CN1069142A - 用于真空断路器的电触头材料和生产这种材料的方法 - Google Patents

用于真空断路器的电触头材料和生产这种材料的方法 Download PDF

Info

Publication number
CN1069142A
CN1069142A CN92105967A CN92105967A CN1069142A CN 1069142 A CN1069142 A CN 1069142A CN 92105967 A CN92105967 A CN 92105967A CN 92105967 A CN92105967 A CN 92105967A CN 1069142 A CN1069142 A CN 1069142A
Authority
CN
China
Prior art keywords
alloy
mutually
electrical contact
parting line
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN92105967A
Other languages
English (en)
Other versions
CN1034891C (zh
Inventor
关经世
奥富功
山本敦史
大川干夫
乙部清文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Publication of CN1069142A publication Critical patent/CN1069142A/zh
Application granted granted Critical
Publication of CN1034891C publication Critical patent/CN1034891C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/0203Contacts characterised by the material thereof specially adapted for vacuum switches
    • H01H1/0206Contacts characterised by the material thereof specially adapted for vacuum switches containing as major components Cu and Cr
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种真空断路器用的电触头材料及生产这种材 料的方法,电触头材料有铜、铬、铋成分,其多相结构 为具有铜和铋成分的第一相中插入含有铬成分的第 二相,两相之间的界面在合金的断面金相结构图中呈 现为基本光滑的界面线,当用界面线上直线距离 10μm的任两点确定一段界面线时,这段界面线的长 度与直线距离10μm之比在大约1.0至1.4范围内。 另外,界面线的形状与圆接近,以致界面线的长度与 面积与其相等的理想圆的圆周长度之比在大约1.0 至1.3范围内。

Description

本发明涉及一种用于真空断路器的电触头材料,特别是一种抗熔接性能和耐压性能都得到改进的电触头材料。
对于真空断路器的电触头材料的基本要求是,它们的材料性能,诸如抗熔接性能,电触头彼此接触时承受预调电压的性能以及电路断路时防止电触头间发生漏电的性能要非常好。此外,还要求当电触头由于尺寸变小而造成温度升高时,其电阻能稳定在一个低的水平上。然而,由于这些要求中的一些是彼此对立的,因此只利用单一金属很难使这些要求全都得到满足。因此,在绝大多数的电触头材料中都是两种或更多种元素结合起来使用,以便弥补各个元素性能上的不足。用这种方式,可以改善材料的性能,使其适于在特殊条件下使用,如在大电流、高电压等条件下使用。因此,这些改进的材料优于单一元素的材料。可是,直到目前,耐较高电流和电压的电触头材料的需求日趋广泛,而能够应付这种需求,具有足够多性能的电触头材料尚没有发现。
日本专利公开541-12131中公开了现有技术中一种在大电流情况下使用的电触头材料的一个例子。在该专利中,一种Cu-Bi合金材料具有作为阻焊剂的Bi成分,其含量小于5%(按重量)。然而,在该Cu-Bi合金材料中,Bi成分在Cu母相中熔解度过低,在合金中经常有Bi成分偏析现象发生。因此,Bi-Cu合金所具有的问题是,由这种合金制造的电触头的表面容易变得非常粗糙,并且这种合金很难成型和机械加成电触头部件。
另外,日本专利公开544-23751中公开了另一种在大电流情况下使用的电触头材料。在该专利中,使用的是一种Cu-Te合金材料。这种合金没有上述Cu-Bi合金材料中存在的问题,但是,与Cu-Bi合金材料相比,这种Cu-Te合金材料具有对周围环境更敏感、接触电阻稳定性不够等不足。
再有,现已发现,上述的Cu-Te和Cu-Bi合金的电触头材料尽管具有很好的抗熔接性能,但都同样不能令人满意地适用于高电压,它们的耐压性能只足以适用于中等电压水平。
在现有技术中,已知作为真空断路器的另一种电触头材料是Cu-Cr合金材料,在这种合金材料中由于Cu和Cr成分在高温情况下所表现出的良好性能,非常适合用作电触头材料,因而,这种合金的性能适用于高电压和大电流的场合。所以,这种Cu-Cr合金由于能够同时满足对耐高压性能和大容量断路能力的需求而被广泛地使用。
然而,在抗熔接性能方面,上述Cu-Cr合金材料远不如上述具有Bi成分,含量小于5%的Cu-Bi合金材料。
在此,就熔接现象而言,据认为这种现象在两种情形下产生于电触头上。第一种情形,发生在当电触头材料接触表面被其上产生的焦耳热熔化之后再固化的时候,第二种情形发生在电触头接通或断开时电触头间的电弧使电触头材料汽化的时候。在每种情形下,在上述Cu-Cr合金材料中的Cu和Cr成分都产生出具有小于1μm粒度细晶粒。这些细晶粒彼此随机地混合,并构成一层数个μm乃至数百个μm厚的细晶粒层。
一般地说,材料金相结构的这种晶粒细化使得材料强度增加,由于上述Cu-Cr合金材料对此并不例外,故上述细晶层的强度比Cu-Cr合金中母相的强度大,并且如果母相的强度超过操作机构施加于电触头并使其断开的机械力,那么熔接现象便发生了。
因而,在使用Cu-Cr合金电触头材料的断路器中,所设计的操纵机构必须提供比使用Cu-Bi合金材料时更高的机械力,以用于使电路接触断路。然而,从对断路器结构紧凑性和经济性的需要考虑,实现这一点是困难的。
鉴于上述问题,日本专利公开61-41091号中提出了一种Cu-Cr-Bi电触头材料,这种材料是一种为改善抗熔接性能而添加有Bi成分的Cu-Cr合金。这种改进了的材料具有较好的抗熔接性能,但由于增加了Bi成分而变得很脆,并且耐压性能降低,反复打火的频率增加。
因此,现有技术还不能提供能够满足上述各种需求的电触头材料。
考虑到上述问题,本发明的一个目的是,提供一种用于真空断路器的电触头材料,该材料将在维护抗熔接性能的同时,即不减弱耐高压能力也不使反复打火的频率增加;并提供一种生产该材料的方法。
为了实现上述目的,根据本发明的一种用于真空断路器的电触头材料,包括Cu成分,Cr成分和Bi成分,其金相结构包括具有Cu成分和Bi成分的第一相;具有Cr成分的第二相,第二相插入第一相,从而在第一相和第二相之间形成一界面。该界面在合金横断面金相结构图中,实质上是一光滑的界面线,当在界面线上直线距离10μm的任意两点确定一段界面线时,这段界面线的长度与直线距离10μm的比值都在大约1.0至1.4的范围内。
在本发明的合金组织的断面金相结构图中,界面线更近似为一个圆,即该界面线的周边长度与一面积同其相等的一理想圆所具有的圆周长度之比在1.0至1.3的范围内。
此外,本发明用于生产加工具有铜、铬、铋成分的合金材料的方法有下述步骤:(A).将一种具有铜、铋、铬成分的原料通过冶金处理制成一种合金,使这种合金具有铜、铋成分的第一相和铬成分的第二相结构。而且,第二相插入第一相之间;(B).对铬成分进行处理,使铬成分基本上具有一光滑的表面。
本发明的电触头材料包括的Cr成分的含量最好大约为20%至60%(按重量)。
另外,本发明的电触头材料所包括的Bi成分,最好与Bi-Cu成分总和之比大约在0.05%至1.0%(按重量)的范围内。
按照上述的金相结构,Cu-Cr-Bi含金材料的耐压性能及防止漏电的能力均能得到改进,与此同时,该材料还具有一突出的抗熔接性能。
按照本发明的电触头材料与现有技术中的材料相比结合附图对本发明的实施例进行的描述,其特点和优点可以得到更清楚的理解。在附图中,同类的参考标号在全部附图中标示相同或相似的元件或部件。在附图中
图1是一纵向剖视图,表示一个采用本发明电触头材料的真空断路器的一个例子。
图2是一放大剖视图,表示一个用于图1所示真空断路器的电触头部件;
图3(a)是一例图,表示本发明电触头材料的一个典型的金相结构;
图3(b)是一比较例图,用于解释说明金相结构中界面的连续性。
就反复打火现象的产生而言,仍有许多原因现在还不清楚,针对此现象已经提出了各种假说,诸如细晶粒理论,场致发射理论等,具体地说,这些理论认为与反复打火现象相关的原因有两个,一个是接触表面的微观不均匀性,另一个是细晶粒的存在。
在任一种Cu-Cr-Bi电触头材料中,以Bi成分在该材料中存在的方式可分为四种方式。在第一种方式中,Bi成分存在于铜母相中。在第二种方式中,Bi成分存在于Cr晶粒和Cu母相之间的界面上。在第三种方式中,Bi成分存在于Cu母相的晶界上。在第四种方式中,Bi成分在Cu母相晶粒中析出。根据上述理论,为了防止基体材料的强度下降和减小反复打火现象的出现率,最初的尝试是增加Cu母相晶粒的粒度,然而这没有取得任何令人满意的结果,实际上只取得了一个无足轻重的结果。
根据本发明人的进一步研究,已经知道在接触表面产生轻微熔化致使局部表面不平的情况下,电触头的耐压性能和反复打火出现率取决于电触头材料中Cr晶粒的金相结构。
这也就是说,Cr晶粒和Cu母体之间的界面形成方式对Cu-Cr-Bi材料的改进是一个重要因素。如上所述,由于Bi成分的一部分存在于Cr晶粒和Cu母体之间,Cr晶粒往往易于从Cu母相中分出而造成接触表面不平。Cr晶粒从一接触表面脱落,粘附到另一接触表面,极有可能导致场致发射。本发明人的研究表明,一种含有明显粗糙Cr晶粒的材料与一种含有光滑Cr晶粒的材料相比,其耐压能力低而反复打火出现率高。
如上所述,电触头材料的耐压性能和反复打火出现率明显随着Cr晶粒的形状发生变化,但这种变化的确切的本质现在仍没有完全认识。更具体地说,如果Cr晶粒表面成球形成或无突棱并且在Cu和Cr成分之间的界面连续或光滑,Cu-Cr-Bi电触头材料的耐压性能和反复打火出现率均能达到传统的Cu-Cr电触头材料所具有的水平。
现在将参照附图,对按照本发明的电触头材料的最佳实施例进行描述。
首先,参照附图1和2,按照本发明,对于电触头材料应用于真空断路器进行描述。
如图1所示,断路器腔室1由一绝缘壳体2和盖体4a和4b构成。绝缘壳体2是由一种绝缘材料构成的圆筒形体。盖4a和4b通过金属密封件3a和3b安装在绝缘壳体2的两端,因此绝缘壳体2的内部可以保持为密封的真空状态。在断路器腔室1中,导电棒5和6位于壳体的两端,且彼此相对,对齐放置。一对电极7和8分别放置在两个导电棒相对的端面上。上电极7相当于一个固定电极,下电极8相当于一个可移动电极。可移动电极带有波纹管9,以便在其轴向移动的同时,保持断路器腔室1内密封真空状态。在波纹管9上具有一弧形金属罩10,用以防止金属电弧蒸汽覆盖在波纹管上。此外,一金属电弧罩11设置在断路器腔室1中,以便罩盖电极7和8。该电弧罩11可以防止金属电弧蒸汽覆盖在绝缘壳体2上。如图2所示(该图是一触头部件的放大图),电极8用焊料固定在导电棒6的焊接件12上。电极8也可以通过嵌塞到部分12而与导电棒6连接。电触头13a由焊料14固定在电极8上,电触头13b也以类似的方式固接到固定电极7上。
按照本发明,电触头材料对所述的电触头13a和13b均适用。
下面,将对按照本发明的电触头材料的制造方法加以说明。
本发明的电触头材料的特征是,这种材料中具有Cr晶体形式。因而,在用于制造本发明电触头材料的粉末状Cr原料中,原料中的颗粒形状是本发明最重要的方面之一。为此,下面将叙述一种用于制备粉末状Cr原料的普通工艺。
在这种普通工艺中,一般首先利用一种粉碎工艺或一种电解方法或其它类似的方法获得一种粗粒形状的粉末Cr原料,然后再对这样的原料进行研磨以便获得一种具有最佳粒度的粉末状Cr原料。如此处理的颗粒变得粗糙且多角。
对于这种粉末状Cr原料,通过利用诸如具有适当浓度的盐酸之类的酸性介质进行腐蚀一类的化学处理,或者通过加热处理,可以使其变得光滑。这种经光滑处理的金属粉末Cr将用于制造本发明的电触头材料,粗糙的粉末状Cr原料即使没有受到上述的那些预处理,只要在制造工艺中使用一种浸润方法,也可以用于制造本发明的电触头材料。关于这一点下面将详细描述。
按照本发明,Cu-Cr-Bi电触头材料的制造方法一般分为两种类型。一种是浸润方法,另一种是固相烧结方法。下面将对每种方法的最佳实施例分别进行描述。
在浸润方法中,首先将一种具有最佳粒度的Cr粉末压制成Cr坯块。然后,将该Cr坯块在一预定温度(例如在950℃一小时)下,在露点等于或小于-50℃的氢气气体中或者在一负压为1×10-3托或更小的条件下进行预烧结,由此得到一种预烧结的Cr坯块。接着,将一种Bi成分含量符合要求的Cu-Bi合金或由Cu和Bi的粉末压制而成的坯块熔化并使其渗入到预烧结坯块的微孔中。如果在第一个步骤中使用的是一种多棱角型粉末状Cr原料,那么在这个Cu-Bi渗入步骤中,通过使Cr坯块在一Cu成分可以被熔化的温度下保持一段必需的时间,可使坯块中Cr粉末颗粒的形状变得圆整光滑。应当注意的是,渗透也可以在一种氢气气体中或在负压条件下进行。
在固相烧结方法中,粉末状Cr原料与Cu粉末和Bi粉末按照一预定比例混合,得到的混合粉末用一压坯机压制成一种Cu-Cr-Bi坯块。该坯块在露点等于或小于-50℃的氢气气体中或者在负压为1×10-3托或更低的条件下烧结。得到的烧结坯块再次被压制和烧结,这种压制和烧结的过程重复数次,直到获得所要求的Cu-Cr-Bi电触头材料为止。
在此,需要指出的是,对Cr粉末颗粒的光滑方法不限于上面提到的方式。对粗糙的Cr粉末颗粒进行的光滑处理当然也可以采用这样的方式,即,将加强温度进行适当地调整,以使粉末颗粒在烧结Cu-Cr-Bi电触头材料的过程中可以得到光滑处理。
最终得到的电触头材料含有近似圆形的Cr晶粒。当这种材料被实际用于电触头时,其耐压性能可以保持在一种不包含Bi成分的Cu-Cr电触头材料具有的水平上。
例子
现在将依据表1和2中示出的例子和对比例,对本发明电触头材料的材料性能与金相结构之关系进行详细地说明。用于测定每种材料性能的方法和试验条件如下:
(1)抗熔接性能:
在负压为10-5毫米汞柱的条件下,以100公斤的压力将一压力杆压在一个圆盘形试样上,其中,圆盘形试样的直径为25毫米,压力杆的直径为25毫米,压力杆有一个圆球形触点表面,该表面的弯曲半径为100毫米,该表面面向试样的圆形表面。在此状态下,将-50,20KA的电流施加到压力棒和试样上,然后在施加电流20毫秒后,测量断开压力棒和试样之间的接触所需的机械力,根据测量结果,计算出试样的所需断开力与比较例1中试样断开力的相对值,在此,比较例1的相对值被确定为1。在比较例1中,试样是用固相烧结的方法制造的,这在下面将详细描述。对于每个例子,都有三个试样受到测试,所得到的三个相对值的分布范围在表1和2的抗熔接性能栏中,用于评估试样材料的抗熔接性能。
(2)耐压性能:
将一由镍制成的针,用软皮抛光到镜面的光洁程度,用于作阳极。将一试样材料制成的针也以同样的方法抛光到镜面的光洁程度,用于作阴极。阳极和阴极彼此相对,相距0.5毫米并处于负压为10-6毫米汞柱的条件下,然后将电压逐渐升高。当施加于阳极和阴极的电压使两者之间产生电火花时,将此时的电压测取下来,该电压相当于静态耐压。然后计算出试样的测取电压与比较例1中的这一电压的相对值,在此,比较例1中的相对应确定为1。对于每个例子,这样的测试反复进行三次,所得到的三个相对值的平均数值列在表1和2的静态耐压栏中,用于评估所试验的试样材料的耐压性能。
(3)反复打火出现率:
一对圆盘形电触头试样块在450℃的温度下烘烤30分钟后被连接到一个可拆卸的真空断路器的电极上,这对试样块的直径为30毫米,厚为5毫米。在此需指出的是,试样块的上述安装既没有任何焊料,也没有为了进行焊接而加热。将断路器连接到6KV×500A的电路上,对试样块的接触反复中断2000次,在这期间,计算出反复打火产生的次数,由此计算出反复打火出现率。对于每个例子,都是利用两套不同的真空断路器,对六对试样块进行断路试验的。
反复打火出现率的六个计算值的分布范围列于表1和2的反复打火出现率栏。
(4)Cu/Cr界面的周边比率及连续性(光滑度):
在每个例子的电触头材料的横截面结构中,对Cr晶体的实际周边进行测量,然后将实际周边与所围面积和Cr晶体所围面积相等的理想圆的周边相比较。实际周边相对于理想圆周边的比率的平均值定义为两边比率,并列在表1和2中。在此值得注意的是,实际周边比率越接近1,实际周边的形状就越接近于理想圆,换言之,周边比率比1大的越多,实际周边的形状离理想圆差的也越远。
Cr晶体和Cu粘结相之间的界面的连续性或光滑度可以参照图3(a)和3(b)进行说明。在图3(a)所示的横截面结构的说明性例子中,Cu/Cr界面被认为是连续的,而图3(b)示出的是一种具有不连续界面结构的例图。正如在附图中所清楚示出的那样,图3(a)的Cr晶粒被近于光滑或连续的曲线在沿Cu母相的边界处所包围,并且几乎没有明显的棱角或尖端。在此情况下,测得晶界线上直线距离为10μm的任意两点之间的晶界线长度与10μm的长度的比率都几乎在1.0至1.4的范围内。因而,在本发明中,如果界面在放大约为200倍的金相结构图中基本没有棱角,或者,上述晶界线长度与10μm长度的比率在上述的范围内,这样的界面就可以被认为是基本连续和光滑的,与此相反,在图3(b)中,Cr晶粒和Cu粘结相之间的晶界线具有许多棱角和尖端。在这样的情况下,界面就被认为是不连续的。
比较例1
利用一种没有受到化学处理的多棱角型粉末状Cr原料,用固态烧结方法,制造一种传统的Cu-Cr电触头材料,然后对该材料的上述材料性能进行测试。所得到值列入表1和2,与抗熔接性能和静态耐压性能有关的测试值被用作标准值,对下述例子中的数据进行评估。
比较例2和3以及例子1至4
用于比较例2、3和例子1的Cu-Bi电触头材料是利用与用于比较例1相似的方式制造的,但对粉末状Cr原料中的颗粒形状参数作了改变。这些材料中,Cr晶体的横截面结构的形状和周边比率,Cu/Cr界面的连续性,材料性能的测试结果见表1。正如比较例2、3的结果所示出的那样,如果含在该电触头材料中的Cr晶粒具有多棱角形状,并且Cu/Cr界面是不连续的,那么,静态耐压趋增加,反复打火出现率也趋于增加,而与周边比率无关。另一方面,如果利用球形粉末状Cr原料等如同例1中Cr晶粒为球形,可以改进静态耐压和反复打火出现率。
例子2至4的试样是利用渗入方法制造的Cu-Cr-Bi电触头材料。正如表2所示结果那样,如果一种具有较大周边比率的Cr粉末作为一种原料用于制造一种大周边比率Cr晶粒的电触头材料,那么,静态耐压下降而反复打火出现率升高。反之,如果Cr晶粒的周边比率大约为1.1至1.2;也就是周边比率较接近一个圆的周边比率,而且Cu/Cr界面象例子1、3所示那样为连续的,那么,与静态耐压和反复打火出现率相关的结果是令人满意的,并且这与制成方法无关。
因此,当对Cu-Cr-Bi的电材料性能进行评价时,最好要考虑到粉末状Cr原料的颗粒形状,制成方法,在电触头材料金相结构中Cr晶粒的形状,Cr晶粒的周边比率以及Cu/Cr界面的连续性,在进行这样的考虑之后,可以发现,在提供光滑连续的界面的同时,以将Cr晶粒周边比率限制在1.3或更小的范围内的方式,对所制造的电触头材料金相结构的Cr晶粒进行控制,所取得的结果能更好一些。
例子5至8
为了保证例子5至8及前述例子3中具有最佳含量的Cr成分,电触头材料中Cr含量通过调整Bi/(Bi+Cu)的比值达到一大致恒定的数值而被参数化。具体地说,Cr成分分别为重量的10.3%、21.0%、59.0%、70.1%和48.1%添加到例子5至8和例子3的电触头材料中。如表2所示,从这些材料的材料性能看,它们的抗熔接性能都很好。相反,例子5的电触头材料具有10.3%(按重量)的Cr成分,由于Cu成分过量,尽管其反复打火出现率的数值令人满意,但耐压性能却变坏了。在例8中,所得到的电触头材料含有70.1%(按重量)的Cr组分,由于Cr成分含量过高,其情况更糟,耐压性能和反复打火出现率的结果出入意料的不好。但对于例子3、6和7的电触头材料而言,其耐压性能和打火频率都具有令人满意的结果。
因此,最佳Cr含量被定在大约20%至60%(按重量)的范围内。
例子9到12
在例9至12中和在表2所表示的已述的例3中,Bi(Bi+Cu)比率的数值是一变参数,这些例子中的电触头材料Cr含量基本调定在50%(按重量)时,分别按重量百分比为0.01%、0.05%、0.98%、5.3%和0.45%的Bi/(Bi+Cu)比率加入Bi成分。Bi成分含量较低的材料,诸如例9中的材料,具有极好的耐压性能和反复打火频率,但与比较例1不含有Bi成分的材料相比,其抗熔接性能几乎没有任何改进。另一方面,Bi成分含量较高的材料,诸如例12中的材料,其耐压性能明显变差,反复打火频率升高。然而,对于分别以0.05%、0.98%和0.45%的Bi/(Bi+Cu)比率(按重量)加入Bi成分的例11、12和3的电触头材料而言,其抗熔接性能、耐压性能和反复打火频率都可以具有最佳结果。
因此,最佳的Bi/(Bi+Cu)比率大约确定在0.05%至1.0%(按重量)的范围内。
在对最佳实施例的上述描述中,本发明的电触头材料是利用一种固态烧结的方法或一种渗入方法制造的。然而,必须清楚地懂得,按照本发明,利用其它制造方法,也可以得到效果基本一致的电触头材料。
因此,应当知道,本发明决不仅限于上述实施例,在不脱离本发明所附的权利要求限定的范围,可以有许多的变化。
Figure 921059671_IMG2

Claims (15)

1、一种合金,包括一铜成分,一铬成分和一铋成分,其金相结构的组成为:
第一相,包括铜成分和铋成分;
第二相,包括铬成分,而且第二相插入第一相中,从而,在第一相和第二相之间形成一界面,该界面在合金的一横剖面金相结构图中基本上呈现为光滑的界面线,以至于当用位于界面线上直线距离10μm的任意两点确定一段界面线时,这段界面线的长度与所说直线距离10μm的比值大约都在1.0至1.4的范围内。
2、如权利要求1所述的合金,其中,基本光滑的界面线近似于一个圆,并且界面线的长度与一个所围面积与其相等的理想圆所具有的周边长度之比大约在1.0至1.3的范围内。
3、如权利要求1所述的合金,其中,铬成分含量约为重量的20%至60%。
4、如权利要求1所述的合金,其中,铋成分与铋和铜成分之和的比值大约为0.05至1.0%(按重量)。
5、一种用于制造含有铜、铬、铋成分的合金的方法,该方法的组成步骤为
(A)将一种具有铜、铋、铬成分的原料通过冶金处理制成一种合金,使这种合金具有一种由第一相和第二相构成的金相结构,第一相包括铜、铋成分,第二相包括有铬成分并插入第一相中;
(B)对铬成分进行处理,使铬成分的边界具有一基本光滑的表面。
6、权利要求5的方法中,原料包括铜和铋成分的第一物料和铬成分的第二物料,所说的步骤(A)包括步骤:
(C)将第二物料制成可插入在第一相中的第二相;然后
(D)将第二物料插入在第一物料中,以使第二相插入于第一相中。
7、权利要求6的方法中,(C)步骤包括:
压制含有铬晶体的粉末,然后,对压制的粉末进行烧结。
8、权利要求6的方法中,步骤(B)包括一种表面处理,这种表面处理包括一种化学腐蚀方法,并在步骤(A)之前,用于对第二物料进行处理。
9、权利要求6的方法中,步骤(D)的处理包括,将第一物料渗入到在步骤(C)中形成的第二相中。
10、权利要求9的方法中,步骤(B)包括一种热处理,在该处理过程中,调整温度,使第二相具有改变表面形状的条件。
11、权利要求5的方法中,铬成分在步骤(B)处理过程中,其基本光滑表面表现在合金组织的金相结构图中,为一基本光滑的界面线,以致于当用位于界面线上直线距离10μm的任意两点确定一段界面线时,这段界面线的长度与所说直线距离10μm的比值都在大约1.0至1.4的范围内。
12、权利要求5的方法中,铬成分在步骤(B)处理过程中,其基本光滑表面在合金组织的金相结构图中的界面线上大致呈圆形。
13、权利要求12的方法中,上述大致呈圆形的界面线是这样的,即,该界面线的长度与所围面积与其相等的一理想圆所具有的周边长度的比值在大约1.0至1.3的范围内。
14、一种由权利要求5的方法所生产的产品。
15、一种由权利要求12的方法所生产的产品。
CN92105967A 1991-06-21 1992-06-20 用于真空断路器的电触头材料 Expired - Fee Related CN1034891C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP150558/91 1991-06-21
JP3150558A JP2908071B2 (ja) 1991-06-21 1991-06-21 真空バルブ用接点材料

Publications (2)

Publication Number Publication Date
CN1069142A true CN1069142A (zh) 1993-02-17
CN1034891C CN1034891C (zh) 1997-05-14

Family

ID=15499509

Family Applications (1)

Application Number Title Priority Date Filing Date
CN92105967A Expired - Fee Related CN1034891C (zh) 1991-06-21 1992-06-20 用于真空断路器的电触头材料

Country Status (6)

Country Link
US (1) US5354352A (zh)
EP (1) EP0530437B1 (zh)
JP (1) JP2908071B2 (zh)
KR (1) KR0154988B1 (zh)
CN (1) CN1034891C (zh)
DE (1) DE69220865T2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047867C (zh) * 1996-01-29 1999-12-29 董元源 高抗熔焊性铜基无银电触头复合材料
CN1049521C (zh) * 1997-08-08 2000-02-16 甘肃华洋实业有限公司 电触头用无银复合材料及生产工艺

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0518903B1 (en) * 1990-03-06 1997-07-16 United States Bronze Powders Incorporated Improvements in and relating to powder metallurgy compositions
US5906782A (en) * 1994-07-23 1999-05-25 Ford Global Technolgies, Inc. Method for the simultaneous curing of thermosetting resins
JP3441331B2 (ja) * 1997-03-07 2003-09-02 芝府エンジニアリング株式会社 真空バルブ用接点材料の製造方法
GB2323213B (en) * 1997-03-10 2001-10-17 Gec Alsthom Ltd Vacuum switching device
JP3663038B2 (ja) * 1997-09-01 2005-06-22 芝府エンジニアリング株式会社 真空バルブ
JP3825275B2 (ja) * 2001-04-13 2006-09-27 株式会社日立製作所 電気接点部材とその製法
JP4759987B2 (ja) * 2004-11-15 2011-08-31 株式会社日立製作所 電極および電気接点とその製法
DE102014203027A1 (de) * 2014-02-19 2015-08-20 Siemens Aktiengesellschaft Schaltkontakt für einen Vakuumschalter sowie Verfahren zu seiner Herstellung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1309197A (en) * 1971-10-28 1973-03-07 Int Standard Electric Corp Vacuum interrupter contacts
DE2346179A1 (de) * 1973-09-13 1975-06-26 Siemens Ag Verbundmetall als kontaktwerkstoff fuer vakuumschalter
US4048117A (en) * 1974-10-29 1977-09-13 Westinghouse Electric Corporation Vacuum switch contact materials
US4008081A (en) * 1975-06-24 1977-02-15 Westinghouse Electric Corporation Method of making vacuum interrupter contact materials
DE2822956C2 (de) * 1977-05-27 1983-04-14 Mitsubishi Denki K.K., Tokyo Verfahren zur Herstellung von Schaltkontakten für einen Vakuumschalter
JPS598015B2 (ja) * 1978-05-31 1984-02-22 三菱電機株式会社 真空しや断器用接点
JPS5619832A (en) * 1979-07-27 1981-02-24 Mitsubishi Electric Corp Vacuum breaker contact
JPS58115728A (ja) * 1981-12-28 1983-07-09 三菱電機株式会社 真空しや断器用接点
JPS60172116A (ja) * 1984-02-16 1985-09-05 三菱電機株式会社 真空しや断器用接点
DE3565907D1 (en) * 1984-07-30 1988-12-01 Siemens Ag Vacuum contactor with contact pieces of cucr and process for the production of such contact pieces
JPH0672675B2 (ja) * 1984-07-31 1994-09-14 松下電器産業株式会社 湯水混合制御装置
GB8426009D0 (en) * 1984-10-15 1984-11-21 Vacuum Interrupters Ltd Vacuum interrupter contacts
JPH0760623B2 (ja) * 1986-01-21 1995-06-28 株式会社東芝 真空バルブ用接点合金
US4723587A (en) * 1986-03-13 1988-02-09 Madison Mill, Inc. Expansible gate protector
US4743718A (en) * 1987-07-13 1988-05-10 Westinghouse Electric Corp. Electrical contacts for vacuum interrupter devices
DE3829250A1 (de) * 1988-08-29 1990-03-01 Siemens Ag Verfahren zur herstellung eines kontaktwerkstoffes fuer vakuumschalter
JP2768721B2 (ja) * 1989-03-01 1998-06-25 株式会社東芝 真空バルブ用接点材料
JPH04505985A (ja) * 1989-05-31 1992-10-15 シーメンス アクチエンゲゼルシヤフト 真空スイツチ用CuCr接触片の製法並びに付属接触片

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047867C (zh) * 1996-01-29 1999-12-29 董元源 高抗熔焊性铜基无银电触头复合材料
CN1049521C (zh) * 1997-08-08 2000-02-16 甘肃华洋实业有限公司 电触头用无银复合材料及生产工艺

Also Published As

Publication number Publication date
EP0530437B1 (en) 1997-07-16
DE69220865D1 (de) 1997-08-21
EP0530437A1 (en) 1993-03-10
US5354352A (en) 1994-10-11
JP2908071B2 (ja) 1999-06-21
CN1034891C (zh) 1997-05-14
KR0154988B1 (ko) 1998-11-16
JPH052955A (ja) 1993-01-08
KR930001260A (ko) 1993-01-16
DE69220865T2 (de) 1997-12-18

Similar Documents

Publication Publication Date Title
CN1217365C (zh) 热敏熔断器
CN1034891C (zh) 用于真空断路器的电触头材料
EP2528148A1 (en) Negative electrode plate for lead storage battery, process for producing same, and lead storage battery
CN1045312A (zh) 真空断续器的触点成型材料
JP3825275B2 (ja) 電気接点部材とその製法
US5489412A (en) Electrode material
CN85108080A (zh) 真空断路器触头
US4834939A (en) Composite silver base electrical contact material
JPS61147827A (ja) Ag−Ni電気接点材料及びその製造方法
JP5310272B2 (ja) 真空遮断器の電極接点部材並びに真空遮断器用電極接点部材の製造方法
US4874430A (en) Composite silver base electrical contact material
US4859825A (en) Spot welding electrode and method for making it
EP1026709B1 (en) Vacuum interrupter and vacuum switch thereof
JP2006233298A (ja) 真空バルブ用接点材料およびその製造方法
JP2653461B2 (ja) 真空バルブ用接点材料の製造方法
JP2002088437A (ja) 真空バルブ用接点材料及びその製造方法
JP4619821B2 (ja) 接点材料および真空バルブ
JP2002256361A (ja) 真空バルブ用接点材料
JPH0193018A (ja) 真空バルブ用接点材料
CN1219091C (zh) 铜基包覆金刚石包覆氧化物系低压电工触头材料及生产方法
JPH0347931A (ja) 真空バルブ用接点材料
JPH0973846A (ja) 真空バルブ用接点材料およびその製造方法
JP2661201B2 (ja) 真空インタラプタの電極材料
JPH01140526A (ja) 真空バルブ用接点材料およびその製造方法
JPH06314532A (ja) 真空インタラプタ用電極材料

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee