CN114275758B - 微孔碳材料的制备方法及其应用 - Google Patents
微孔碳材料的制备方法及其应用 Download PDFInfo
- Publication number
- CN114275758B CN114275758B CN202111440984.1A CN202111440984A CN114275758B CN 114275758 B CN114275758 B CN 114275758B CN 202111440984 A CN202111440984 A CN 202111440984A CN 114275758 B CN114275758 B CN 114275758B
- Authority
- CN
- China
- Prior art keywords
- temperature
- carbon material
- microporous carbon
- pore
- krypton
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 106
- 238000002360 preparation method Methods 0.000 title claims abstract description 12
- 229910052743 krypton Inorganic materials 0.000 claims abstract description 106
- 238000001179 sorption measurement Methods 0.000 claims abstract description 105
- 229910052724 xenon Inorganic materials 0.000 claims abstract description 103
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims abstract description 93
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims abstract description 88
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims abstract description 51
- 229930006000 Sucrose Natural products 0.000 claims abstract description 51
- 239000005720 sucrose Substances 0.000 claims abstract description 51
- 239000000571 coke Substances 0.000 claims abstract description 37
- 238000000926 separation method Methods 0.000 claims abstract description 28
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 25
- 239000011148 porous material Substances 0.000 claims abstract description 19
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 54
- 239000000243 solution Substances 0.000 claims description 46
- 239000007789 gas Substances 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 28
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 24
- 229910052757 nitrogen Inorganic materials 0.000 claims description 24
- 238000000197 pyrolysis Methods 0.000 claims description 17
- 238000001035 drying Methods 0.000 claims description 15
- 238000000227 grinding Methods 0.000 claims description 15
- 229910052786 argon Inorganic materials 0.000 claims description 14
- 239000011261 inert gas Substances 0.000 claims description 11
- 230000000274 adsorptive effect Effects 0.000 claims description 4
- 230000035484 reaction time Effects 0.000 claims description 3
- 239000007864 aqueous solution Substances 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- 229910052734 helium Inorganic materials 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 230000000630 rising effect Effects 0.000 description 60
- 238000012360 testing method Methods 0.000 description 33
- 239000003463 adsorbent Substances 0.000 description 31
- 238000002474 experimental method Methods 0.000 description 30
- 239000003610 charcoal Substances 0.000 description 29
- 230000035515 penetration Effects 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000011049 filling Methods 0.000 description 13
- 230000004913 activation Effects 0.000 description 12
- 238000001816 cooling Methods 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 230000001276 controlling effect Effects 0.000 description 10
- 229910001873 dinitrogen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 4
- 238000003912 environmental pollution Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 101100112111 Caenorhabditis elegans cand-1 gene Proteins 0.000 description 2
- 241000764238 Isis Species 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012621 metal-organic framework Substances 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- -1 SorboNorit B3 Chemical compound 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000013175 zeolitic imidazolate framework-11 Substances 0.000 description 1
Images
Landscapes
- Carbon And Carbon Compounds (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
本申请涉及一种微孔碳材料的制备方法及其应用。本申请提供的微孔碳材料的制备方法包括以下步骤:S1:将蔗糖溶液进行水热反应,得到焦炭;S2:将所述焦炭进行造孔处理,得到所述微孔碳材料。本申请提供的微孔碳材料具有稳定性好、孔隙结构发达、比表面积大的特点,在吸附分离氙气和氪气方面具有较高的选择性。
Description
技术领域
本申请涉及一种微孔碳材料的制备方法及其应用。
技术背景
化石燃料的日益枯竭以及其高碳排放量导致全球气候变暖,迫使亟需开发出更为清洁高效的替代能源。核能清洁、密度高、并且使用过程中温室气体排放量低,作为替代能源前景巨大。然而,在核能使用过程中产生的核废料中含有127Xe、85Kr等放射性元素,127Xe的半衰期为36.3天,85Kr的半衰期长达10年,如果直接排放,会对环境造成严重污染并且危害人体健康,因此需要对其加以回收利用。除此以外,高纯Xe、Kr作为重要的高附加值化工产品,被广泛应用于医疗、激光、半导体及航空航天等领域。Xe、K主要来源于空气中,然而空气中Xe、Kr含量极其稀少,仅为0.087ppmv及1.1ppmv,因此开发出高效的Xe、Kr分离富集技术意义重大。
目前,Xe、Kr的分离仍然主要依赖于低温精馏。然而Xe、Kr的沸点及相对挥发度差异小,精馏过程中所需塔板数多,对设备要求高,并且能耗巨大。例如德国林德股份有限公司发明了一种从空气中通过低温分离得到Xe、Kr的方法(CN1920455),该方法通过将被净化的空气进行压缩依次导入蒸馏系统、高压塔、低压塔、蒸发器等装置提取氙氪。该方法分离收率高、所得产品纯度高,但是该法对设备要求高,不适合于小规模的氙气和氪气的分离。
气相变压吸附具有操作灵活、流程简单、设备投资少和操作能耗低等优点,被认为是未来最具工业应用前景的分离技术,近年来备受关注。变压吸附主要采用分子筛、多孔碳、金属有机框架材料等作为吸附剂。Bazan等人研究了Xe、Kr在SorboNorit B3、Koestrolith 13X-K2、Koestrolith 4AK等分子筛上的吸附,SorboNorit B3及Koestrolith4AK对Xe/Kr的亨利系数选择性不足8,Koestrolith 13X-K2对其选择性达到12(Adsorption,2011,17(2):371-383),但是其复杂的制备工艺仍是制约其工业应用的主要因素。Li等采用金属有机框架材料Co3(C4O4)2(OH)2作为吸附剂,可以实现氙气和氪气的高效分离(J.Am.Chem.Soc.,2019,141,9358-9364.),其选择性高达69.7,然而该材料对Xe的吸附容量不足1.5mmol/g。Gong等人采用ZIF-11为碳源、糠醛为二次碳源,通过浸渍、焙烧、酸洗等步骤,得到了可有效分离Xe/Kr混合气的多孔碳材料(J.Mater.Chem.A,2018,6,13696),然而该材料孔径分布宽,且糠醛的引入易造成环境污染,限制了其工业应用。
目前用于Xe、Kr吸附分离的吸附剂材料主要优先吸附极化率更大的Xe分子,从而实现Xe、Kr分离,然而由于Xe、Kr极化率差异小,普遍分离选择性不高,并且存在的Xe、Kr共吸附问题,使得需要更多的脱附-吸附循环才能得到高纯Xe、Kr,除此以外,85Kr比127Xe具有更长的半衰期,更需要被捕集以减少对环境的持续影响。因此开发出能实现Xe、Kr的筛分分离而只吸附Kr分子的吸附剂材料,不仅可以提高Xe、Kr分离选择性,对于核废料中半衰期更长的85Kr的特异性捕获的意义也更为重大。
微孔碳材料由于其稳定性好、孔隙结构发达、比表面积大而得到了广泛研究。然而一般碳材料制备过程中需要加入有机调孔剂进行活化造孔处理,造成了环境污染,并且得到的碳材料孔径宽,不利于吸附分离选择性的提高。
发明内容
针对现有技术的不足,本申请提供了一种微孔碳材料,其具有稳定性好、孔隙结构发达、比表面积大的特点。本申请还提供了该微孔碳材料在吸附分离氙气和氪气中的应用,吸附分离选择性高。
本申请的第一方面提供了一种微孔碳材料的制备方法,其包括以下步骤:
S1:将蔗糖溶液进行水热反应,得到焦炭;
S2:将所述焦炭进行造孔处理,得到所述微孔碳材料。
根据本申请的一些实施方式,步骤S1中,所述蔗糖溶液为蔗糖的水溶液。根据本申请的一些实施方式,所述蔗糖溶液的浓度为0.5mol/L-2.0mol/L,例如可以为0.5mol/L、0.6mol/L、0.7mol/L、0.8mol/L、0.9mol/L、1mol/L、1.2mol/L、1.4mol/L、1.6mol/L、1.8mol/L、2mol/L以及他们之间的任意值。根据本申请的优选实施方式,优选为0.5mol/L-1.0mol/L。
根据本申请的一些实施方式,步骤S1中,所述水热反应的温度为150℃-250℃,例如可以为150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃、250℃以及它们之间的任意值。根据本申请的优选实施方式,步骤S1中,所述水热反应的温度为180℃-200℃。
根据本申请的一些实施方式,所述水热反应的温度通过程序升温实现。根据本申请的一些实施方式,所述程序升温的升温速率为2℃/min-5℃/min,例如可以为2℃/min、2.5℃/min、3℃/min、3.5℃/min、4℃/min、4.5℃/min、5℃/min以及它们之间的任意值。根据本申请的优选实施方式,所述程序升温的升温速率为2.5℃/min-3.5℃/min。
根据本申请的一些实施方式,所述水热反应的时间为3h-10h,例如可以为3h、4h、5h、6h、7h、8h、9h、10h以及它们之间的任意值。根据本申请的优选一些实施方式,所述水热反应的时间为5h-10h。
根据本申请的一些实施方式,步骤S2中,所述造孔处理为热解造孔。根据本申请的一些实施方式,所述热解造孔的温度为400℃-1000℃,例如可以为400℃、500℃、600℃、700℃、800℃、900℃、1000℃以及它们之间的任意值。根据本申请的优选实施方式,所述热解造孔的温度为600℃-800℃。根据本申请的一些具体实施方式,所述热解造孔的温度为750℃。
根据本申请的一些实施方式,所述造孔处理中,热解造孔的温度达到目标温度后直接进行冷却。
根据本申请的一些实施方式,所述热解造孔的温度通过程序升温实现。根据本申请的一些实施方式,所述程序升温的升温速率为1℃/min-10℃/min。根据本申请的优选实施方式,所述热解造孔的温度通过阶段性程序升温实现。根据本申请的一些具体实施方式,所述热解造孔的温度通过先以1℃/min-3℃/min的速率升温,再以5℃/min-8℃/min的速率升温实现。
根据本申请的一些实施方式,步骤S2中,所述造孔处理在惰性气体的保护下进行。根据本申请的一些实施方式,所述惰性气体为氮气、氩气或氦气中的一种。
根据本申请的一些实施方式,所述惰性气体的气体流速为10mL/min-500mL/min,例如可以为10mL/min、50mL/min、100mL/min、150mL/min、200mL/min、300mL/min、400mL/min、500mL/min以及它们之间的任意值。根据本申请的优选实施方式,所述惰性气体的气体流速为25mL/min-100mL/min。
根据本申请的一些实施方式,所述制备方法还包括在步骤S2之前将所述焦炭干燥后,研磨压片。
根据本申请的一些具体实施方式,所述微孔碳材料的制备方法包括:
步骤(1)水热炭化反应制备炭焦:
称取一定量的蔗糖加入去离子水中,配制成0.5mol/L-2.0mol/L的蔗糖溶液,随即将蔗糖溶液转移至水热反应釜中,装填量为反应釜总容量的50%-90%,然后将反应釜放入程序升温烘箱中,通过程序升温至150℃-250℃,高温反应5h-10h,得到均质的炭焦。
步骤(2)程序升温热解造孔:
将步骤(1)制备所得的炭焦不进行水洗直接进行干燥并研磨压片,将其置于管式炉中,采用惰性气体保护,气体流速为25mL/min-500mL/min,采用阶段性程序升温,先以1℃/min-3℃/min的速率升温,再以5℃/min-8℃/min的速率继续升温,将温度上升到400℃-1000℃,到达目标温度后,直接降温冷却,得到孔径均一的微孔碳材料,其中微孔碳材料的微孔孔径通过气体流速、热解温度、升温速率等进行调控。
根据本申请的另一些实施方式,所述微孔碳材料的制备方法为:配制0.75mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在惰性气体氛围中,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至750-800℃进行高温活化(热解造孔),得到比表面积500-600m2、微孔率为100%、有效微孔孔径为的微孔碳材料。
根据本申请的另一些实施方式,所述微孔碳材料的制备方法为:配制0.75mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在惰性气体氛围中,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至750℃进行高温活化(热解造孔),到达目标温度后,直接降温冷却,得到比表面积536m2、微孔率为100%、有效微孔孔径为的微孔碳材料。
本申请通过采用蔗糖溶液进行水热炭化反应制备炭焦,然后进行程序升温热解造孔制备得到微孔碳材料,通过本申请的制备方法制备的微孔碳材料作为吸附剂时结构性能稳定,颗粒形状规则,在吸附分离氙气和氪气方面具有较高的选择性。
本申请的第二方面提供了一种根据第一方面所述的制备方法得到的微孔碳材料。
根据本申请的一些实施方式,所述微孔碳材料的比表面积为300m2/g-600m2/g,例如可以为300m2/g、350m2/g、400m2/g、450m2/g、500m2/g、550m2/g、600m2/g以及它们之间的任意值。根据本申请的优选实施方式,所述微孔碳材料的比表面积为500m2/g-600m2/g。根据本申请的一些具体实施方式,所述微孔碳材料的比表面积为536m2/g。
根据本申请的一些实施方式,所述微孔碳材料的微孔率为80%-100%,例如可以为80%、85%、90%、95%、100%以及它们之间的任意值。根据本申请的优选实施方式,所述微孔碳材料的微孔率为95%-100%。根据本申请的一些具体实施方式,所述微孔碳材料的微孔率为100%。本申请中,微孔率指的是微孔孔容占总孔容的比例。
根据本申请的一些实施方式,所述微孔碳材料的有效微孔孔径为例如可以为以及它们之间的任意值。根据本申请的优选实施方式,所述微孔碳材料的有效微孔孔径为根据本申请的一些具体实施方式,所述微孔碳材料的有效微孔孔径为本申请中,采用具有不同动力学直径或碰撞直径的气体分子为探针,微孔碳材料能吸附的最大尺寸的分子尺寸与不能吸附的最小尺寸的分子尺寸的平均值称为该微孔碳材料的有效微孔孔径。
根据本申请的一些实施方式,所述微孔碳材料的形状包括球形、柱状、颗粒或膜状中的至少一种。
本申请的第三方面提供了根据第一方面所述的制备方法得到的微孔碳材料或根据第二方面所述的微孔碳材料在吸附分离氙气和氪气中的应用。
根据本申请的一些实施方式,所述吸附分离的温度为-5℃至50℃,例如可以为-5℃、0℃、5℃、15℃、25℃、30℃、40℃、50℃以及它们之间的任意值。
根据本申请的一些实施方式,在所述吸附分离中,包含氙气和氪气的混合气的总压为100kPa至1000kPa,例如可以为100kPa、200kPa、400kPa、600kPa、800kPa、1000kPa以及它们之间的任意值。
本申请的微孔碳材料具有孔径分布窄且均匀、比表面积大、选择性高的特点;用于吸附分离氙气和氪气时,Kr饱和吸附量达到0.51-1.51mmol/g,Kr/Xe亨利系数选择性达到21-104,该微孔碳材料可用于变压吸附氙气和氪气,在痕量组分捕获时依然具有很好的分离性能。
与现有技术相比,本发明具有以下优点:
本申请的微孔碳材料制备所用的蔗糖来源广泛,价格低廉。本申请的微孔碳材料制备方法简单绿色、无需添加化学造孔剂。本申请的微孔碳材料结构和性能稳定,对氪气具有较高的吸附量,同时可以实现氙气和氪气的分子筛分分离,并且多次反复吸附-再生后,吸附性能仍然保持原有效果。在氙气和氪气的吸附分离方面的性能远优于绝大多数固体吸附剂。
附图说明
图1为根据本申请实施例1制备的微孔碳材料对氪气、氙气、氮气、氧气和氩气的吸附等温线。
图2为根据本申请实施例1制备的微孔碳材料对氪气和氙气混合气的固定床穿透曲线。
图3为根据本申请实施例1制备的微孔碳材料对氪气、氙气、氮气、氧气和氩气混合气的固定床穿透曲线。
图4为根据本申请实施例2制备的微孔碳材料对氪气、氙气、氮气、氧气和氩气的吸附等温线。
图5为根据本申请实施例2制备的微孔碳材料对氪气和氙气混合气的固定床穿透曲线。
图6为根据本申请实施例2制备的微孔碳材料对氪气、氙气、氮气、氧气和氩气混合气的固定床穿透曲线。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例对本发明进行进一步的详细说明。应当理解,此处所描述的具体实施方式仅仅用以解释本发明,并不限定本发明的保护范围。
以下实施例中,所用试剂或仪器未标明生产厂商的,均为可通过市购得到的常规产品。
实施例1
配制0.75mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至750℃进行高温活化造孔。温度达到目标温度后,直接降温冷却,制备得到微孔碳材料。
为了测试本实施例制备的微孔碳材料的吸附性能,使用上述微孔碳材料作为吸附剂进行了氙气、氪气、氮气、氧气和氩气的单组份吸附实验。将得到的微孔碳材料在150℃脱气24小时,随后进行气体吸附实验。取100mg吸附剂,设定吸附温度为25℃。经测试,结果如图1所示,在25℃和1bar(100kPa)时,氪气的吸附量达到1.18mmol/g,而氙气的吸附量仅为0.03mmol/g,氮气吸附量为0.39mmol/g,氩气吸附量为0.40mmol/g,氧气吸附量为0.42mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe、Kr/N2、Kr/O2、Kr/Ar的吸附选择性分别达到59.89、5.15、4.95及5.45。
为了测试本实施例制备的微孔碳材料对氙气和氪气混合气分离的实际效果,使用上述合成的微孔碳材料作为吸附剂进行了氙气和氪气混合气体的穿透实验。本实施例中吸附分离的是氙气和氪气混合气体,体积比为20:80,穿透温度为25℃,压强为0.1MPa。经测试,结果如图2所示,氙气和氪气体积比为20:80,混合气流速为0.75mL/min时,氙气一开始便开始穿透,而氪气在15分钟才开始穿透,氪气的动态吸附量为1.03mmol/g。
为了测试本实施例制备的微孔碳材料对痕量氪气捕集的实际效果,使用上述合成的微孔碳材料作为吸附剂进行了含痕量氪气混合气体的穿透实验。本实施例中吸附分离的混合气体,其比例为:400ppm Xe,40ppm Kr,0.91%Ar,21%O2,78.046%N2。穿透温度为25℃,压强为0.1MPa。经测试,结果如图3所示,当混合气流速为2.3mL/min时,氙气、氮气、氧气及氩气在一开始便穿透,而氪气13分钟后才开始穿透。
实施例2
本实施例制备的微孔碳材料同实施例1。
为了测试本实施例制备的微孔碳材料的吸附性能,使用上述微孔碳材料作为吸附剂进行了氙气、氪气、氮气、氧气和氩气的单组份吸附实验。将得到的微孔碳材料在150℃脱气24小时,随后进行气体吸附实验。取100mg吸附剂,设定吸附温度为0℃。经测试,结果如图4所示,在0℃和1bar时,氪气的吸附量达到1.74mmol/g,而氙气的吸附量仅为0.05mmol/g,氮气吸附量为0.74mmol/g,氩气吸附量为0.64mmol/g,氧气吸附量为0.65mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe、Kr/N2、Kr/O2、Kr/Ar的吸附选择性分别达到104.64、5.46、5.89及5.96。
为了测试本实施例制备的微孔碳材料对氙气和氪气混合气分离的实际效果,使用上述合成的微孔碳材料作为吸附剂进行了氙气和氪气混合气体的穿透实验。本实施例中吸附分离的是氙气和氪气混合气体,体积比为20:80,穿透温度为0℃,压强为0.1MPa。经测试,结果如图5所示,氙气和氪气体积比为20:80,混合气流速为0.75mL/min时,氙气一开始便开始穿透,而氪气在20分钟才开始穿透,氪气的动态吸附量为1.51mmol/g。
为了测试本实施例制备的微孔碳材料对痕量氪气捕集的实际效果,使用上述合成的微孔碳材料作为吸附剂进行了含痕量氪气混合气体的穿透实验。本实施例中吸附分离的混合气体,其比例为:400ppm Xe,40ppm Kr,0.91%Ar,21%O2,78.046%N2。穿透温度为0℃,压强为0.1MPa。经测试,结果如图6所示,当混合气流速为2.3mL/min时,氙气、氮气、氧气及氩气在一开始便穿透,而氪气19分钟后才开始穿透。
实施例3
配制0.75mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至800℃进行高温活化造孔。温度到达目标温度后,直接降温冷却,制备得到微孔碳材料。
为了测试本实施例制备的微孔碳材料的吸附性能,使用上述微孔碳材料作为吸附剂进行了氙气、氪气单组份吸附实验。将得到的微孔碳材料在150℃脱气24小时,随后进行气体吸附实验。取100mg吸附剂,设定吸附温度为25℃。经测试,在25℃和1bar时,氪气的吸附量达到0.81mmol/g,而氙气的吸附量仅为0.03mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到20.92。
为了测试本实施例制备的微孔碳材料对氙气和氪气混合气分离的实际效果,使用上述合成的微孔碳材料作为吸附剂进行了氙气和氪气混合气体的穿透实验。本实施例中吸附分离的是氙气和氪气混合气体,体积比为20:80,穿透温度为25℃,压强为0.1MPa。经测试,氙气和氪气体积比为20:80,混合气流速为0.75mL/min时,氙气一开始便开始穿透,而氪气在10分钟才开始穿透,氪气的动态吸附量为0.51mmol/g。
实施例4
本实施例用微孔碳材料同实施例3。
为了测试本实施例制备的微孔碳材料的吸附性能,使用上述微孔碳材料作为吸附剂进行了氙气、氪气单组份吸附实验。将得到的微孔碳材料在150℃脱气24小时,随后进行气体吸附实验。取100mg吸附剂,设定吸附温度为0℃。经测试,在0℃和1bar时,氪气的吸附量达到1.21mmol/g,而氙气的吸附量仅为0.04mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到61.25。
为了测试本实施例制备的微孔碳材料对氙气和氪气混合气分离的实际效果,使用上述合成的微孔碳材料作为吸附剂进行了氙气和氪气混合气体的穿透实验。本实施例中吸附分离的是氙气和氪气混合气体,体积比为20:80,穿透温度为0℃,压强为0.1MPa。经测试,氙气和氪气体积比为20:80,混合气流速为0.75mL/min时,氙气一开始便开始穿透,而氪气在15分钟才开始穿透,氪气的动态吸附量为0.82mmol/g。
实施例5
配制0.5mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至750℃进行高温活化造孔。温度达到目标温度后,直接降温冷却,制备得到微孔碳材料。
采用与实施例1相同的方法进行氙气、氪气单组份吸附实验。经测试,在25℃和1bar时,氪气的吸附量达到0.78mmol/g,而氙气的吸附量仅为0.04mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到23.3。
采用与实施例1相同的方法进行氙气和氪气混合气体的穿透实验。经测试,氙气一开始便开始穿透,而氪气在10分钟才开始穿透,氪气的动态吸附量为0.65mmol/g。
实施例6
配制1.0mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至750℃进行高温活化造孔。温度达到目标温度后,直接降温冷却,制备得到微孔碳材料。
采用与实施例1相同的方法进行氙气、氪气单组份吸附实验。经测试,在25℃和1bar时,氪气的吸附量达到0.8mmol/g,而氙气的吸附量为1.14mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到0.38,对Xe/Kr的吸附选择性达到2.6。
采用与实施例1相同的方法进行氙气和氪气混合气体的穿透实验。经测试,氪气在4分钟开始穿透,而氙气在8分钟才开始穿透,氙气的动态吸附量为0.44mmol/g。
实施例7
配制2.0mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至750℃进行高温活化造孔。温度达到目标温度后,直接降温冷却,制备得到微孔碳材料。
采用与实施例1相同的方法进行氙气、氪气单组份吸附实验。经测试,在25℃和1bar时,氪气的吸附量达到0.8mmol/g,而氙气的吸附量为1.6mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到0.06,对Xe/Kr的吸附选择性达到16.5。
采用与实施例1相同的方法进行氙气和氪气混合气体的穿透实验。经测试,氪气在4分钟开始穿透,而氙气在15分钟才开始穿透,氙气的动态吸附量为0.86mmol/g。
实施例8
配制0.75mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至600℃进行高温活化造孔。温度达到目标温度后,直接降温冷却,制备得到微孔碳材料。
采用与实施例1相同的方法进行氙气、氪气单组份吸附实验。经测试,在25℃和1bar时,氪气的吸附量达到0.87mmol/g,而氙气的吸附量为1.86mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到0.05,对Xe/Kr的吸附选择性达到17.4。
采用与实施例1相同的方法进行氙气和氪气混合气体的穿透实验。经测试,氪气在5分钟开始穿透,而氪气在17分钟才开始穿透,氙气的动态吸附量为0.91mmol/g。
实施例9
配制0.75mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至1000℃进行高温活化造孔。温度达到目标温度后,直接降温冷却,制备得到微孔碳材料。
采用与实施例1相同的方法进行氙气、氪气单组份吸附实验。经测试,在25℃和1bar时,氪气的吸附量达到1.04mmol/g,而氙气的吸附量仅为1.42mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到0.43,对Xe/Kr吸附选择性达到2.3。
采用与实施例1相同的方法进行氙气和氪气混合气体的穿透实验。经测试,氪气一在7分钟开始穿透,而氙气在9分钟开始穿透,氙气的动态吸附量为0.25mmol/g。
实施例10
配制0.75mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至1200℃进行高温活化造孔。温度达到目标温度后,直接降温冷却,制备得到微孔碳材料。
采用与实施例1相同的方法进行氙气、氪气单组份吸附实验。经测试,在25℃和1bar时,氪气的吸附量达到1.9mmol/g,而氙气的吸附量仅为3.6mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到0.07,对Xe/Kr吸附选择性达到14。
采用与实施例1相同的方法进行氙气和氪气混合气体的穿透实验。经测试,氪气一在11分钟开始穿透,而氙气在34分钟才开始穿透,氙气的动态吸附量为1.84mmol/g。
实施例11
配制0.75mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以5℃/min的升温速率上升至800℃进行高温活化造孔。温度达到目标温度后,直接降温冷却,制备得到微孔碳材料。
采用与实施例1相同的方法进行氙气、氪气单组份吸附实验。经测试,在25℃和1bar时,氪气的吸附量达到2.0mmol/g,而氙气的吸附量仅为4.3mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到0.07,对Xe/Kr吸附选择性达到13.7。
采用与实施例1相同的方法进行氙气和氪气混合气体的穿透实验。经测试,氪气11分钟开始穿透,而氙气在38分钟才开始穿透,氙气的动态吸附量为1.95mmol/g。
实施例12
配制0.75mol/L的蔗糖溶液,将蔗糖溶液装填至水热反应釜的90%,置于程序升温烘箱,以3℃/min的升温速率上升至190℃反应5h,随即将所得的炭焦直接干燥研磨压片,转移至管式炉中,在氮气气体氛围中,控制氮气流速为25mL/min,以1℃/min的升温速率上升至500℃,再以5℃/min的升温速率上升至750℃保持2h,进行高温活化造孔,然后降温冷却,制备得到微孔碳材料。
采用与实施例1相同的方法进行氙气、氪气单组份吸附实验。经测试,在25℃和1bar时,氪气的吸附量达到1.8mmol/g,而氙气的吸附量仅为3.4mmol/g。通过Henry系数计算,该吸附剂对Kr/Xe吸附选择性达到0.07,对Xe/Kr吸附选择性达到14.2。
采用与实施例1相同的方法进行氙气和氪气混合气体的穿透实验。经测试,氪气9分钟开始穿透,而氙气在34分钟才开始穿透,氙气的动态吸附量为1.62mmol/g。
应当注意的是,以上所述的实施例仅用于解释本申请,并不构成对本申请的任何限制。通过参照典型实施例对本申请进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本申请权利要求的范围内对本申请作出修改,以及在不背离本申请的范围和精神内对本申请进行修订。尽管其中描述的本申请涉及特定的方法、材料和实施例,但是并不意味着本申请限于其中公开的特定例,相反,本申请可扩展至其他所有具有相同功能的方法和应用。
Claims (18)
1.一种微孔碳材料的制备方法,其包括以下步骤:
S1:将蔗糖溶液进行水热反应,得到焦炭,所述蔗糖溶液为蔗糖的水溶液,所述蔗糖溶液的浓度为0.5mol/L-2.0mol/L;
S2:将所述焦炭进行造孔处理,得到所述微孔碳材料;
其中,步骤S1中,所述水热反应的温度为150℃-250℃,时间为3h-10h;
步骤S2中,所述造孔处理为热解造孔,所述热解造孔的温度为400℃-1000℃。
2.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述蔗糖溶液的浓度为0.5mol/L-1.0mol/L。
3.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述水热反应的温度为180℃-200℃;和/或所述水热反应的时间为5h-10h。
4.根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述水热反应的温度通过程序升温实现。
5. 根据权利要求4所述的制备方法,其特征在于,所述程序升温的升温速率为2℃/min-5℃/min。
6.根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述热解造孔的温度为600-800℃。
7.根据权利要求1所述的制备方法,其特征在于,所述造孔处理中,热解造孔的温度达到目标温度后直接进行冷却。
8.根据权利要求1所述的制备方法,其特征在于,所述热解造孔的温度通过程序升温实现。
9.根据权利要求8所述的制备方法,其特征在于,所述程序升温的升温速率为1℃/min-10℃/min。
10.根据权利要求8所述的制备方法,其特征在于,所述热解造孔的温度通过先以1℃/min-3℃/min的速率升温,再以5℃/min-8℃/min的速率升温实现。
11.根据权利要求1-10中任一项所述的制备方法,其特征在于,步骤S2中,所述造孔处理在惰性气体的保护下进行;和/或在步骤S2之前将所述焦炭干燥后,研磨压片。
12.根据权利要求11所述的制备方法,其特征在于,所述惰性气体为氮气、氩气或氦气中的一种。
13.根据权利要求11所述的制备方法,其特征在于,所述惰性气体的气体流速为10mL/min-500mL/min。
14.根据权利要求11所述的制备方法,其特征在于,所述惰性气体的气体流速为25mL/min-100mL/min。
15. 根据权利要求1所述的制备方法,其特征在于,所述微孔碳材料的比表面积为300m2/g -600 m2/g;和/或所述微孔碳材料的微孔率为80%-100%;和/或所述微孔碳材料的有效微孔孔径为4.0Å -4.5Å;和/或所述微孔碳材料的形状包括球形、柱状、颗粒或膜状中的至少一种。
16. 根据权利要求15所述的制备方法,其特征在于,所述微孔碳材料的比表面积为400m2/g -600 m2/g;和/或所述微孔碳材料的微孔率为95%-100%;和/或所述微孔碳材料的有效微孔孔径为4.0Å -4.1Å。
17.根据权利要求1-16中任一项所述的制备方法得到的微孔碳材料在吸附分离氙气和氪气中的应用。
18. 根据权利要求17所述的应用,其特征在于,所述吸附分离的温度为-5℃至50℃;和/或在所述吸附分离中,包含氙气和氪气的混合气的总压为100 kPa至1000 kPa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111440984.1A CN114275758B (zh) | 2021-11-30 | 2021-11-30 | 微孔碳材料的制备方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111440984.1A CN114275758B (zh) | 2021-11-30 | 2021-11-30 | 微孔碳材料的制备方法及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114275758A CN114275758A (zh) | 2022-04-05 |
CN114275758B true CN114275758B (zh) | 2023-05-12 |
Family
ID=80870579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111440984.1A Active CN114275758B (zh) | 2021-11-30 | 2021-11-30 | 微孔碳材料的制备方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114275758B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115806291A (zh) * | 2022-12-27 | 2023-03-17 | 上海杉杉科技有限公司 | 一种石墨负极材料及其制备方法、应用和锂离子电池 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106865540A (zh) * | 2017-03-24 | 2017-06-20 | 桂林电子科技大学 | 一种氮掺杂多孔结构碳材料及其制备方法和应用 |
CN108160073A (zh) * | 2017-12-29 | 2018-06-15 | 桂林电子科技大学 | 一种负载钌纳米粒子的多孔碳材料及其制备方法和应用 |
CN110711456A (zh) * | 2019-09-12 | 2020-01-21 | 浙江大学 | 一种pvdc树脂衍生微孔碳材料在吸附分离氙气和氪气上的应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3585043B2 (ja) * | 2003-01-22 | 2004-11-04 | メルク・ホエイ株式会社 | 医薬用吸着剤及びその製法 |
US7285154B2 (en) * | 2004-11-24 | 2007-10-23 | Air Products And Chemicals, Inc. | Xenon recovery system |
CN108380189B (zh) * | 2011-09-05 | 2021-03-16 | 株式会社可乐丽 | 吸附材料 |
WO2017035086A1 (en) * | 2015-08-22 | 2017-03-02 | Entegris, Inc. | Carbohydrate pyrolyzate adsosrbent and systems and processes utilizing same |
KR102565909B1 (ko) * | 2016-09-30 | 2023-08-09 | 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 | 복합재료 및 가스 흡착재 및 복합재료의 제조방법 |
CN113148980B (zh) * | 2021-03-23 | 2024-01-30 | 华南理工大学 | 一种以多羟基糖类化合物为原料的可控孔径的埃米级碳分子筛材料及其制备方法 |
CN113083229A (zh) * | 2021-03-30 | 2021-07-09 | 郑州大学 | 一种利用吸附含碳物的炭材料制备碳分子筛的方法 |
-
2021
- 2021-11-30 CN CN202111440984.1A patent/CN114275758B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106865540A (zh) * | 2017-03-24 | 2017-06-20 | 桂林电子科技大学 | 一种氮掺杂多孔结构碳材料及其制备方法和应用 |
CN108160073A (zh) * | 2017-12-29 | 2018-06-15 | 桂林电子科技大学 | 一种负载钌纳米粒子的多孔碳材料及其制备方法和应用 |
CN110711456A (zh) * | 2019-09-12 | 2020-01-21 | 浙江大学 | 一种pvdc树脂衍生微孔碳材料在吸附分离氙气和氪气上的应用 |
Also Published As
Publication number | Publication date |
---|---|
CN114275758A (zh) | 2022-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110451509B (zh) | 一种以硝酸锌为活化剂制备氮掺杂多孔碳材料的方法 | |
KR102194141B1 (ko) | 메조다공성 차바자이트 제올라이트 포함 이산화탄소 흡착제 및 그 제조 방법 | |
Xie et al. | Synthesis, characterization and experimental investigation of Cu-BTC as CO2 adsorbent from flue gas | |
JP2012524048A (ja) | 天然ガス処理における、rho構造を備えるゼオライト特性の微孔性結晶性材料の使用 | |
KR101770701B1 (ko) | 티탄산 바륨을 포함한 이산화탄소 흡착제, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법 | |
US20100116136A1 (en) | Carbon-based sorbent for gas storage, and method for preparation thereof | |
CN113683784A (zh) | 金属有机骨架二氧化碳吸附材料的制备方法及应用 | |
CN114275758B (zh) | 微孔碳材料的制备方法及其应用 | |
CN108579686B (zh) | 超微孔金属-有机骨架材料在氢的同位素分离中的应用 | |
Xue et al. | Encapsulated HKUST-1 nanocrystal with enhanced vapor stability and its CO2 adsorption at low partial pressure in unitary and binary systems | |
Xue et al. | Zeolite cage-lock strategy for in situ synthesis of highly nitrogen-doped porous carbon for selective adsorption of carbon dioxide gas | |
TWI294405B (en) | Process for refining nitrogen trifluoride gas using alkali earth metal exchanged zeolite | |
CN110711456B (zh) | 一种pvdc树脂衍生微孔碳材料在吸附分离氙气和氪气上的应用 | |
CN113577981A (zh) | 含氧微孔活性炭及其制备和在选择性吸附乙烷中的应用 | |
CN112316902A (zh) | 一种复合MgO吸附剂及其制备方法与应用 | |
CN114288810B (zh) | 微孔碳材料在吸附分离烯烃和烷烃中的应用 | |
CN116850956A (zh) | 一种改性zif-8基氮掺杂炭co2吸附剂的制备方法 | |
CN114522504B (zh) | 一种脱除高纯度气体中二氧化碳的方法 | |
KR101305454B1 (ko) | 질소, 산소, 불소가 동시에 도입된 이산화탄소 흡착용 탄소흡착제 및 그 제조방법 | |
CN114849652A (zh) | 一种具有高气体分离选择性的活性炭封装咪唑类金属有机骨架复合材料及其制备方法 | |
CN114307976B (zh) | 一种吸附剂及其在二氧化碳/乙炔混合气分离中的应用 | |
CN114225625B (zh) | 一种基于Hofmann型金属-有机框架材料的氙气/氪气吸附分离方法 | |
CN115779854B (zh) | 一种含钙分子筛Ca-CHA的吸附分离应用 | |
KR102212325B1 (ko) | 이산화탄소 흡착제, 그 제조 방법, 및 이를 이용한 이산화탄소 분리 방법 | |
CN110604999B (zh) | 一种pvdc树脂衍生微孔碳材料在吸附分离甲烷和氮气上的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |