其搅拌持续附加的30分钟以形成沉淀物。将该溶液通过Whatman#1过滤器过滤并将滤饼再次用冷无水甲苯洗涤。在使该滤饼在真空过滤漏斗上干燥之后,将固体从干燥箱中移除并放置于130℃下的真空烘箱中,并且用轻微的氮气吹扫干燥持续15小时以形成最终产物,随后将其在氮气吹扫的干燥箱中处理。
合成3-氟-1,3-丙烷磺内酯(FPS)(材料化学期刊A(J.Mater.Chem.A),2013,1,11975/KR10-0908570B1 2009)
3-氯-1,3-丙烷磺内酯
在具有冷凝器的250-mL的3颈RB中,将25g的1,3-丙烷磺内酯(0.20mol;mp=30℃;bp=180℃/30托;D=1.39;≥99%Aldrich 291250)在80℃油浴中在氮气下磁力搅拌。在2.25小时内通过PTFE管使用注射泵以0.15mL/min沿着冷凝器口滴加磺酰氯(22mL;36.6g;0.27mol;mw=134.97;bp=68℃;D=1.67;Aldrich 157767)。在磺酰氯添加过程中在30-min的间隔下以0.5-mL的增量添加200mg的2,2-偶氮二异丁腈(AIBN;Vazo 64;0.6mmol;mw=164.21;Aldrich 441090)在5mL二氯甲烷(DCM)中的溶液,当磺酰氯添加开始时第一AIBN添加发生并且在所有的磺酰氯已经添加之后每半小时地继续。通过1H NMR每小时地分析该反应。在4.5小时下添加20mg的AIBN在0.5mL的DCM中的最终部分;在45min之后,用氮气冲洗该反应持续约10分钟以蒸发掉磺酰氯,并且使该混合物冷却至RT过夜。
第二天,将该反应加热至80℃,并使氮气流通过持续20min以蒸发残留的磺酰氯。然后在3.25小时内经由注射泵以0.1mL/min沿着冷凝器口滴加磺酰氯(20mL;33.4g;0.25mol)。在磺酰氯添加开始时添加25mg的AIBN在1mL的DCM中的溶液,并且每30min进行新鲜制成的1mL的DCM中的25mg的AIBN的后续添加持续3.5小时。通过1H NMR每小时地分析该反应。在6小时之后,添加1mL的DCM中的25mg的AIBN,并且一小时后进行NMR。1H NMR示出仅仅1.5%的1,3-丙烷磺内酯保持未反应。
在另一个2小时之后将该反应冷却至室温。将该反应混合物旋转蒸发以产生31.9g呈浅黄色液体的氯-1,3-丙烷磺内酯。
1H NMR(CDCl3):2.63ppm(五重峰,J=7.2Hz,0.12H,PS);2.87(dddd(d of d of dof d),J=1.3,2.3,7.3,14.2Hz,3.1H,3Cl);3.14-3.22(m,3.1H,3Cl);3.44-3.51(m,4H,3Cl);3.55-3.61(m,3.1H);3.84(dd(d of d),J=7.8,14.1Hz,1H,2Cl);4.02-4.09(m,1.6H);4.47(dd,J=5.2,10.2Hz,1H);4.76(dd,J=5.8,10.2Hz,0.9H,2Cl);4.86(m,0.9H,2Cl);4.98(d,J=6.0Hz,1.1H);6.37(s,1H);6.44(d,J=5.1Hz,3H,3Cl)
3-氟-1,3-丙烷磺内酯
将在具有冷凝器的200-mL的RB烧瓶中的粗氯-1,3-丙烷磺内酯(31.8g;0.20mol;75wt%3-氯-1,3-丙烷磺-内酯)、二氟化氢铵(29g;0.51mol;mw=57.04;Aldrich 224820)和碳酸二甲酯(DMC;60mL;Aldrich D152927)的混合物用氮气冲洗并在90℃油浴中搅拌持续15小时。在氮气下将砖红色反应混合物通过硅藻土进行抽滤,并且用二氯甲烷(DCM)冲洗这些固体和该烧瓶。弃去这些固体。将产物滤液从温水浴中旋转蒸发,并且将微红色液体与20mL的DCM混合,在氮气下再次通过硅藻土过滤并且旋转蒸发以提供微红色污泥,将该污泥保持在高真空下持续24小时,产生10.2g产物。用35mL的DCM萃取橙色污泥材料、通过硅藻土过滤并旋转蒸发,产生8.6g与棕色污泥混合的白色固体。
将这些固体溶解于10mL乙酸乙酯中。白色沉淀物开始形成,因此将该混合物置于干冰上持续10min。将冷混合物在氮气下在玻璃烧结漏斗上进行抽滤,用冷EtOAc冲洗并抽吸干燥以产生4.7g黄白色粉末。1H NMR(CDCl3):98.0mol%的3-氟丙烷磺内酯(3-FPS);1.6mol%的EtOAc;0.4mol%的3-氯丙烷-磺内酯(3-Cl PS)。
将产物再溶解于15mL热EtOAc中并蒸发掉约7mL。将浓缩的混合物置于干冰上持续10分钟以再结晶。在氮气下将该混合物通过玻璃烧结漏斗过滤,并用冷EtOAc冲洗,产生3.0g的3-FPS。1H NMR(CDCl3):6.4mol%的EtOAc;0.2mol%的3-Cl PS。将母液浓缩以产生1.0g的3-FPS。1H NMR:5.26mol%的EtOAc;0.26mol%的3-Cl PS。
1H NMR(CDCl3):0.88ppm(t,J=6.9Hz,0.08H);2.03(s,0.02H);2.4(s,0.013H,EtOAc);2.28(s,0.006H);2.74-2.95(m,2.15H,3-FPS);3.40-3.43(m,2.00H,3-FPS);6.19(ddd(d of d of d),J=0.7,3.8,59.0Hz,1.05H,3-FPS)
19F NMR(CDCl3):-118.3ppm(ddd,J=13.0,32.6,59.0Hz,1F)
实例1-18
对比实例A-E
电极制备:
阴极糊剂由以下各项制成:
0.52g炭黑(Super C65,特密高公司(Timcal),韦斯特莱克(Westlake),俄亥俄州)
10.4g 5%的pVDF(Solef 5130,苏威公司(Solvay),西德特福德,新泽西州)在NMP(N-甲基吡咯烷酮(西格玛-奥德里奇公司,密尔沃基,威斯康辛州))中的溶液
3.0g NMP
9.36g NMC 532(大约LiNi0.5Mn0.3Co0.202,宁波金禾公司(Jinhe Ningbo),中国)
首先将炭黑、PVDF溶液、以及NMP在塑料小瓶中结合,并且每次在2000rpm下离心地混合(ARE-310,美国Thinky公司,拉古纳山,加利福尼亚州)两次持续60s。添加阴极活性粉末,并且将该糊剂离心混合两次(在2000rpm下2×1min)。使用转子-定子均化器(型号PT10-35GT,9mm直径转子,Kinematicia,波希米亚,纽约)进一步混合该糊剂。将该糊剂在9500rpm下匀化持续5min。在此时间过程中,移除该小瓶以使该糊剂的各个部分与均化器转子叶片接触。使用离心混合器去除气泡。使用电驱动涂布器(自动下拉机(AutomaticDrawdown Machine)II,保罗N加德纳公司(Paul N.Gardner Co.),波姆庞帕诺滩,佛罗里达州)使用刮刀(102mm宽×0.29mm浇口高度,鸟型涂膜器有限公司(Bird Film ApplicatorInc.),诺福克,维吉尼亚州)将该糊剂浇铸到铝箔(25μm厚,1145-0,Allfoils公司,布鲁克林高地,俄亥俄州)。将电极在机械对流烘箱(型号FDL-115,粘合剂有限公司(BinderInc.),大河(Great River),纽约)中干燥持续30min。在第一个15min过程中将该烘箱中的温度从80℃增加至100℃,并在100℃下保持第二个15分钟。在干燥之后,该阴极的组成是90:5:5wt:wt:wt NMC:pVDF:黑。将该阴极放置在黄铜覆盖片材之间并在100mm直径钢辊之间压延以给出具有约33%的孔隙率和14mg NMC/cm2的负载量的57μm厚的阴极。
阳极是在铜箔上涂覆的石墨:pVDF:炭黑(88:7:5wt:wt:wt)。除了实例9和10(其中石墨是FSNC-1(杉杉科技公司(Shanshan Tech),中国))之外,石墨是G5(G5,康菲公司(Conoco-Philips),休斯顿,得克萨斯州);炭黑是C65。该阳极涂层重量是7.8mg石墨/cm2并且这些阳极被压延至75μm的厚度。
袋式电池
将阴极冲压出成31.3×45mm2尺寸并且将阳极冲压出成32.4×46.0mm2。将Al和Ni极耳超声地焊接到集电体上,并使用箔-聚合物层压袋材料(MTI公司,里士满,加利福尼亚州)组装单层袋式电池。将这些极耳密封至该干燥箱外部的小袋的顶部内,使两侧和底部打开。将该小袋在90℃下在真空下的干燥箱的前室中干燥过夜。在氩气填充的干燥箱内部,在阳极与阴极之间放置微孔聚烯烃隔膜(Celgard 2500,夏洛特,北卡罗来纳州),并且将侧面密封。通过底部注入电解质(350μl),并将底部边缘密封在真空密封器中。
袋式电池评价程序
将这些电池放置在夹具中,通过装配有泡沫垫的铝板这些夹具将320kPa的压力施加在电极上。将这些电池保持在25℃环境室中并使用电池测试仪(4000系列,Maccor公司,塔尔萨,俄克拉菏马州)进行评价。在以下程序中,假设该电池将具有170mAh每g的NMC的容量,确定C-速率的电流。因此,在该测试仪中分别使用该电池中的8.5、42.5、以及170mA的电流每克的NMC,实施0.05C、0.25C、以及1.0C的电流。
该程序的步骤如下:
1.开路(OC)下的过夜润湿
2.第一次充电
3.在OC下的老化
4.使电池进入干燥箱中,打开以释放化成气体,真空再密封
5.完成第一次充电的剩余部分
6.在0.5C下CC放电至3.0V
7.第二循环:容量检查(以与存储后的保留容量和恢复容量进行比较)。0.2C的第二CC充电至4.35V+CV至0.05C:在0.2C下CC放电至3.0V初始容量=第二循环放电容量
8.第3-第6循环:在170mA/g-1C下CC充电至4.35V+CV至8.5mA/g;在1.0C下CC放电至3.0V
9.在1.0C下第7次CC充电4.35V+CV至0.05C
10.从该夹具上拆卸;测量在化成之后的电池体积(VF)
11.在90℃下储存电池持续4h
12.测量储存之后的电池体积(VS);在储存过程中产生的气体被计算为GS=VS-VF;在储存过程中产生的气体(对于电池容量标准化的)被计算为来自循环的气体=GS/初始容量(单位cc/Ah)
13.将该电池重新安装在该夹具中;0.5C第7次CC放电至3.0V
保留容量=第7次放电容量
保留%=保留容量/初始容量
14.第8次-第9次:2个循环容量检查:0.2C的CC充电至4.35V+CV至0.05C;0.2C的CC放电至3.0V
恢复容量=第9次放电容量
恢复%=恢复容量/初始容量
电池体积测量
用碳酸亚丙酯(PC,流体密度(df)=1.204g/cc)填充矩形烧杯(典型地130×27×75mm HXWXL),将该烧杯放置在配备有防护罩的天平上并且使其位于化学通风橱中,并且使该天平去皮重。所使用的天平具有600g容量以及或者0.01g或0.001g的分辨率。将细线附接到具有小片胶带的电池上,将该电池悬浮(完全浸入)在该PC中,并且记录该悬浮电池的质量读数(ms)。对于浸入在密度df的流体中的体积V的电池,该流体将向上浮力ms施加在该电池上,其作为力ms被传递到天平盘。使用阿基米德原理将该电池的体积V计算为V=ms/df。
在其中90℃储存已经产生足够气体使得该电池漂浮在该PC中的情况下,使用小片胶带将质量mw和密度dw=8.00g/cc的304不锈钢法码附接到该小袋上,记录该悬浮的电池+法码的天平读数ms,并且将该电池体积V计算为:
V=(ms/df)-(mw/dw)。
下表1示出了对于一系列电解质配制品,在储存过程中产生的气体(GS)(如以上描述计算的)以及恢复容量(恢复Cap,如以上描述的)。所有实例和对比实例使用二氟乙基乙酸酯(DFEA)/碳酸亚乙酯(EC)/LiPF6基础电解质(70溶剂wt%DFEA、30溶剂wt%EC,1MLiPF6)与指定重量百分比的添加剂双(草酸)硼酸锂(LiBOB)、1,3-丙烷磺内酯(PS,西格玛-奥德里奇化学公司(Sigma-Aldrich Chem.))、和/或1,8-萘磺内酯(NS,西格玛-奥德里奇化学公司)。也就是说,在实例1中,该电解质组合物包含98.5wt%的基础电解质、0.5wt%的LiBOB、以及1%的PS。在使用之前通过升华纯化PS和NS。如在此处的材料和方法部分中描述的合成3-氟-1,3-丙烷磺内酯(FPS)。碳酸亚乙烯酯(VC,西格玛-奥德里奇公司(Sigma-Aldrich Co.))具有通过使VC通过氧化铝的短柱而去除的其BHT抑制剂。
表1.实例1-18和对比实例A-E的结果
实例13和14示出了,在具有氟化溶剂DFEA、有机碳酸酯EC和电解质盐LiPF6的电解质配制品中,PS的添加相对于没有磺内酯的电解质(对比实例E)减少了气体。实例1、2、9、10、17和18示出了,与含有LiBOB但没有磺内酯的电解质(对比实例A和B)相比,当将磺内酯PS或FPS添加至还含有LiBOB的电解质中时,气体甚至进一步减少。实例9和10,以及5和6示出了,含PS的电解质具有比没有PS的相同电解质(对比实例A和B以及对比实例C和D)更高的恢复容量。
实例19以及实例20
对比实例F至K
除了如以下注意的之外,如以上对于实例1-16描述的进行相同的程序。
阴极的制备
使用聚酰亚胺/碳复合材料在铝箔集电体上制备底漆
为了制备聚酰胺酸,首先制备预聚物。使用0.98:1的PMDA/ODA(均苯四酸二酐//ODA(4,4'-二氨基二苯基醚)预聚物)的化学计算量制备20.6wt%的PMDA:ODA预聚物。这通过在温和搅拌下在室温下在大约45分钟的过程内将ODA溶解于N-甲基吡咯烷酮(NMP)中进行制备。将PMDA粉末(以小等份)缓慢添加至该混合物中以控制该溶液中的任何温度升高;在大约2小时内进行PMDA的添加。在受控制的温度条件下添加并且搅拌所得溶液。聚酰胺酸的最终浓度是20.6wt%并且酸酐与胺组分的摩尔比是大约0.98:1。
在单独的容器中,通过将1.00g的PMDA(Aldrich 412287,艾伦镇,宾夕法尼亚州)和15.67g的NMP(N-甲基吡咯烷酮)结合来制备6wt%的苯均四酸酐(PMDA)溶液。将4.0克该PMDA溶液缓慢添加至该预聚物中并将粘度增加至大约90,000泊(如通过布氏粘度计-#6转子测量的)。这导致最终预聚物溶液,其中计算的最终PMDA:ODA比率是1.01:1。
然后将5.196克最终预聚物用15.09克NMP稀释以产生5wt%溶液。在小瓶中,将16.2342克稀释的最终预聚物溶液添加至0.1838克TimCal Super C-65炭黑中。对于3.4wt%的最终固体含量,将其用9.561克NMP进一步稀释,具有2.72的预聚物:碳比率。Paasche VL# 3 Airbrush喷雾器(帕舍喷枪公司(Paasche Airbrush Company),芝加哥,伊利诺伊州)用于将该材料喷雾到铝箔(25μm厚,1145-0,Allfoils公司,布鲁克林高地,俄亥俄州)上。在喷雾之前称量该箔以确定必要的涂层达到0.06mg/cm2的所希望的密度。然后使该箔平滑在玻璃板上,并手动地用喷枪喷雾直到涂覆。然后将该箔在热板上在125℃下干燥,并测量以确保达到所希望的密度。发现该箔涂覆有0.06mg/cm2的聚酰胺酸。一旦该箔被干燥并且处于所希望的涂层,该箔在400℃下遵循以下酰亚胺化程序被酰亚胺化:
40℃至125℃(以4℃/min的斜率)
125℃至125℃(浸泡30min)
125℃至250℃(以4℃/min的斜率)
250℃至250℃(浸泡30min)
250℃至400℃(以5℃/min的斜率)
400℃至400℃(浸泡20min)
将阴极电活性层涂覆到涂底漆的Al箔上
糊剂的制备
所用的粘合剂是5130(苏威公司,休斯顿,得克萨斯州)粘合剂,将该粘合剂稀释至NMP(N-甲基吡咯烷酮,西格玛奥德里奇公司,圣路易,密苏里州)中的5.5%溶液。以下材料用于制造电极糊剂:6.0352g的Farasis NMC111(Ni、Mn、Co,法拉赛斯能源公司,海沃德,加利福尼亚州)阴极活性粉末;0.3342g炭黑(未压缩的Denka,电气化学公司(DENKACorp.),日本);用2.1491g的NMP(部分1)+0.3858g的NMP(部分2)(西格玛奥德里奇公司)稀释的6.0971g的PVDF(聚偏二氟乙烯(5130)。如以下描述的,将这些材料以90:5:5阴极活性粉末:PVDF:炭黑的比例结合。最终的糊剂含有44.7wt%的固体。NMC 111含有大约等摩尔量的Ni、Mn和Co。
首先将炭黑、第一部分的NMP和PVDF溶液在塑料THINKy容器中结合,并且以2000rpm离心地混合(ARE-310,美国Thinky公司,拉古纳山,加利福尼亚州)持续2分钟。添加阴极活性粉末和第二部分的NMP并且将该糊剂以2000rpm再一次离心混合持续2分钟。将超声变幅杆浸入至该糊剂中并且施加超声能量持续大约三秒。
如在以上程序中描述的,用聚酰亚胺/碳底漆预处理该铝箔(25μm厚,1145-0,Allfoils公司,布鲁克林高地,俄亥俄州)。
涂覆并且压延该阴极电极
使用具有5密耳浇口高度加上2密耳胶带以产生7密耳的总浇口开口的刮刀手动地将该糊剂浇铸到该涂底漆的铝箔上。将这些电极在90℃下在真空烘箱中干燥持续60分钟。将所得51-mm宽的阴极放置在125mm厚的黄铜片材之间并使用100mm直径的钢辊在125℃下通过压延机三次(在每次通过中具有压力增加,在18psi、24psi、以及30psi的压力下)。该压延机被设置为具有夹力(以磅计)=37.8×调节器压力(psi)。阴极活性材料的负载量是大约13.0-13.2mg/cm2
阳极的制备
以下是用于制备实例19和20中使用的阳极的典型程序。由以下材料制备阳极糊剂:5.00g石墨(G5,康菲公司,休斯顿,得克萨斯州);0.2743g炭黑(Super C65,特密高公司,韦斯特莱克,俄亥俄州);3.06g的PVDF(在NMP中13%,KFL#9130,美国吴羽公司(Kureha America Corp.));11.00g的1-甲基-2-吡咯烷酮(NMP);以及0.0097g草酸。如以下描述的,将这些材料以88:0.17:7:4.83石墨:草酸:PVDF:炭黑的比例结合。最终的糊剂含有29.4%的固体。
将草酸、炭黑、NMP和PVDF溶液在塑料小瓶中结合。使用行星式离心混合器将这些材料在2000rpm下混合持续60s。第二次重复该混合。然后添加石墨。将所得糊剂离心混合两次。将该小瓶安装在冰浴中并使用转子-定子每次以6500rpm均化两次持续15min并且然后以9500rpm再均化两次持续15min。其中定子轴进入该小瓶的点用铝箔包裹以使进入该小瓶的水蒸气最小化。在四个均化周期中的每一个之间,将该匀化器移动到该糊剂小瓶中的另一个位置。然后将该糊剂离心混合三次。
使用自动涂布器使用具有230μm浇口高度的刮刀将该糊剂浇铸到铜箔(CF-LBX-10,福田公司(Fukuda),京都,日本)上。将这些电极在机械对流烘箱中在95℃下干燥持续30min。将所得51-mm宽的阳极放置在125μm厚的黄铜片材之间并使用100mm直径的钢辊在环境温度下通过压延机三次(在每次通过中具有夹力增加,在260kg下开始与在770kg下的最终通过)。
该阳极活性组分的负载量是大约8.6-8.8mg/cm2
袋式电池
将阴极冲压出成31.3mm×45mm尺寸并且将阳极冲压出成32.4mm×46.0mm。将Al和Ni极耳超声地焊接到集电体上,并使用箔-聚合物层压袋材料(MTI公司,里士满,加利福尼亚州)组装单层袋式电池。将这些极耳密封至该干燥箱外部的小袋的顶部内,使两侧和底部打开。将该小袋在90℃下在真空下的干燥箱的前室中干燥过夜。在氩气填充的干燥箱内部,在阳极与阴极之间放置微孔聚烯烃隔膜(Celgard 2500,夏洛特,北卡罗来纳州),并且将侧面密封。通过底部注入电解质(300μl),并将底部边缘密封在真空密封器中。将这些电池安装在夹具中,这些夹具经由泡沫垫将0.32MPa的压力施加至该小袋的活性区域中。
电解质的制备
通过在氮气吹扫的干燥箱中将70重量%的2,2-二氟乙基乙酸酯和30wt%的碳酸亚乙酯(EC,巴斯夫公司(BASF),独立城,俄亥俄州)结合来制备该电解质。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,添加LiPF6(六氟磷酸锂(巴斯夫公司,独立城,俄亥俄州))以制成在1M浓度下的配制的电解质。
对于实例19和20,将1.9203g以上配制的电解质与0.0409g纯化的LiBOB以及0.0400g的1,3-丙烷磺内酯(奥德里奇公司,密尔沃基,威斯康辛州)结合。
对于对比实例F至K,使用相同的程序,除了以下差异。阴极活性负载量和阳极活性负载量对于对比实例F、G和H分别是大约12.4-14.0mg/cm2和8.8-9.5mg/cm2,并且对于对比实例J和K分别是12.1-12.4mg/cm2和8.6-8.7mg/cm2
对于对比实例F、G和H,通过在氮气吹扫的干燥箱中将70重量%的2,2-二氟乙基乙酸酯和30wt%的碳酸亚乙酯(EC,巴斯夫公司,独立城,俄亥俄州)结合来制备电解质组合物。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,添加LiPF6(六氟磷酸锂(巴斯夫公司,独立城,俄亥俄州))以制成在1M浓度下的配制的电解质。不包括附加的添加剂。
对于对比实例J和K的电解质组合物,将配制的电解质与足够的LiBOB结合以制备含有2重量百分比LiBOB的电解质组合物。
将这些电池充电并如以上描述的测量形成的气体的量。在表2中示出了百分比体积变化。
表2.
实例19和20以及对比实例F-K的结果
实例19和20的结果示出了将LiBOB和1,3-丙烷磺内酯添加至该电解质组合物中降低了在电池中形成的气体的量。
对比实例L、N、M和O
实例21-32
如以上对于实例1-16描述的制造阴极。阳极是从Commissariat a I'energieatomique et aux energies alternatives公司(Commissariat a I'energie atomiqueet aux energies alternatives),格勒诺布尔,法国(CEA)获得的。该阳极组合物是具有2.6%的CMC-SBR粘合剂的97.4wt%石墨(Hitachi SMGNHE2)。将阳极从水性糊剂涂覆到12μm厚的铜箔的两侧上,干燥并压延至30%-33%的孔隙率。除了所使用的小袋材料是来自昭和登高公司(Showa Denko)(大阪,日本)的等级C4之外,如以上对于实例1-16描述的制作32mAh标称容量的单层袋式电池。对比实例L和M以及实例21和22与表中的其他电池的不同在于,它们具有两个隔膜而不是一个,在这两个隔膜之间引入50μm直径的镍丝充当第三电极,并且通过泡沫垫施加的压力被减少至150kPa。
表3的所有电池都填充有400μl的电解质。所有电解质均使用1M的LiPF6盐。对于对比实例N和O以及实例23-31,首先将基础电解质溶剂结合,通过分子筛干燥,添加LiPF6盐,并且然后添加干燥且纯化的添加剂(表3中“+”符号后列出的)。对于对比实例L和M以及实例21-22,首先将所列重量百分比的指示组分(包括PS)结合,并且然后添加足够的LiPF6以制成1M。碳酸氟代亚乙酯(4-氟-1,3-二氧环戊-2-酮,FEC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)作为电池等级从巴斯夫公司获得。丙酸乙酯(EP)是从西格玛-奥德里奇公司获得的,并使用旋转带柱进行蒸馏。硫酸亚乙酯(ES)(西格玛-奥德里奇公司)是通过溶解在乙腈(AN)中、用分子筛干燥、蒸发AN、并且然后在真空下在55℃下升华来纯化的。
遵循在此以上描述的步骤1-8,在25℃下使袋式电池经受化成。在第6次循环后,将它们转移到45℃下的室中,并如以上步骤8中经受循环。极化电阻Rp是通过以下方式计算的:取在45%与55%之间的充电状态测量的平均电池电压(同时该电池在45℃下在第6次循环中在1C下充电),减去在55%与45%之间的充电状态的平均电池电压(同时该电池在1C下放电),并将该差值除以对应于1C的电流密度(以A/cm2计)的两倍;值提供在表3中。Rp是电池的电阻的量度,并且较低的Rp值是所希望的。较低的Rp值与电池的增加的往返能量效率(放电能量/充电能量)相关。循环寿命是将放电容量减少至在第一30个循环中获得的最大容量的80%所需的循环的数目。
表3.对比实例L、M、N和O以及实例21-32的结果。
总体上,实例21-32的电解质组合物具有比具有相同基础溶剂的对比实例L、M、N和O的Rp更低的Rp。确切地,当对比实例L和M中的非氟化酯EP被氟化酯DFEA替换时,Rp从41-43减少到37-38ohmcm2的范围,并且循环寿命增加了90%。当1%LiBOB+2%ES的添加剂混合物(对比实例N和O)具有一半的ES被PS替换以给出1%LiBOB+1%ES+1%PS的添加剂混合物(实例26)时,Rp从37-41减少到31-34的范围,并且循环寿命(平均)增加了65%。当有机碳酸酯EC被实例27-32中的有机碳酸酯FEC替换时,获得了循环寿命的进一步增加。
对比实例P
实例33
阴极制备
制备LiMn1.5Ni0.45Fe0.05O4(Fe-LNMO)阴极活性材料
以下是用于制备在对比实例P和实例33中使用的阴极活性材料的典型程序。
对于LiMn1.5Ni0.45Fe0.05O4的制备,将401g乙酸锰(II)四水合物(奥德里奇公司,密尔沃基,威斯康辛州,产品号63537)、125g乙酸镍(II)四水合物(奥德里奇公司,产品号72225)和10g无水乙酸铁(II)(阿法埃莎公司(Alfa Aesar),沃德山,南达科他州,产品号31140)称重至天平上的瓶子中,然后溶解在5.0L去离子水中。将KOH粒料溶解在10L去离子水中以在30L反应器内产生3.0M溶液。将含有金属乙酸盐的溶液转移至加料漏斗中并滴入快速搅拌的反应器内以使混合的氢氧化物材料沉淀。一旦将所有5.0L的金属乙酸盐溶液添加至该反应器中,继续搅拌持续1h。然后,停止搅拌并使沉淀物沉降过夜。在沉降之后,从该反应器中去除液体,并添加15L新鲜的去离子水。将该反应器的内容物搅拌,使其再次沉降,并去除液体。重复此冲洗过程。然后,将该沉淀物转移至用纸覆盖的两个(平均分配的)粗玻璃料过滤漏斗中。用去离子水冲洗这些固体直至滤液pH达到6.0(去离子冲洗水的pH),并向每个滤饼中添加另外20L去离子水。最后,将饼在120℃下的真空烘箱中干燥过夜。此时的产率典型地是80%-90%。
将该氢氧化物沉淀物研磨并与碳酸锂混合。使用Pulverisette自动研钵和研杵(弗里奇公司(FRITSCH),德国)以50g分批完成此步骤。对于每批,称重该氢氧化物沉淀物,然后在Pulveresette中单独研磨持续5min。然后,将以少量过量的化学计算量的碳酸锂添加至该体系中。对于50g氢氧化物沉淀物,添加10.5g碳酸锂。继续研磨持续总共60min,其中每10-15min停止以用锋利的金属抹刀从该研钵和研杵的表面刮掉材料。如果湿度导致材料形成团块,则在研磨过程中将其通过40目的筛进行筛分一次,然后在研磨后再次筛分。
在空气箱式炉中在浅矩形氧化铝盘内烧制研磨的材料。这些盘尺寸为158mm×69mm,并且每个保持约60g的材料。该烧制程序由15h内从室温升温至900℃、在900℃下保持持续12h、然后在15h内冷却至室温组成。
在烧制后,将该粉末球磨以减小粒度。然后,将54g粉末与54g异丙醇以及160g的5mm直径的氧化锆珠在聚乙烯罐内部混合。然后将该罐在一对辊上旋转持续6h以研磨。通过离心分离该浆料,并将该粉末在120℃下干燥以去除水分。
如在此以上对于实例19和20描述的,进行使用聚酰亚胺/碳复合材料在铝箔集电体上的底漆的制备。
糊剂的制备
以下是用于制备阴极的典型程序。粘合剂作为聚偏二氟乙烯在N-甲基吡咯烷酮(5130(苏威公司,休斯顿,得克萨斯州))中的5.5%溶液获得。以下材料用于制造电极糊剂:4.16g
如以上制备的LiMn1.5Ni0.45Fe0.05O4阴极活性粉末;0.52g炭黑(未压缩的Denka,电气化学公司,日本);4.32g的PVDF(聚偏二氟乙烯)溶液;以及7.76g+1.40g的NMP(西格玛奥德里奇公司)。如以下描述的,将这些材料以80:10:10阴极活性粉末:PVDF:炭黑的比例结合。最终的糊剂含有28.6%的固体。
首先将炭黑、第一部分的NMP和PVDF溶液在塑料小瓶中结合,并且每次以2000rpm离心地混合(ARE-310,美国Thinky公司,拉古纳山,加利福尼亚州)两次持续60s。添加该阴极活性粉末和第二部分的NMP,并且将该糊剂离心混合两次(在2000rpm下2×1min)。将该小瓶放置于冰浴中,并且将均化器(型号PT 10-35GT,7.5mm直径定子,Kinematicia,波希米亚,纽约)的转子-定子轴插入至该小瓶内。用铝箔包裹在该小瓶顶部与该定子之间的间隙以使进入该小瓶内的水最小化。将所得糊剂每次以6500rpm均化两次持续15min,并且然后以9500rpm再均化两次持续15min。在四个均化周期中的每一个之间,将该匀化器移动到该糊剂小瓶中的另一个位置。
使用自动涂布器(AFA-II,MTI公司,里士满,加利福尼亚州)使用具有0.41-0.51mm浇口高度的刮刀将该糊剂浇铸到铝箔(25μm厚,1145-0,Allfoils公司,布鲁克林高地,俄亥俄州)上。将电极在95℃下在机械对流烘箱(型号FDL-115,粘合剂有限公司,大河,纽约)中干燥持续30min。将所得51-mm宽的阴极放置在125mm厚的黄铜片材之间并使用100mm直径的钢辊在环境温度下通过压延机三次(在每次通过中具有夹力增加,在260kg下开始与在770kg下的最终通过)。阴极活性材料的负载量是7至8mg/cm2
代表性阳极制备
以下是用于制备阳极的典型程序。由以下材料制备阳极糊剂:5.00g石墨(G5,康菲公司,休斯顿,得克萨斯州);0.2743g炭黑(Super C65,特密高公司,韦斯特莱克,俄亥俄州);3.06g的PVDF(在NMP中13%,KFL#9130,美国吴羽公司);11.00g的1-甲基-2-吡咯烷酮(NMP);以及0.0097g草酸。如以下描述的,将这些材料以88:0.17:7:4.83石墨:草酸:PVDF:炭黑的比例结合。最终的糊剂含有29.4%的固体。
将草酸、炭黑、NMP和PVDF溶液在塑料小瓶中结合。使用行星式离心混合器将这些材料在2000rpm下混合持续60s。第二次重复该混合。然后添加石墨。将所得糊剂离心混合两次。将该小瓶安装在冰浴中并使用转子-定子每次以6500rpm均化两次持续15min并且然后以9500rpm再均化两次持续15min。其中定子轴进入该小瓶的点用铝箔包裹以使进入该小瓶的水蒸气最小化。在四个均化周期中的每一个之间,将该匀化器移动到该糊剂小瓶中的另一个位置。然后将该糊剂离心混合三次。
使用自动涂布器使用具有230μm浇口高度的刮刀将该糊剂浇铸到铜箔(CF-LBX-10,福田公司,京都,日本)上。将这些电极在机械对流烘箱中在95℃下干燥持续30min。将所得51-mm宽的阳极放置在125μm厚的黄铜片材之间并使用100mm直径的钢辊在环境温度下通过压延机三次(在每次通过中具有夹力增加,在260kg下开始与在770kg下的最终通过)。阳极活性材料的负载量是3至4mg/cm2
电解质的制备
如在此以上描述的制备2,2-二氟乙基乙酸酯。如表1中的实例描述的纯化双(草酸)硼酸锂。
通过在氮气吹扫的干燥箱中将70重量百分比的2,2-二氟乙基乙酸酯和30重量百分比的碳酸亚乙酯(EC,巴斯夫公司,独立城,俄亥俄州)结合来制备该电解质。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,添加LiPF6(六氟磷酸锂,巴斯夫公司,独立城,俄亥俄州)以制成在1M浓度下的配制的电解质。该电解质组合物被用于对比实例P中。
将1.88g以上混合物与0.04g纯化的LiBOB、0.04g碳酸氟代亚乙酯和0.04g丙烷磺内酯结合以产生实例33的电解质配制品。
钮扣电池制作
将14.3mm直径的圆形阳极和12.7mm直径的阴极从以上描述的电极片材中冲压出,放置在手套箱(真空气氛公司(Vacuum Atmospheres),霍桑,加利福尼亚州,具有HE-493净化器)的前室中的加热器中,进一步在真空中在90℃下干燥过夜,并且使进入氩气填充的手套箱内。制备非水性电解质锂离子CR2032钮扣电池用于电化学评价。钮扣电池零件(壳、垫片、波形弹簧、垫圈和盖)和钮扣电池卷边器是从Hohsen公司(大阪,日本)获得的。隔膜是Celgard 2500(卡尔格德/Polypore国际公司(Celgard/Polypore International),夏洛特,北卡罗来纳州)。
在25℃下钮扣电池化成
使用商业电池测试仪(4000系列,Maccor公司,塔尔萨,俄克拉菏马州)、在环境温度下使用在3.4-4.9V的电压限制之间的恒定电流充电和放电并且使用12mA的恒定电流(CC)每g的阴极活性材料使这些钮扣电池循环两次用于化成。
在55℃下钮扣电池评价
在化成程序之后,将这些电池放置在55℃下的烘箱中,并且使用在3.4-4.9V的电压限制之间的恒定电流充电和放电、在240mA的电流每克的阴极活性材料下循环,其大约是2C速率持续250个循环。
对于含有对比实例P和实例33的电解质组合物的纽扣电池,在表4中以如所制作的电池容量的百分比给出了在55℃下250个循环下的放电容量保持率。通过将阴极活性材料的质量乘以120mAh/g来计算如所制作的电池容量,其是阴极活性材料的质量标准化的容量。
表4.来自对比实例P和实例33的钮扣电池循环数据的容量保持率。
表4中的结果示出了,使用各自为2重量百分比的LiBOB、FEC和丙烷磺内酯与含有1M的LiPF6的70/30的2,2-二氟乙基乙酸酯/碳酸亚乙酯的基础溶剂提供了大大改进的容量保持率。
实例34a和34b
70/30 DFEA/FEC+2wt%LiBOB+2wt%1,3-丙烷磺内酯
材料:
如在此以上描述的制备在以下实例和对比实例中使用的2,2-二氟乙基乙酸酯(DFEA)。
用于纯化双(草酸)硼酸锂的代表性程序如下。在氮气吹扫的干燥箱中,使用以下程序纯化双(草酸)硼酸锂(LiBOB,西格玛奥德里奇公司,757136-25G)。将25克LiBOB添加到配备有特氟隆涂覆的搅拌棒的500mL锥形烧瓶中。向其中添加125mL无水乙腈(西格玛奥德里奇公司,Fluka,分子筛)。使用油浴将该烧瓶在45℃下加热持续10分钟。将该混合物通过细孔玻璃料(Chemglass,F,60mL)过滤至使用真空的500mL过滤烧瓶内。使该溶液冷却至室温,形成澄清溶液,并添加125mL冷甲苯(来自-25℃下的冷冻机,西格玛奥德里奇公司)。观察到立即沉淀并使该混合物静置持续20分钟以使附加的固体形成。将该溶液通过细孔玻璃料(Chemglass,F,60mL)过滤至500mL圆底内。将滤饼用冷无水甲苯(2×20mL)洗涤并使用玻璃漏斗转移至圆柱形长颈烧瓶中。将该烧瓶紧紧加盖,从手套箱中移出,并附接到Kugelrohr上,其随后被附接到高真空中。将该烧瓶在高真空(60-100毫托)下在室温下干燥过夜,并且然后在140℃下在高真空(60-80毫托)下干燥持续另外三天。此时,将该烧瓶加盖并返回到该干燥箱中用于所有进一步处理。
纯化1,3-丙烷磺内酯(PS)
通过以下程序进一步纯化1,3-丙烷磺内酯(奥德里奇公司,密尔沃基,威斯康辛州)。将5g的1,3-丙烷磺内酯(奥德里奇公司,密尔沃基,威斯康辛州)装入至干燥的玻璃升华器中。将压力降低至约1.8托。将干冰添加至指形冷冻器中。将升华器在75℃油浴中加热持续大约3小时。将该升华器转移到氮气干燥箱中并拆开以收获纯化的1,3-丙烷磺内酯。
合成2,2-二氟乙基甲基碳酸酯(DFEMC)
当404mL的2,2-二氟乙醇(DFE;525g;6.40mol;mw=82.05;D=1.30;bp=95℃;Synquest 2101-3-02)和11.6g的4-(二甲基氨基)吡啶(DMAP;94.9mmol;1.5mol%;mw=122.17;Aldrich 107700)在4644mL二氯甲烷(DCM)中的溶液在氮气下在具有底部排泄阀、冷凝器、顶置式搅拌器和滴液漏斗的20-L夹套烧瓶中搅拌时,经由循环冷冻器冷却该溶液。一次全部添加水性NaOH(441ml;50wt%NaOH;8.3mol;30%过量;0.75g NaOH/mL;18.8M;D=1.52;Aldrich 415413),并且将该混合物搅拌并冷却至1℃。当以5-10mL/min添加584ml冷氯甲酸甲酯(MCF,712g;7.54mol;18%过量;mw=94.50;D=1.22;bp=70℃;AldrichM35304)时,迅速搅拌该混合物。将该冷冻器设置在-20℃下以维持反应温度在2℃-3℃下。在已经添加了约一半MCF后,水相中的盐结晶,并且在不存在液体水性NaOH下,该反应基本上停止。添加水(300mL)以使盐液化并再次进行该反应。当已经添加了所有MCF(1.5h的总添加时间)时,将二氯甲烷溶液取样并通过气相色谱法(30-m DB-5;30℃/5min,然后10℃/min;He:13.8cc/min):0.97min(0.006%,DFE);1.10min(61.09%,DCM);1.92min(0.408%,碳酸二甲酯,DMC);4.38min(38.464%,2,2-二氟乙基甲基碳酸酯,DFEMC)进行分析。DFEMC:DFE=6410;DFEMC:DMC=94。经由底阀抽取二氯甲烷产物溶液,并用水洗出该烧瓶;然后使该二氯甲烷溶液返回到该烧瓶中,并顺序地用2×750mL的5%盐酸、接着是1.5L饱和碳酸氢钠搅拌,并且最后用硫酸镁干燥。
在约40℃/500托下从5升烧瓶中通过顶部带有简单蒸馏头的12”空柱蒸馏出二氯甲烷。然后,在100°/250托下蒸馏残留的罐材料,以产生866g粗2,2-二氟乙基甲基碳酸酯;GC分析示出了DFE 0.011%;DCM 4.733%;DMC 0.646%;DFEMC 94.568%;双(2,2-二氟乙基)碳酸酯(BDFEC)0.043%。这是91%产率的2,2-二氟乙基甲基碳酸酯。通过装填有0.16英寸SS316丝网鞍的18”玻璃柱在285托下从95℃-113℃浴中再蒸馏粗DFEMC。在约90℃/285托下从105℃-113℃浴中蒸馏馏分7-10。在表5中提供了这些馏分的GC-FID分析。罐(25g)主要是BDFEC。
表5通过GC-FID分析的蒸馏馏分组成
馏分 DFE% DMC% DFEMC% BDFEC% 产量,g
7 0.0089 0.8403 99.0496 0.0500 501
8 0.0019 0.0023 99.9283 0.0522 128
9 0.0094 0.0300 99.3358 0.5787 61
10 0.0110 - 99.0150 0.9240 11
将馏分7-9结合并在部分真空(70托)下从100℃油浴中通过装填有0.16英寸SS316丝网鞍(Ace Glass 6624-04)的20-cm×2.2cm柱蒸馏成四种馏分:#1(23g)、#2(20g)、#3(16g)和#4(13g),以去除DFE。通过GC分析馏出物的DFE含量:#1(0.100%)、#2(0.059%)、#3(0.035%)和#4(0.026%)。通过GC-FID分析罐材料(602g):DFE 0.0016%;DMC 0.1806%;DFEMC 99.6868%;BDFEC 0.1132%。DMC、DFEMC和BDFEC的总和占产物的99.9808%,其含有16ppm的DFE。该产物还含有通过卡尔-费歇尔滴定的18ppm水。
阴极的制备
如对于实例19和20描述的,进行使用聚酰亚胺/碳复合材料在铝箔集电体上的底漆的制备。
将该阴极电活性层涂覆到该涂底漆的Al箔上
糊剂的制备
所用的粘合剂是5130(苏威公司,休斯顿,得克萨斯州)粘合剂,将该粘合剂稀释至NMP(N-甲基吡咯烷酮,西格玛奥德里奇公司,圣路易,密苏里州)中的5.5%溶液。以下材料用于制造电极糊剂:6.0410g的Farasis 1,1,1NMC(NiCoMg,法拉赛斯能源公司,海沃德,加利福尼亚州)阴极活性粉末;0.3332g炭黑(未压缩的Denka,电气化学公司,日本);6.1100g的PVDF(聚偏二氟乙烯)溶液;以及2.1501g(部分1)+0.3900g的NMP(部分2)(西格玛奥德里奇公司)。如以下描述的,将这些材料以90:5:5阴极活性粉末:PVDF:炭黑的比例结合。最终的糊剂含有44.7wt%的固体。
首先将炭黑、第一部分的NMP和PVDF溶液在塑料THINKy容器中结合,并且以2000rpm离心地混合(ARE-310,美国Thinky公司,拉古纳山,加利福尼亚州)持续2分钟。添加该阴极活性粉末和第二部分的NMP并且将该糊剂以2000rpm再一次离心混合持续2分钟。然后将该糊剂浸入声波变幅杆中持续3秒。
用聚酰亚胺/碳底漆预处理该铝箔(25μm厚,1145-0,Allfoils公司,布鲁克林高地,俄亥俄州)。
涂覆并且压延该阴极电极
使用具有5密耳浇口高度加上1/2密耳胶带的刮刀手动地将该糊剂浇铸到该涂底漆的铝箔上。将这些电极在真空烘箱中在90℃下干燥持续60min。将所得51-mm宽的阴极放置在125mm厚的黄铜片材之间并使用100mm直径的钢辊在125℃下通过压延机三次(在每次通过中具有压力增加,在18psi、24psi、以及30psi的压力下)。该压延机被设置为具有夹力(以磅计)=37.8×调节器压力(psi)。阴极活性材料的负载量是大约6.2-6.59mg/cm2
阳极的制备
如对于实例19和20描述的制备阳极。该阳极活性组分的负载量是大约4.06-4.17mg/cm2
电解质制备
通过以下方式制备电解质:在氮气吹扫的干燥箱中将12.6111g的2,2-二氟乙基乙酸酯和5.4012g的碳酸氟代亚乙酯(FEC,巴斯夫公司,独立城,俄亥俄州)结合以产生70/30wt%/wt%的这两种组分的共混物。添加分子筛(3A)并且将该混合物干燥至小于1ppm水(如通过卡尔-费歇尔滴定确定的)。在用0.25微米PTFE注射器式过滤器过滤之后,将14.8463g该混合物与1.878g的LiPF6(六氟磷酸锂(巴斯夫公司,独立城,俄亥俄州))结合添加。
将2.8804g以上描述的混合物与0.0605g的LiBOB和0.0600g的1,3-丙烷磺内酯结合以制备配制的电解质组合物70/30 DFEA/FEC/1 M LiPF6+2wt%LiBOB+2wt%PS。
钮扣电池制作
将14.3mm直径的圆形阳极和12.7mm直径的阴极从以上描述的电极片材中冲压出,放置在手套箱(真空气氛公司(Vacuum Atmospheres),霍桑,加利福尼亚州,具有HE-493净化器)的前室中的加热器中,进一步在真空中在90℃下干燥过夜,并且使进入氩气填充的手套箱内。制备非水性电解质锂离子CR2032钮扣电池用于电化学评价。钮扣电池零件(壳、垫片、波形弹簧、垫圈和盖)和钮扣电池卷边器是从Hohsen公司(大阪,日本)获得的。隔膜是Celgard2500(卡尔格德/Polypore国际公司,夏洛特,北卡罗来纳州)。
在25℃下钮扣电池评价
使用商业电池测试仪(4000系列,Maccor公司,塔尔萨,俄克拉菏马州)、在环境温度下使用在3.0-4.6V的电压限制之间的恒定电流充电和放电在17.5mA的电流每克的阴极活性材料下(其大约是0.1C倍率)使这些钮扣电池循环两次用于化成。在此程序之后,将这些钮扣电池转移到45℃室中,并且使用在3.0-4.6V的电压限制之间的恒定电流充电和放电、在87.5mA的电流每克的阴极活性材料下(其大约是C/2倍率)循环。在每个充电步骤过程中,随后将电压保持在4.6V下,直到电流逐渐减少至C/20(每克活性阴极材料大约8.75mA)。
来自钮扣电池循环数据的容量保持率在表6中被呈现为循环寿命80%和容量放电循环10(mAh/g)。循环寿命是将放电容量减少至在第一30个循环中获得的最大容量的80%所需的循环的数目。容量放电C是在循环10下的放电容量。
实例35a和35b
具有1M LiPF6+2wt%LiBOB+2wt%PS的70/30 DFEA/FEC
使用如与实例34a和34b中描述的相同的程序,具有以下例外。通过以下方式制备电解质:在氮气吹扫的干燥箱中将12.6111g的2,2-二氟乙基乙酸酯和5.4012g的碳酸氟代亚乙酯(FEC,巴斯夫公司,独立城,俄亥俄州)结合以产生70/30wt%/wt%的这两种组分的共混物。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,添加LiPF6(巴斯夫公司,独立城,俄亥俄州)。
将5.7612g以上描述的混合物与0.1212g的LiBOB和0.1207g的1,3-丙烷磺内酯结合以制备配制的电解质组合物。
阴极活性负载量是6.02-6.59mg/cm2;阳极活性负载量是4.06-4.17mg/cm2
在表6中给出了钮扣电池循环结果。
对比实例Q-1和Q-2
具有1M LiPF6的70/30 DFEA/FEC
使用如与实例34a和34b中描述的相同的程序,具有以下例外。通过以下方式制备电解质:在氮气吹扫的干燥箱中将12.6111g的2,2-二氟乙基乙酸酯和5.4012g的碳酸氟代亚乙酯(FEC,巴斯夫公司,独立城,俄亥俄州)结合以产生70/30wt%/wt%的这两种组分的共混物。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,添加LiPF6(巴斯夫公司,独立城,俄亥俄州)以制备该电解质组合物。
阴极活性负载量是6.24-6.73mg/cm2;阳极活性负载量是4.01-4.17mg/cm2
在表6中给出了钮扣电池循环结果。
实例36
具有1M LiPF6+2wt%LiBOB+2wt%PS的75/25DFEMC/FEC
使用实例34a和34b中描述的相同的程序,具有以下区别。通过以下方式制备电解质:在氮气吹扫的干燥箱中将10.1630g的二氟乙基甲基碳酸酯和3.3832g的碳酸氟代亚乙酯(FEC,巴斯夫公司,独立城,俄亥俄州)结合以产生75/25wt%/wt%的共混物。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,将12.3854g该混合物与1.3866g的LiPF6(巴斯夫公司,独立城,俄亥俄州)结合。
将2.8812g以上描述的混合物与0.0611g的LiBOB和0.0604g的1,3-丙烷磺内酯结合以制备配制的电解质组合物。
阴极活性负载量是6.95mg/cm2;阳极活性负载量是4.06mg/cm2
在表6中给出了钮扣电池循环结果。
对比实例R-1和R-2
具有1M LiPF6的75/25DFEMC/FEC
使用实例34a和34b中描述的相同的程序,具有以下区别。通过以下方式制备电解质:在氮气吹扫的干燥箱中将10.1630g的二氟乙基甲基碳酸酯和3.3822g的碳酸氟代亚乙酯(FEC,巴斯夫公司,独立城,俄亥俄州)结合。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,将12.3854g该混合物与1.3866g的LiPF6(巴斯夫公司,独立城,俄亥俄州)结合以制备该电解质组合物。
阴极活性负载量是6.73-6.88mg/cm2;阳极活性负载量是4.28-4.55mg/cm2
在表6中给出了钮扣电池循环结果。
实例37a和37b
具有1M LiPF6+1wt%LiBOB+2wt%PS的75/25 DFEA/FEC
使用实例34a和34b中描述的相同的程序,具有以下区别。通过以下方式制备电解质:在氮气吹扫的干燥箱中将13.3888g的2,2-二氟乙基乙酸酯和4.4620g的碳酸氟代亚乙酯(FEC,巴斯夫公司,独立城,俄亥俄州)结合。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,将16.5675g该混合物与2.1135g的LiPF6(巴斯夫公司,独立城,俄亥俄州)结合。
将1.9417g以上描述的混合物与0.0211g的LiBOB和0.0404g的1,3-丙烷磺内酯结合以制备配制的电解质组合物。
阴极活性负载量是6.17mg/cm2;阳极活性负载量是4.01-4.17mg/cm2
在表6中给出了钮扣电池循环结果。
实例38
具有1M LiPF6+2wt%LiBOB+1wt%PS的75/25 DFEA/FEC
使用实例34a和34b中描述的相同的程序,具有以下区别。通过以下方式制备电解质:在氮气吹扫的干燥箱中将13.3888g的2,2-二氟乙基乙酸酯和4.4620g的碳酸氟代亚乙酯(FEC,巴斯夫公司,独立城,俄亥俄州)结合。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,将16.5675g该混合物与2.1135g的LiPF6(巴斯夫公司,独立城,俄亥俄州)结合。
将1.9407g以上描述的混合物与0.0410g的LiBOB和0.0220g的1,3-丙烷磺内酯结合以制备配制的电解质组合物。
阴极活性负载量是6.31mg/cm2;阳极活性负载量是4.06mg/cm2
在表6中给出了钮扣电池循环结果。
实例39
具有1M LiPF6+1wt%LiBOB+1wt%PS的75/25 DFEA/FEC
使用实例34a和34b中描述的相同的程序,具有以下区别。通过以下方式制备电解质:在氮气吹扫的干燥箱中将13.3888g的2,2-二氟乙基乙酸酯和4.4620g的碳酸氟代亚乙酯(FEC,巴斯夫公司,独立城,俄亥俄州)结合。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,将16.5675g该混合物与2.1135g的LiPF6(巴斯夫公司,独立城,俄亥俄州)结合。
将1.9611g以上描述的混合物与0.0204g的LiBOB和0.0214g的1,3-丙烷磺内酯结合以制备配制的电解质组合物。
阴极活性负载量是6.31mg/cm2;阳极活性负载量是4.06mg/cm2
在表6中给出了钮扣电池循环结果。
对比实例S-1、S-2、以及S-3
具有1M LiPF6的75/25 DFEA/FEC
使用实例34a和34b中描述的相同的程序,具有以下区别。通过以下方式制备电解质:在氮气吹扫的干燥箱中将13.3888g的2,2-二氟乙基乙酸酯和4.4620g的碳酸氟代亚乙酯(FEC,巴斯夫公司,独立城,俄亥俄州)结合。添加分子筛(3A)并且将该混合物干燥至小于1ppm水。在用0.25微米PTFE注射器式过滤器过滤之后,将16.5675g该混合物与2.1135g的LiPF6(巴斯夫公司,独立城,俄亥俄州)结合。
阴极活性负载量是6.3-6.73mg/cm2;阳极活性负载量是4.12-4.39mg/cm2
在表6中给出了钮扣电池循环结果。
实例40a和40b
具有1M LiPF6+2wt%LiBOB+2wt%PS的37.5/37.5/25 DFEA/DFEMC/FEC
使用实例34a和34b中描述的相同的程序,具有以下区别。在氮气吹扫的干燥箱中,将2,2-二氟乙基乙酸酯(7.1220g)、2,2-二氟乙基甲基碳酸酯(7.1269g)和碳酸氟代亚乙酯(4.7560g)(FEC,巴斯夫公司,独立城,俄亥俄州)结合。添加分子筛(3A)并且将该溶液干燥至小于1ppm水。将该溶液用0.25微米PTFE注射器式过滤器进行过滤。
向5克该溶液中添加0.1168g的LiBOB和0.1165g的1,3-丙烷磺内酯。在添加剂溶解后,然后添加0.5995g的LiPF6(巴斯夫公司,独立城,俄亥俄州)以形成该电解质组合物。
阴极活性负载量是6.31mg/cm2;阳极活性负载量是4.06-4.28mg/cm2
在表6中给出了钮扣电池循环结果。
实例41a和41b
30/30/25/15 DFEA/DFEMC/FEC/DMC+2wt%LiBOB+2wt%PS
使用实例34a和34b中描述的相同的程序,具有以下区别。在氩气吹扫的干燥箱中,将2,2-二氟乙基乙酸酯(5.5161g)、2,2-二氟乙基甲基碳酸酯(5.5203g)、碳酸氟代亚乙酯(4.5914g)(FEC,巴斯夫公司,独立城,俄亥俄州)、以及碳酸二甲酯(2.7513g)(巴斯夫公司,独立城,俄亥俄州)结合。添加分子筛(3A)并且将该溶液干燥至小于1ppm水。将该溶液用0.25微米PTFE注射器式过滤器进行过滤。
向5克该溶液中添加0.1170g的LiBOB和0.1170g的1,3-丙烷磺内酯。在添加剂溶解后,然后添加0.6197g的LiPF6(巴斯夫公司,独立城,俄亥俄州)以形成该电解质组合物。
阴极活性负载量是6.02-6.45mg/cm2;阳极活性负载量是4.06-4.22mg/cm2
在表6中给出了钮扣电池循环结果。
对比实例T-1和T-2
具有1M LiPF6的28/28/30/14 DFEA/DFEMC/FEC/DMC
使用实例34a和34b中描述的相同的程序,具有以下区别。在氩气吹扫的干燥箱中,将2,2-二氟乙基乙酸酯(5.1857g)、2,2-二氟乙基甲基碳酸酯(5.1873g)、碳酸氟代亚乙酯(5.5571g)(FEC,巴斯夫公司,独立城,俄亥俄州)、以及碳酸二甲酯(2.5999g)(巴斯夫公司,独立城,俄亥俄州)结合。添加分子筛(3A)并且将该溶液干燥至小于1ppm水。将该溶液用0.25微米PTFE注射器式过滤器进行过滤并且将LiPF6增加至1M。
阴极活性负载量是7.28-7.50mg/cm2;阳极活性负载量是4.01-4.17mg/cm2
在表6中给出了钮扣电池循环结果。
表6.实例34-41和对比实例Q-T的结果
表6描述了电池组评价的结果。标记为“循环寿命80%”的列示出了对于电池达到其初始容量的80%所需要的放电/充电循环的数目,并且是循环寿命耐久性的量度。标记为“容量放电循环10”的列示出了在第十次放电循环时电池的放电容量(以mAh/g计)。如以上描述的,将这些电池使用在3.0-4.6V的电压限制之间的恒定电流充电和放电、在87.5mA的电流每克的阴极活性材料下(其大约是C/2倍率)循环。在每个充电步骤过程中,随后将电压保持在4.6V下,直到电流逐渐减少至C/20(每克活性阴极材料大约8.75mA)。
实例34-41是含有LiBOB和1,3-丙烷磺内酯添加剂两者的配制品。
与实例34a、34b、35a和35b相比,对比实例Q-1和Q-2示出了没有LiBOB和PS添加剂的电解质的性能。当不包括这些添加剂时,循环寿命减少了超过50百分比,示出了含丙烷磺内酯的配制品的益处。
类似地,实例36并且可以与不含添加剂的对比实例R-1和R-2相比较。再次,当添加1,3-丙烷磺内酯时,循环寿命耐久性改进了两倍。
此外,与使用相同的DFEA/FEC溶剂共混物但是不包括LiBOB和1,3-丙烷磺内酯添加剂的对比实例S-1、S-2和S-3的循环寿命耐久性相比,实例37a、37b、38和39全部都示出了2.7倍至3倍的改进的循环寿命耐久性。
最后,实例41a和41b利用氟化溶剂混合物共混物(DFEMC、DFEA、以及FEC与非氟化的DMC),并且当使用含有1,3-丙烷磺内酯的添加剂时,示出了大约20%-35%的改进的循环寿命耐久性。

Claims (28)

1.一种电解质组合物,包含:
a)氟化溶剂;
b)有机碳酸酯;
c)饱和或不饱和的磺内酯,其任选地被一个或多个卤素,芳基,或直链、支链、或环状的饱和或不饱和的烷基取代;以及
d)至少一种电解质盐。
2.如权利要求1所述的电解质组合物,其中该磺内酯由下式表示:
其中每个A独立地是氢、氟、或任选地氟化的烷基、乙烯基、烯丙基、炔基、或炔丙基。
3.如权利要求1所述的电解质组合物,其中该氟化溶剂是:
a)由下式表示的氟化的非环状羧酸酯:
R1-COO-R2
b)由下式表示的氟化的非环状碳酸酯:
R3-OCOO-R4
c)由下式表示的氟化的非环状醚:
R5-O-R6
或其混合物;
其中
i)R1是H、烷基、或氟烷基;
ii)R3和R5各自独立地是氟烷基并且可以或者是彼此相同或不同的;
iii)R2、R4、以及R6各自独立地是烷基或氟烷基并且可以或者是彼此相同或不同的;
iv)R1和R2中的任何一个或两者包括氟;并且
v)各自作为一对的R1和R2、R3和R4、以及R5和R6包含至少两个碳原子但不超过七个碳原子。
4.如权利要求3所述的电解质组合物,其中各自作为一对的R1和R2、R3和R4、以及R5和R6进一步包含至少两个氟原子,其条件是R1、R2、R3、R4、R5都不、R6也不包含-CH2F或-CHF-基团。
5.如权利要求1所述的电解质组合物,其中该氟化溶剂包括2,2-二氟乙基乙酸酯。
6.如权利要求1所述的电解质组合物,其中该磺内酯包括1,3-丙烷磺内酯。
7.如权利要求1所述的电解质组合物,其中该有机碳酸酯包括非氟化碳酸酯。
8.如权利要求7所述的电解质组合物,其中该非氟化碳酸酯包括碳酸亚乙酯、碳酸甲乙酯、碳酸二甲酯、碳酸二乙酯、碳酸亚乙烯酯、碳酸亚丙酯、或其混合物。
9.如权利要求1所述的电解质组合物,其中该有机碳酸酯包括氟化碳酸酯。
10.如权利要求9所述的电解质组合物,其中该氟化碳酸酯包括碳酸氟代亚乙酯。
11.如权利要求1所述的电解质组合物,进一步包含选自下组的硼酸盐,该组由以下各项组成:双(草酸)硼酸锂、二氟(草酸)硼酸锂、四氟硼酸锂、以及其混合物。
12.如权利要求1所述的电解质组合物,其中基于该电解质组合物的总重量,该电解质组合物包含约0.01重量百分比至约10重量百分比的该磺内酯、以及约10重量百分比至约80重量百分比的该氟化溶剂。
13.如权利要求1所述的电解质组合物,包含2,2-二氟乙基乙酸酯、碳酸亚乙酯、以及1,3-丙烷磺内酯,并且进一步包含双(草酸)硼酸锂。
14.如权利要求1所述的电解质组合物,包含2,2-二氟乙基乙酸酯、4-氟亚乙基碳酸酯、以及1,3-丙烷磺内酯。
15.如权利要求14所述的电解质组合物,进一步包含2,2-二氟乙基甲基碳酸酯。
16.如权利要求1所述的电解质组合物,包含2,2-二氟乙基甲基碳酸酯、4-氟亚乙基碳酸酯、以及1,3-丙烷磺内酯。
17.如权利要求1所述的电解质组合物,包含2,2-二氟乙基甲基碳酸酯、碳酸亚乙酯、以及1,3-丙烷磺内酯。
18.一种电化学电池,包括:
(a)壳体;
(b)被布置在所述壳体中并且与彼此离子导电接触的阳极和阴极;
(c)被布置在所述壳体中并提供在所述阳极与所述阴极之间的离子导电路径的如权利要求1所述的电解质组合物;以及
(d)在所述阳极与所述阴极之间的多孔隔膜。
19.如权利要求18所述的电化学电池,其中所述电化学电池是锂离子电池组。
20.如权利要求19所述的电化学电池,其中该阳极活性材料是钛酸锂、石墨、锂合金、硅、或其组合。
21.如权利要求19所述的电化学电池,其中该阴极包括展示出在对比Li/Li+参比电极大于4.6V的电势范围内的大于30mAh/g容量的阴极活性材料,或者被充电至对比Li/Li+参比电极大于或等于4.1V的电势的阴极活性材料。
22.如权利要求19所述的电化学电池,其中该阴极包括
LiaNibMncCOdReO2-fZf
其中:
R是Al、Ni、Co、Mn、Cr、Fe、Mg、Sr、V、Zr、Ti、稀土元素、或其组合;
Z是F、S、P、或其组合;并且
0.8≤a≤1.2、0.1≤b≤0.9、0.0≤c≤0.7、0.05≤d<0.4、0≤e≤0.2;其中b+c+d+e的总和是约1;并且0≤f≤0.08。
23.如权利要求19所述的电化学电池,其中该阴极包括由具有下式的结构表示的复合材料:
x(Li2-wA1-vQw+vO3-e)·(1-x)(LiyMn2-zMzO4-d)
其中:
x是约0至约0.1;
A包括Mn或Ti中的一种或多种;
Q包括Al、Ca、Co、Cr、Cu、Fe、Ga、Mg、Nb、Ni、Ti、V、Zn、Zr或Y中的一种或多种;
e是0至约0.3;
v是0至约0.5;
w是0至约0.6;
M包括Al、Ca、Co、Cr、Cu、Fe、Ga、Li、Mg、Mn、Nb、Ni、Si、Ti、V、Zn、Zr或Y中的一种或多种;
d是0至约0.5;
y是约0至约1;并且
z是约0.3至约1;并且
其中该LiyMn2-zMzO4-d组分具有尖晶石结构并且该Li2-wQw+vA1-vO3-e组分具有层状结构。
24.如权利要求19所述的电化学电池,其中该阴极包括:
LiaA1-b,RbD2
其中:
A是Ni、Co、Mn、或其组合;
R是Al、Ni、Co、Mn、Cr、Fe、Mg、Sr、V、Zr、Ti、稀土元素、或其组合;
D是O、F、S、P、或其组合;并且
0.90≤a≤1.8并且0≤b≤0.5。
25.如权利要求19所述的电化学电池,其中该阴极包括:
LiaA1-xRxDO4-fZf
其中:
A是Fe、Mn、Ni、Co、V、或其组合;
R是Al、Ni、Co、Mn、Cr、Fe、Mg、Sr、V、Zr、Ti、稀土元素、或其组合;
D是P、S、Si、或其组合;
Z是F、Cl、S、或其组合;
0.8≤a≤2.2;
0≤x≤0.3;并且
0≤f≤0.1。
26.一种电子设备、运输设备、或电信设备,包括根据权利要求18所述的电化学电池。
27.一种方法,包括将以下各项组合:
a)氟化溶剂;
b)有机碳酸酯;
c)饱和或不饱和的磺内酯,其任选地被一个或多个卤素,芳基,或直链、支链、或环状的饱和或不饱和的烷基取代;以及
d)至少一种电解质盐;
以形成电解质组合物;
其中该氟化溶剂是:
A)由下式表示的氟化的非环状羧酸酯:
R1-COO-R2
B)由下式表示的氟化的非环状碳酸酯:
R3-OCOO-R4
C)由下式表示的氟化的非环状醚:
R5-O-R6
或其混合物;
其中
i)R1是H、烷基、或氟烷基;
ii)R3和R5各自独立地是氟烷基并且可以或者是彼此相同或不同的;
iii)R2、R4、以及R6各自独立地是烷基或氟烷基并且可以或者是彼此相同或不同的;
iv)R1和R2中的任何一个或两者包括氟;并且
v)各自作为一对的R1和R2、R3和R4、以及R5和R6包含至少两个碳原子但不超过七个碳原子。
28.一种用于减少锂离子电池组中的气体形成的方法,该方法包括:
(a)制备如权利要求1所述的电解质组合物;
(b)将该电解质组合物放置于锂离子电池组中,该锂离子电池组包括
(i)壳体;
(ii)被布置在所述壳体中并且与彼此离子导电接触的阳极和阴极;以及
(iii)在所述阳极与所述阴极之间的多孔隔膜;由此该电解质组合物提供在所述阳极与所述阴极之间的离子导电路径;
(c)形成该锂离子电池组;并且
(d)对该锂离子电池组充电和放电至少一次。
CN201580049223.XA 2014-08-14 2015-08-12 包含磺内酯和氟化溶剂的非水性电解质组合物 Active CN107004909B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462037246P 2014-08-14 2014-08-14
US62/037246 2014-08-14
PCT/US2015/044844 WO2016025589A1 (en) 2014-08-14 2015-08-12 Nonaqueous electrolyte compositions comprising sultone and fluorinated solvent

Publications (2)

Publication Number Publication Date
CN107004909A true CN107004909A (zh) 2017-08-01
CN107004909B CN107004909B (zh) 2020-09-25

Family

ID=54145981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580049223.XA Active CN107004909B (zh) 2014-08-14 2015-08-12 包含磺内酯和氟化溶剂的非水性电解质组合物

Country Status (7)

Country Link
US (1) US10673096B2 (zh)
EP (1) EP3195388A1 (zh)
JP (1) JP6745791B2 (zh)
KR (3) KR20190027957A (zh)
CN (1) CN107004909B (zh)
CA (1) CA2958793C (zh)
WO (1) WO2016025589A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473717A (zh) * 2017-09-08 2019-03-15 张家港市国泰华荣化工新材料有限公司 一种适用于高电压高镍动力电池的电解液及高电压高镍电池
CN110061289A (zh) * 2018-01-19 2019-07-26 丰田自动车株式会社 非水电解液的制造方法、非水电解液和非水电解液二次电池
CN112074986A (zh) * 2018-05-04 2020-12-11 索尔维公司 非水性液体电解质组合物
WO2023216130A1 (zh) * 2022-05-11 2023-11-16 宁德时代新能源科技股份有限公司 一种电解液、二次电池、电池模块、电池包和用电装置
WO2024179363A1 (zh) * 2023-02-28 2024-09-06 珠海冠宇电池股份有限公司 电解液和电池

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9979050B2 (en) 2011-09-02 2018-05-22 Solvay Sa Fluorinated electrolyte compositions
HUE039500T2 (hu) 2011-09-02 2019-01-28 Solvay Lítiumion akkumulátor
EP2856540A1 (en) 2012-06-01 2015-04-08 E. I. Du Pont de Nemours and Company Lithium- ion battery
WO2013180783A1 (en) 2012-06-01 2013-12-05 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
CN105556729B (zh) 2013-04-04 2019-04-09 索尔维公司 非水电解质组合物
CA3002153C (en) * 2015-10-26 2023-09-26 Solvay Sa Nonaqueous electrolyte compositions comprising a fluorinated solvent and a lactone
KR102460967B1 (ko) 2016-07-15 2022-11-01 솔베이(소시에떼아노님) 비수성 전해질 조성물
WO2018050652A1 (en) * 2016-09-14 2018-03-22 Solvay Sa Electrolytes containing six membered ring cyclic sulfates
PL3544110T3 (pl) 2016-12-20 2024-05-06 Daikin Industries, Ltd. Roztwór elektrolitu, urządzenie elektrochemiczne, akumulator litowo-jonowy oraz moduł
PL3565053T3 (pl) * 2016-12-27 2023-10-30 Daikin Industries, Ltd. Roztwór elektrolityczny, urządzenie elektrochemiczne, litowo-jonowe ogniwo akumulatorowe oraz moduł
CN108808086B (zh) 2017-04-28 2020-03-27 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808065B (zh) 2017-04-28 2020-03-27 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808066B (zh) 2017-04-28 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808084B (zh) 2017-04-28 2020-05-08 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108933292B (zh) 2017-05-27 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN109326823B (zh) 2017-07-31 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及锂离子电池
CN109326824B (zh) 2017-07-31 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及锂离子电池
WO2019042741A1 (en) * 2017-09-01 2019-03-07 Solvay Sa FLUORINATED LIQUID ELECTROLYTE FOR ELECTROCHEMICAL CELLS COMPRISING A LITHIUM METAL ANODE
US20200365886A1 (en) * 2017-11-30 2020-11-19 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP7062976B2 (ja) * 2018-01-29 2022-05-09 株式会社Gsユアサ 非水電解質及び非水電解質蓄電素子
US11575147B2 (en) * 2019-07-16 2023-02-07 Factorial Inc. Electrolytes for high-voltage cathode materials and other applications
FR3100384B1 (fr) 2019-08-29 2021-08-06 Accumulateurs Fixes Composition d’electrolyte fluore pour element electrochimique lithium-ion
KR102608052B1 (ko) * 2020-03-27 2023-11-29 닝더 엠프렉스 테크놀로지 리미티드 전기화학장치 및 이를 포함하는 전자장치
KR20210072788A (ko) * 2020-03-27 2021-06-17 닝더 엠프렉스 테크놀로지 리미티드 전해액 및 전기화학장치
WO2022137667A1 (ja) * 2020-12-25 2022-06-30 株式会社村田製作所 一次電池
WO2023044752A1 (zh) * 2021-09-24 2023-03-30 宁德时代新能源科技股份有限公司 锂离子电池、电池模块、电池包及用电装置
KR20230100270A (ko) * 2021-12-28 2023-07-05 에스케이온 주식회사 비수 전해액 및 이를 포함하는 리튬 이차 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266905A1 (en) * 2007-09-19 2010-10-21 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
WO2013033579A1 (en) * 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
US20140134501A1 (en) * 2012-11-12 2014-05-15 Novolyte Technologies, Inc. Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising Same
CN103825048A (zh) * 2014-02-27 2014-05-28 宁德新能源科技有限公司 锂离子二次电池及其电解液

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3606289B2 (ja) 1995-04-26 2005-01-05 日本電池株式会社 リチウム電池用正極活物質およびその製造法
US5962166A (en) 1997-08-18 1999-10-05 Covalent Associates, Inc. Ultrahigh voltage mixed valence materials
JP3394172B2 (ja) * 1997-12-09 2003-04-07 シャープ株式会社 電 池
US7468223B2 (en) 2000-06-22 2008-12-23 Uchicago Argonne, Llc Lithium metal oxide electrodes for lithium cells and batteries
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US6680145B2 (en) 2001-08-07 2004-01-20 3M Innovative Properties Company Lithium-ion batteries
EP1304752B1 (en) 2001-10-18 2010-04-14 Nec Corporation Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery using thereof
JP4197237B2 (ja) 2002-03-01 2008-12-17 パナソニック株式会社 正極活物質の製造方法
JP2003282138A (ja) * 2002-03-26 2003-10-03 Mitsubishi Chemicals Corp 非水系電解液二次電池およびそれに用いる電解液
US7381496B2 (en) 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
CN101080830B (zh) 2004-09-03 2015-01-28 芝加哥大学阿尔贡有限责任公司 锂电池用氧化锰复合电极
CN101103070B (zh) * 2005-01-14 2010-08-25 三井化学株式会社 聚乙烯醇缩醛树脂清漆、胶凝剂、非水电解液和电化学元件
JP4952074B2 (ja) * 2005-06-10 2012-06-13 三菱化学株式会社 非水系電解液および非水系電解液二次電池
JP2007019012A (ja) * 2005-06-10 2007-01-25 Mitsubishi Chemicals Corp 非水系電解液及び非水系電解液二次電池
KR100977431B1 (ko) * 2005-06-10 2010-08-24 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 비수계 전해액 이차 전지, 그리고카보네이트 화합물
EP1767729A1 (de) * 2005-09-23 2007-03-28 Sika Technology AG Turmkonstruktion
US20090253044A1 (en) * 2005-10-12 2009-10-08 Mitsui Chemicals, Inc. Nonaqueous Electrolyte and Lithium ion Secondary Battery Using Same
CN101542787A (zh) 2006-09-25 2009-09-23 德克萨斯州立大学董事会 用于锂离子电池的阳离子取代的尖晶石氧化物和氟氧化物阴极
JP5153156B2 (ja) 2007-02-13 2013-02-27 三洋電機株式会社 非水電解質二次電池用正極の製造方法
WO2009040367A1 (en) 2007-09-28 2009-04-02 Solvay (Société Anonyme) Process for the preparation of fluorine containing organic compound
JP5461883B2 (ja) * 2008-08-05 2014-04-02 三洋電機株式会社 二次電池用非水電解液及び非水電解液二次電池
US8389160B2 (en) 2008-10-07 2013-03-05 Envia Systems, Inc. Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials
GB0823260D0 (en) * 2008-12-20 2009-01-28 Qinetiq Ltd Multi-functional composite
US8394534B2 (en) 2009-08-27 2013-03-12 Envia Systems, Inc. Layer-layer lithium rich complex metal oxides with high specific capacity and excellent cycling
US8535832B2 (en) 2009-08-27 2013-09-17 Envia Systems, Inc. Metal oxide coated positive electrode materials for lithium-based batteries
KR101041127B1 (ko) * 2009-10-01 2011-06-13 삼성에스디아이 주식회사 리튬 이차 전지
US8518525B2 (en) 2010-12-09 2013-08-27 E I Du Pont De Nemours And Company Polyimide nanoweb with amidized surface and method for preparing
US20160049691A1 (en) * 2012-03-13 2016-02-18 Nec Energy Devices, Ltd. Electrolytic solution for secondary battery and secondary battery using the same
US9905887B2 (en) * 2012-06-05 2018-02-27 Nec Corporation Lithium secondary battery
US20130337342A1 (en) * 2012-06-06 2013-12-19 Peter B. Hallac Electrolyte Formulation for High Voltage and Wide Temperature Lithium-Ion Cells
CN104798245B (zh) 2012-11-20 2017-06-23 日本电气株式会社 锂离子二次电池
JP5474224B2 (ja) * 2013-01-28 2014-04-16 日立マクセル株式会社 非水電解液二次電池のシステム
KR102078365B1 (ko) * 2013-07-01 2020-04-03 삼성디스플레이 주식회사 유기 발광 장치
JP5682665B2 (ja) * 2013-07-05 2015-03-11 宇部興産株式会社 非水電解液及びそれを用いたリチウム電池
US10062898B2 (en) * 2013-07-10 2018-08-28 GM Global Technology Operations LLC Surface coating method and method for improving electrochemical performance of an electrode for a lithium based battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100266905A1 (en) * 2007-09-19 2010-10-21 Lg Chem, Ltd. Non-aqueous electrolyte lithium secondary battery
WO2013033579A1 (en) * 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
US20140134501A1 (en) * 2012-11-12 2014-05-15 Novolyte Technologies, Inc. Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising Same
CN103825048A (zh) * 2014-02-27 2014-05-28 宁德新能源科技有限公司 锂离子二次电池及其电解液

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473717A (zh) * 2017-09-08 2019-03-15 张家港市国泰华荣化工新材料有限公司 一种适用于高电压高镍动力电池的电解液及高电压高镍电池
CN109473717B (zh) * 2017-09-08 2021-09-14 张家港市国泰华荣化工新材料有限公司 一种适用于高电压高镍动力电池的电解液及高电压高镍电池
CN110061289A (zh) * 2018-01-19 2019-07-26 丰田自动车株式会社 非水电解液的制造方法、非水电解液和非水电解液二次电池
US11588179B2 (en) 2018-01-19 2023-02-21 Toyota Jidosha Kabushiki Kaisha Method for producing non-aqueous electrolyte solution, non-aqueous electrolyte solution, and non-aqueous electrolyte secondary battery
CN112074986A (zh) * 2018-05-04 2020-12-11 索尔维公司 非水性液体电解质组合物
WO2023216130A1 (zh) * 2022-05-11 2023-11-16 宁德时代新能源科技股份有限公司 一种电解液、二次电池、电池模块、电池包和用电装置
WO2024179363A1 (zh) * 2023-02-28 2024-09-06 珠海冠宇电池股份有限公司 电解液和电池

Also Published As

Publication number Publication date
US10673096B2 (en) 2020-06-02
US20170250445A1 (en) 2017-08-31
JP2017531285A (ja) 2017-10-19
JP6745791B2 (ja) 2020-08-26
CN107004909B (zh) 2020-09-25
KR102271004B1 (ko) 2021-07-02
WO2016025589A1 (en) 2016-02-18
EP3195388A1 (en) 2017-07-26
CA2958793A1 (en) 2016-02-18
KR20170042324A (ko) 2017-04-18
CA2958793C (en) 2021-06-29
KR20200041395A (ko) 2020-04-21
KR20190027957A (ko) 2019-03-15

Similar Documents

Publication Publication Date Title
CN107004909A (zh) 包含磺内酯和氟化溶剂的非水性电解质组合物
JP7233359B2 (ja) シリルオキサレートを含有する非水性電解質組成物
JP6820834B2 (ja) 環状サルフェートおよびリチウムボレートを含む非水系電解質組成物
US10559850B2 (en) Nonaqueous electrolyte compositions comprising cyclic sulfates
KR102654577B1 (ko) 리튬 옥살레이토 포스페이트를 포함하는 비수성 전해질 조성물
JP7005587B2 (ja) 非水電解質組成物
CN108496272A (zh) 包含氟化溶剂和2-呋喃酮的非水性电解质组合物
JP6758419B2 (ja) フッ素化スルホンを含む非水電解質組成物
CN107210481A (zh) 非水性电解质组合物
CN109997258A (zh) 含有六元环环状硫酸酯的电解质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240719

Address after: Brussels

Patentee after: SIENSCO

Country or region after: Belgium

Address before: Brussels

Patentee before: SOLVAY S.A.

Country or region before: Belgium

TR01 Transfer of patent right