CN106865540A - 一种氮掺杂多孔结构碳材料及其制备方法和应用 - Google Patents

一种氮掺杂多孔结构碳材料及其制备方法和应用 Download PDF

Info

Publication number
CN106865540A
CN106865540A CN201710181294.6A CN201710181294A CN106865540A CN 106865540 A CN106865540 A CN 106865540A CN 201710181294 A CN201710181294 A CN 201710181294A CN 106865540 A CN106865540 A CN 106865540A
Authority
CN
China
Prior art keywords
doping
nitrogen
carbon material
loose structure
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710181294.6A
Other languages
English (en)
Inventor
褚海亮
邵春风
邱树君
伍桂明
邹勇进
向翠丽
孙立贤
徐芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201710181294.6A priority Critical patent/CN106865540A/zh
Publication of CN106865540A publication Critical patent/CN106865540A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明提供一种氮掺杂多孔结构碳材料,由葡萄糖和含氮化合物反应后,活化制备而成,其比表面积范围在845~3277 m2 g‑1,平均孔径分布均一,在1.76‑1.97 nm,且微孔含量超过95%。其制备方法包括:(1)将葡萄糖与含氮化合物依次加入到水中搅拌溶解后,放入反应釜中反应、过滤、洗涤、烘干得到含氮前驱体;(2)将含氮前驱体和碱性无机物混合,浸泡,烘干,煅烧活化后,得到氮掺杂改性的多孔碳材料;(3)将氮掺杂改性的多孔碳材料浸泡、洗涤、过滤、烘干、研磨得到氮掺杂多孔结构碳材料。本发明材料作为超级电容器电极材料的应用,当电流密度为0.5 A g‑1时,比电容值范围在224~383 F g‑1。本发明在超级电容器、锂离子电池等领域具有广阔的应用前景。

Description

一种氮掺杂多孔结构碳材料及其制备方法和应用
技术领域
本发明涉及多孔材料技术领域,具体涉及一种氮掺杂多孔结构碳材料及其制备方法和应用。
背景技术
超级电容器作为介于传统电容器与二次电池之间的一种新型的高效储能装置,具有超大容量、高功率密度、高充放电效率、使用寿命长、免维护、节能环保等优势,已广泛应用于电子、新能源等高新技术领域,成为世界各国新能源领域的研究热点之一。它主要依靠双电层和氧化还原假电容电荷储存电能,其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。
活性炭是目前最主要的商用电极材料,其具有大量的孔隙结构、巨大的比表面积、强的吸附能力、稳定的物理化学性能及料广价廉等优点而被广泛应用于超级电容器、锂离子电池、气体吸附与分离、水体净化等前沿科技领域。然而,H2和CO2在纯碳材料上吸附属于物理吸附,因此吸附量和选择性都较差,且单纯活性炭材料主要是由于其具备较高的比表面积提供的双层电容器,但是制约超级电容器性能的不仅仅是比表面积还有孔径分布、碳材料表面官能团性质,因此商业活性炭超级电容器性能并不高。
为了进一步改进电化学性能,在多孔碳材料中引入杂原子,如N、B、P或O等可以显著地改善其机械、导电或电化学性能。特别是N元素可部分取代C元素,使碳层中石墨微晶平面层产生诸多位错、弯曲、离位等具有不成对电子的缺陷位,同时氮原子的引入使材料表面具有碱性,可增强材料表面润湿性,提高材料性能。氮掺杂多孔碳具有高的比表面积、丰富的孔隙结构和大量的表面含氮官能团,从而赋予该材料独特的机械、电子、储能等性质,使其广泛用于超级电容器的电极材料。
目前多孔碳材料的合成方法很多主要归为两类:模板法和活化法。通过传统模板法制备的碳材料的孔径单一,微孔含量低且存在操作复杂、制备时间长和难以保障碳材料的纯度等缺点。因此,活化法成为研究者们制备多孔结构和高比表面积碳材料的研究热点之一。
Sudhan等人通过KOH活化法,以稻草为碳源,制备出比表面积为1007 m2 g−1的多孔碳材料,用作三电极测试时在190 A g−1电流密度下比电容高达332 F g−1[Energy Fuels2017, 31, 977−985]。该方法选用的廉价的生物质作为碳源且合成方法简单,但是所制备的多孔碳材料的微孔含量较小,孔径分布广,比表面积较低,选用的活化剂量较大,在高电流密度下比容量下降较快,在10 A g−1电流密度下的比容量仅为190 F g−1,而且所选用稻草为碳源不利于标准化生产。因此,寻求一种制备方法简单、比表面积大、孔结构丰富、适当的氮含量且实用性强的碳材料成为当前研究的热点。
发明内容
本发明的目的是通过提高多孔碳材料的比表面积,优化其孔径分布,改善其作为电极材料的比容量有限、循环不稳定等问题,同时解决目前的高容量电极材料制备过程复杂、原料昂贵且不标准化,难以大规模生产的问题。
为了实现上述发明目的,本发明采用的技术方案利用葡萄糖为碳源,氨基脲或脲嘧啶为氮源,采用碱性无机物KOH等为活化剂,利用化学活化法合成稳定的三维多孔碳材料。氨基脲或脲嘧啶作为高含氮量的氮源,不仅可以将氮元素成功地掺杂在碳材料中,还可以作为造孔剂,在碳化过程中和碳前驱体发生热解反应,从而提高碳材料的微孔含量、氮含量和导电性能,从而尽可能增大材料的比表面积,形成大面积的双电层,提高双电层电容器的性能。
实现本发明目的的具体技术方案是:
氮掺杂多孔结构碳材料,由葡萄糖和含氮化合物按质量比为1.0:(0.5~4.0)混合反应后,通过碱性无机物活化方法制备而成,其比表面积较高范围在845~3277m2 g-1,平均孔径分布均一,分布在1.76-1.97 nm微孔范围内,且微孔含量超过95%。
氮掺杂多孔结构碳材料的制备方法,包括以下步骤:
步骤(1),将葡萄糖与含氮化合物按质量比为1.0:(0.5~4.0)加入到去离子水中搅拌去离子水中搅拌溶解后,放入反应釜中反应、过滤、洗涤、烘干得到含氮前驱体;
步骤(2),将含氮前驱体和氢氧化钾、氢氧化钠、碳酸钾、氯化锌中的任意一种或两种混合的碱性无机物按质量比为1.0:(1.0~4.0)混合浸泡在去离子水中,烘干后放进管式炉中在氮气保护活化温度为600~900℃,活化时间为1~6小时下煅烧活化得到氮掺杂改性的多孔碳材料;
步骤(3),将上述氮掺杂改性的多孔碳材料用盐酸溶液浸泡,经过洗涤、过滤,烘干、研磨得到氮掺杂多孔结构碳材料。
本发明针对现有技术的不足,以氨基脲和脲嘧啶为新型的氮源、廉价的且有利于标准化生产的葡萄糖为碳源,采用简单易大规模生产的活化法制备高比表面积的氮掺杂多孔材料。在高温下,碱性无机物对碳材料进行刻蚀,形成微孔,刻蚀产生的气体以及氮源的分解作用均有利于形成丰富的孔结构和增加比表面积,最终形成了氮掺杂多孔结构碳材料。当其用作超级电容器电极材料时,多孔碳材料中的微孔主要提供较大比表面,中孔为电解液离子的传输通道,大孔结构可以起到电解液缓冲池的作用,实现了超级电容器电极良好的倍率性能,在20 A g-1的电流密度下比容量仍保持在272 F g-1
本发明的氮掺杂多孔结构碳材料对于现有技术,具有以下优点:
一、本发明所用原料市售可得,成本低廉,有利于实现大规模的标准化生产;
二、本发明中利用氨基脲为氮源在高温状态发生分解,有利于形成更多的微孔,且可在碳壁上掺入不同种类的氮原子,为超级电容器提供更多的双电层电容和赝电容。
三、本方法制备的氮掺杂多孔碳材料具有高的比表面积,范围在845~3277 m2 g-1、丰富的微孔和介孔结构、较高的含氮量(3.55~ 5.89 %)、平均孔径分布均一,分布在1.76-1.97 nm微孔范围内,且微孔含量超过95%,有利于增加比表面积,从而提高超级电容器的双电层电容器的性能。
四、作为超级电容器电极材料的应用,当电流密度为0.5A g-1时,比电容值范围在224~383 F g-1,且具有良好的循环稳定性和倍率性能。
因此,本发明在超级电容器、锂离子电池等领域具有广阔的应用前景。
附图说明
图1 为氮掺杂多孔结构碳材料的扫描电子显微图像图;
图2 为氮掺杂多孔结构碳材料的低温氮气等温吸附曲线;
图3 为氮掺杂多孔结构碳材料的孔径分布曲线;
图4 为无掺杂多孔结构碳材料的低温氮气等温吸附曲线;
图5 为无掺杂多孔结构碳材料的孔径分布曲线;
图6 为无掺杂多孔结构碳材料在不同电流密度的充放电循环性能曲线;
图7 为氮掺杂多孔结构碳材料在不同电流密度的充放电循环性能曲线;
图8 为氮掺杂多孔结构碳材料的电容循环伏安图;
图9 为氮掺杂多孔结构碳材料在10 A g-1电流密度下的循环测试。
具体实施方式
本发明通过实施例,结合说明书附图对本发明内容作进一步详细说明,但不是对本发明的限制。
实施例
葡萄糖与氨基脲质量比为4:2的氮掺杂多孔结构碳材料的制备方法如下:
步骤(1),将4 g葡萄糖与2 g氨基脲分别加入到去离子水中搅拌溶解,之后放入反应釜中180 ℃反应,之后将产物过滤、洗涤、烘干得到含氮前驱体;
步骤(2),将含氮前驱体和KOH按1.0:2.0的质量比混合浸泡去离子水中搅拌,放入鼓风干燥箱中干燥,之后在氮气保护下700 ℃煅烧2 h,降温后取出焙烧后样品研磨;
步骤(3),将上述产物用1M HCl溶液洗涤,真空抽滤,并用去离子水洗至中性,烘干后研磨,得到氮掺杂多孔结构碳材料。
为了对比添加氮源氨基脲对碳材料合成的影响,又进一步合成无氮源多孔结构碳材料,其制备方法的具体步骤如未特别说明的步骤与氮掺杂多孔结构碳材料的制备方法相同,不同之处在于:步骤(1)中不添加氨基脲,得到无氮源多孔结构碳材料。
氮掺杂多孔结构碳材料的扫描电子显微镜照片如图1所示,可以看出,该碳材料呈现一种蜂窝状的结构,在这种结构中存在大量的大孔结构,而且在大孔的孔壁边缘延伸出丰富的介孔孔道,在孔道的表面还存在着大量由于碳被刻蚀而出现的微孔结构。氮掺杂多孔结构碳材料的等温吸附曲线和孔径分布如图2和3所示,结果显示,其比表面积为3277 m2g-1,孔径主要分布在1.21和1.96 nm,微孔含量为95.6%。然而,无氮源多孔结构碳材料的平均孔径分布在5.23 nm和9.96 nm,比表面积较低为1623 m2 g-1。如图4和5所示。当无氮源多孔结构碳材料作为超级电容器电极材料的应用时,恒电流充放电测试结果如图6所示,当电流密度为0.5 A g-1时,比电容值为252 F g-1。氮掺杂多孔结构碳材料的测试结果如图7所示,当电流密度为0.5 A g-1时,比电容值达383 F g-1。如图8所示,在不同的扫描速率下,循环伏安曲线保持良好的类似于矩形形状,表明有良好的双电层电容的性能。如图9所示,在10 A g-1大电流密度时,比电容值达286 F g-1,在10000次循环后比电容保持率仍有90 %。

Claims (8)

1.一种氮掺杂多孔结构碳材料,其特征在于:所述氮掺杂多孔结构碳材料由葡萄糖和含氮化合物按一定质量比反应,通过碱性无机物活化方法制备而成。
2. 根据权利要求1所述的氮掺杂多孔结构碳材料,其特征在于:所述氮掺杂多孔结构碳材料的比表面积其范围在845~3277 m2 g-1,平均孔径分布均一,分布在1.76-1.97 nm微孔范围内,且微孔含量超过95%。
3.根据权利要求1所述氮掺杂多孔结构碳材料的制备方法,其特征在于,所述方法包括以下步骤:
步骤(1),将葡萄糖与含氮化合物按一定质量比依次加入到一定量的去离子水中搅拌溶解后,放入反应釜中反应、过滤、洗涤、烘干得到含氮前驱体;
步骤(2),将含氮前驱体和碱性无机物按一定质量比混合,浸泡在去离子水中,烘干后放进管式炉中在氮气保护下煅烧活化得到氮掺杂改性的多孔碳材料;
步骤(3),将上述氮掺杂改性的多孔碳材料用盐酸溶液浸泡,经过洗涤、过滤、烘干、研磨得到氮掺杂多孔结构碳材料。
4.根据权利要求3所述的制备方法,其特征在于:步骤(1)所述的葡萄糖与含氮化合物的质量比为1.0:(0.5~4.0)。
5.根据权利要求3所述的制备方法,其特征在于:步骤(1)所述的含氮化合物为氨基脲和脲嘧啶的一种或两种混合。
6.根据权利要求3所述的制备方法,其特征在于:步骤(2)所述的含氮前驱体和碱性无机物的质量比为1.0:(1.0~4.0)。
7.根据权利要求3所述的制备方法,其特征在于:步骤(2)所述的碱性无机物为氢氧化钾、氢氧化钠、碳酸钾、氯化锌中的任意一种或两种的混合,活化温度为600~900℃,活化时间为1~6小时。
8. 根据权利要求1所述氮掺杂多孔结构碳材料作为超级电容器电极材料的应用,其特征在于:当电流密度为0.5 A g-1时,比电容值范围在224~383 F g-1
CN201710181294.6A 2017-03-24 2017-03-24 一种氮掺杂多孔结构碳材料及其制备方法和应用 Pending CN106865540A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710181294.6A CN106865540A (zh) 2017-03-24 2017-03-24 一种氮掺杂多孔结构碳材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710181294.6A CN106865540A (zh) 2017-03-24 2017-03-24 一种氮掺杂多孔结构碳材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN106865540A true CN106865540A (zh) 2017-06-20

Family

ID=59172850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710181294.6A Pending CN106865540A (zh) 2017-03-24 2017-03-24 一种氮掺杂多孔结构碳材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106865540A (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159214A (zh) * 2017-06-22 2017-09-15 桂林电子科技大学 一种多孔活性碳材料负载钴纳米粒子材料及其制备方法和应用
CN107311172A (zh) * 2017-07-18 2017-11-03 桂林电子科技大学 一种百香果壳基多孔碳材料及其制备方法和应用
CN107546039A (zh) * 2017-08-11 2018-01-05 桂林电子科技大学 一种锶掺杂含氮多孔碳材料及其制备方法和应用
CN107572523A (zh) * 2017-09-11 2018-01-12 桂林电子科技大学 一种氮掺杂分级多孔碳微球及其制备方法和应用
CN107910200A (zh) * 2017-10-23 2018-04-13 河南师范大学 一种多级孔氮氧掺杂碳超级电容器电极材料的制备方法
CN108314043A (zh) * 2018-03-21 2018-07-24 湘潭大学 一种富氮微孔纳米炭球的制备方法
CN108529621A (zh) * 2018-05-14 2018-09-14 桂林电子科技大学 一种氮掺杂多孔碳材料的制备及其应用
CN108597910A (zh) * 2018-04-16 2018-09-28 桂林电子科技大学 一种氮硼共掺杂多孔碳材料及其制备方法和应用
CN108584951A (zh) * 2018-06-27 2018-09-28 中国地质大学(武汉) 具有分级多孔结构的氮磷共掺杂碳电极材料的制备方法
CN109133030A (zh) * 2018-09-25 2019-01-04 桂林电子科技大学 一种氮掺杂多孔碳材料的制备方法及其应用
CN109928384A (zh) * 2019-04-25 2019-06-25 南京邮电大学 一种氮掺杂多孔碳材料的制备方法
CN109961965A (zh) * 2017-12-22 2019-07-02 中国电子科技集团公司第十八研究所 一种用于化学电容器的氮掺杂多孔碳材料的制备方法
CN110436457A (zh) * 2019-07-29 2019-11-12 聊城大学 一种超级电容器用氮掺杂多孔碳电极材料的制备方法
CN110544589A (zh) * 2018-05-29 2019-12-06 中国海洋大学 海蜇基高表面掺杂碳电极的制备及其双电层和赝电容行为调控
CN110581262A (zh) * 2018-06-08 2019-12-17 中兴通讯股份有限公司 一种材料制备方法、掺氮碳材料、电池及存储介质
CN111091977A (zh) * 2020-01-10 2020-05-01 河南师范大学 基于导电聚合物聚n-羟乙基苯胺3d氮氧共掺杂碳超级电容器电极材料的制备方法
CN112516964A (zh) * 2020-11-16 2021-03-19 湖南大学 一种氮掺杂生物炭及其制备方法和应用
CN113135568A (zh) * 2021-05-27 2021-07-20 吉林大学 一种氮掺杂多孔碳材料及其制备方法和应用
CN114275758A (zh) * 2021-11-30 2022-04-05 浙江大学 微孔碳材料的制备方法及其应用
CN115554982A (zh) * 2022-11-03 2023-01-03 中国科学院兰州化学物理研究所 一种碳材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837969A (zh) * 2010-05-10 2010-09-22 北京科技大学 一种制备超级电容器电极材料用含氮多孔炭材料的方法
CN102605339A (zh) * 2012-02-22 2012-07-25 中国科学院化学研究所 一种规则氮掺杂石墨烯及其制备方法
CN103406096A (zh) * 2013-07-17 2013-11-27 国家纳米科学中心 一种氮掺杂多孔炭材料、制备方法及其用途
CN104445135A (zh) * 2013-09-17 2015-03-25 中国科学院大连化学物理研究所 具有良好储氢性能的含氮炭材料及其应用
CN104733188A (zh) * 2013-12-24 2015-06-24 于桂菊 一种高导电电极材料的制备方法
CN104987863A (zh) * 2015-06-25 2015-10-21 西安交通大学 一种氮、磷、硫掺杂或共掺杂碳点及其批量可控制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101837969A (zh) * 2010-05-10 2010-09-22 北京科技大学 一种制备超级电容器电极材料用含氮多孔炭材料的方法
CN102605339A (zh) * 2012-02-22 2012-07-25 中国科学院化学研究所 一种规则氮掺杂石墨烯及其制备方法
CN103406096A (zh) * 2013-07-17 2013-11-27 国家纳米科学中心 一种氮掺杂多孔炭材料、制备方法及其用途
CN104445135A (zh) * 2013-09-17 2015-03-25 中国科学院大连化学物理研究所 具有良好储氢性能的含氮炭材料及其应用
CN104733188A (zh) * 2013-12-24 2015-06-24 于桂菊 一种高导电电极材料的制备方法
CN104987863A (zh) * 2015-06-25 2015-10-21 西安交通大学 一种氮、磷、硫掺杂或共掺杂碳点及其批量可控制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DEEPTHI L. SIVADAS ET AL: "Nitrogen-enriched microporous carbon derived from sucrose and urea with superior CO2 capture performance", 《CARBON》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107159214A (zh) * 2017-06-22 2017-09-15 桂林电子科技大学 一种多孔活性碳材料负载钴纳米粒子材料及其制备方法和应用
CN107311172A (zh) * 2017-07-18 2017-11-03 桂林电子科技大学 一种百香果壳基多孔碳材料及其制备方法和应用
CN107546039B (zh) * 2017-08-11 2019-06-04 桂林电子科技大学 一种锶掺杂含氮多孔碳材料及其制备方法和应用
CN107546039A (zh) * 2017-08-11 2018-01-05 桂林电子科技大学 一种锶掺杂含氮多孔碳材料及其制备方法和应用
CN107572523A (zh) * 2017-09-11 2018-01-12 桂林电子科技大学 一种氮掺杂分级多孔碳微球及其制备方法和应用
CN107910200A (zh) * 2017-10-23 2018-04-13 河南师范大学 一种多级孔氮氧掺杂碳超级电容器电极材料的制备方法
CN109961965A (zh) * 2017-12-22 2019-07-02 中国电子科技集团公司第十八研究所 一种用于化学电容器的氮掺杂多孔碳材料的制备方法
CN108314043B (zh) * 2018-03-21 2021-06-18 湘潭大学 一种富氮微孔纳米炭球的制备方法
CN108314043A (zh) * 2018-03-21 2018-07-24 湘潭大学 一种富氮微孔纳米炭球的制备方法
CN108597910A (zh) * 2018-04-16 2018-09-28 桂林电子科技大学 一种氮硼共掺杂多孔碳材料及其制备方法和应用
CN108529621A (zh) * 2018-05-14 2018-09-14 桂林电子科技大学 一种氮掺杂多孔碳材料的制备及其应用
CN110544589A (zh) * 2018-05-29 2019-12-06 中国海洋大学 海蜇基高表面掺杂碳电极的制备及其双电层和赝电容行为调控
CN110581262A (zh) * 2018-06-08 2019-12-17 中兴通讯股份有限公司 一种材料制备方法、掺氮碳材料、电池及存储介质
CN108584951B (zh) * 2018-06-27 2021-12-10 中国地质大学(武汉) 具有分级多孔结构的氮磷共掺杂碳电极材料的制备方法
CN108584951A (zh) * 2018-06-27 2018-09-28 中国地质大学(武汉) 具有分级多孔结构的氮磷共掺杂碳电极材料的制备方法
CN109133030A (zh) * 2018-09-25 2019-01-04 桂林电子科技大学 一种氮掺杂多孔碳材料的制备方法及其应用
CN109928384A (zh) * 2019-04-25 2019-06-25 南京邮电大学 一种氮掺杂多孔碳材料的制备方法
CN110436457A (zh) * 2019-07-29 2019-11-12 聊城大学 一种超级电容器用氮掺杂多孔碳电极材料的制备方法
CN111091977A (zh) * 2020-01-10 2020-05-01 河南师范大学 基于导电聚合物聚n-羟乙基苯胺3d氮氧共掺杂碳超级电容器电极材料的制备方法
CN112516964A (zh) * 2020-11-16 2021-03-19 湖南大学 一种氮掺杂生物炭及其制备方法和应用
CN113135568A (zh) * 2021-05-27 2021-07-20 吉林大学 一种氮掺杂多孔碳材料及其制备方法和应用
CN114275758A (zh) * 2021-11-30 2022-04-05 浙江大学 微孔碳材料的制备方法及其应用
CN114275758B (zh) * 2021-11-30 2023-05-12 浙江大学 微孔碳材料的制备方法及其应用
CN115554982A (zh) * 2022-11-03 2023-01-03 中国科学院兰州化学物理研究所 一种碳材料及其制备方法和应用
CN115554982B (zh) * 2022-11-03 2023-10-27 中国科学院兰州化学物理研究所 一种碳材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106865540A (zh) 一种氮掺杂多孔结构碳材料及其制备方法和应用
CN109133030A (zh) 一种氮掺杂多孔碳材料的制备方法及其应用
WO2016184355A1 (zh) 以煤炭为原料制备石墨烯的方法
CN107311172A (zh) 一种百香果壳基多孔碳材料及其制备方法和应用
CN110467182B (zh) 一种基于反应模板的多级孔碳基材料及其制备方法和应用
CN107572523A (zh) 一种氮掺杂分级多孔碳微球及其制备方法和应用
CN106601490A (zh) 一种生物质基含氮多孔碳的制备方法及由该方法制备的多孔碳及其用途
CN106365163B (zh) 一种剑麻纤维活性炭的制备方法及该剑麻纤维活性炭在锂离子电容器中的应用
CN112830472B (zh) 一种多孔碳的制备方法及由其得到的多孔碳和应用
CN110330016A (zh) 一种无烟煤基多孔碳石墨微晶和孔隙的一步协同发展方法
CN107244664B (zh) 类石墨烯结构碳电极材料的制备方法及应用
CN105810456B (zh) 一种活化石墨烯/针状氢氧化镍纳米复合材料及其制备方法
CN110526243A (zh) 一种超级电容器用生物质多孔碳的制备方法及其应用
CN112357921B (zh) 一种分级多孔碳及其制备方法与用途
CN112017868B (zh) 一种介孔中空碳微米笼材料及其制备方法和应用
CN108455596B (zh) 一步炭化法制备高比表面积富氮多级孔炭材料的方法及其应用
CN111048324A (zh) 一种二氧化锰—多孔碳复合材料及其制备方法和应用
CN106531457B (zh) 一种超级电容器用NiCo2O4/碳纳米管复合电极材料
CN111710529A (zh) 一种Co/Mn-MOF/氮掺杂碳基复合材料及其制备方法与应用
CN111146013A (zh) 一种基于苎麻的空心微管电极材料及其合成方法与应用
CN109637824B (zh) 一种用于超级电容器的CoFe2S4纳米片/泡沫镍复合材料及其制备方法
CN112194132B (zh) 一种基于毛竹水热炭化的铁修饰炭微球/炭纳米片复合多孔炭的制备方法及其应用
CN104299793A (zh) 一种氧化镍/多壁碳纳米管电极材料的制备方法
CN106783196B (zh) 一种多面体三氧化二铁纳米材料的制备方法
CN107316749B (zh) Co3O4@CoWO4纳米线阵列核壳结构材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170620

RJ01 Rejection of invention patent application after publication