CN106861606A - 一种纳米二氧化钛/粉煤灰复合材料的制备方法 - Google Patents

一种纳米二氧化钛/粉煤灰复合材料的制备方法 Download PDF

Info

Publication number
CN106861606A
CN106861606A CN201710111899.8A CN201710111899A CN106861606A CN 106861606 A CN106861606 A CN 106861606A CN 201710111899 A CN201710111899 A CN 201710111899A CN 106861606 A CN106861606 A CN 106861606A
Authority
CN
China
Prior art keywords
water
flyash
hydrochloric acid
concentrated hydrochloric
fly ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710111899.8A
Other languages
English (en)
Inventor
陈俊涛
王炫
李红军
朱晓波
张乾
李望
张白梅
张玉德
唐庆杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201710111899.8A priority Critical patent/CN106861606A/zh
Publication of CN106861606A publication Critical patent/CN106861606A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Processing Of Solid Wastes (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种纳米二氧化钛/粉煤灰复合材料的制备方法。本发明通过热处理、酸处理对原料粉煤灰进行提纯,得到精粉煤灰;水浴条件下,称取一定量的精粉煤灰和蒸馏水放入四口瓶中搅拌,加入少量的浓盐酸,随后滴入一定量的TiCl4溶液;静置片刻后,将溶有硫酸铵和浓盐酸的水溶液滴加到上述TiCl4水溶液中,混合搅拌一段时间后,将混合物升温后保温;滴入一定浓度的碳酸铵溶液,调节pH值,反应一段时间后过滤、洗涤、干燥,然后将样品置于马弗炉中煅烧得到粉煤灰负载TiO2复合材料。本发明以发电厂废弃粉煤灰为原料,将TiO2负载于其表面,制备出一种光催化复合材料。该材料能够有效降解废气、废水,达到“以废治废”的效果。

Description

一种纳米二氧化钛/粉煤灰复合材料的制备方法
技术领域
本发明属于纳米光催化材料的合成技术领域,具体涉及一种纳米二氧化钛/粉煤灰复合材料的制备方法。
背景技术
粉煤灰是一种工业废渣,是燃煤发电厂从煤粉炉废气中收集下来的细颗粒粉末。随着自动化、现代化在社会生活和社会生产中的深入,电力工业迅速发展,粉煤灰的年排放量急剧增加。粉煤灰不仅是废弃污染物,堆放占压土地,而且污染大气环境。同时,粉煤灰又是可综合利用的宝贵资源。根据煤炭、电力行业长远发展规划,预计到2020年,在提高煤炭质量前提下,粉煤灰产排量将达5.01亿吨左右,且大部分在远离大中城市的矿区,这给我国的国民经济及环境保护造成了巨大压力。按照目前我国发电燃煤的组成成分,一个大型火电厂(100万千瓦容量)一年要产30至40万吨粉煤灰。多年来,绝大部分粉煤灰都采取堆存方式处理,粉煤灰已累计堆存13多亿吨,这对生态将造成极大威胁,给人们生活生产的环境造成极大的危害。
利用粉煤灰作原料制备光催化复合材料用于治理含酚废水和净化室内甲醛气体,这样不仅解决了环境污染的问题,同时也变废为宝,有一定的经济效益。既降低了成本,又有效地解决了“三废”问题。这一转化的实现,无论从经济上还是从环保上都有其深远意义。
发明内容
本发明的目的正是针对上述现实中存在的环境污染问题而提供了一种纳米二氧化钛/粉煤灰复合材料的制备方法。
本发明的目的可通过下述技术措施来实现:
本发明的纳米二氧化钛/粉煤灰复合材料的制备方法包括以下步骤:
(1)将原料粉煤灰在焙烧温度为400-600℃条件下进行热处理,冷却后按2-3L:0.8-1.2㎏的液固比取水与焙烧后的粉煤灰粉进行搅拌混合,搅拌混均后加入浓硫酸,调节PH值至2-3,在水浴温度保持100℃条件下,充分搅拌反应4-5小时,随后按水与上述焙烧后的粉煤灰粉的液固比14-16L:0.8-1.2㎏加水进行稀释,反应1小时后将物料过滤、干燥制得精粉煤灰。
(2)在水浴条件下,按液固比2.5-3.5L:0.8-1.2㎏取蒸馏水和精粉煤灰,搅拌同时加入精粉煤灰质量10-15%的浓盐酸,随后滴入精粉煤灰质量25-30%的浓度为2.9-3.0 mol/L 的TiCl4溶液;静置10-15min后,将溶有硫酸铵和浓盐酸的水溶液滴加到上述混合溶液中,加入量为上述混合溶液质量的25-30%,混合搅拌一段时间后,将混合物升温至30oC并保温1小时;所述溶有硫酸铵和浓盐酸的水溶液中的硫酸铵浓度为1.5-2.0 mol/L,浓盐酸浓度为8-10mol/L。
(3)滴入浓度为1.8-2.2mol/L的碳酸铵溶液,调节pH值在4.5~5,反应1小时后过滤、洗涤,然后在100-110℃下干燥3小时,在600-700℃条件下煅烧,保温4小时,即得到粉煤灰负载TiO2复合材料。
本发明步骤(2)所述水浴为冰水浴。
本发明上述制备方法制备得到纳米TiO2/粉煤灰复合材料。
本发明制备的纳米TiO2/粉煤灰复合材料对焦化废水、甲醛气体以及罗丹明B染料废水均有良好的吸附、降解性能。试验过程如下:
(1)焦化废水的降解
分别量取0.1 g纳米TiO2/粉煤灰复合催化剂,放入四个装有100 ml(浓度为18mg/L)焦化废水的容量为400 ml的烧杯内,分别将四个烧杯放在四台磁力搅拌器上搅拌,同时将磁力搅拌器和烧杯移至室外,太阳光照下继续搅拌,相隔1 h、2 h、4 h、6 h先后取下烧杯,将烧杯中溶液离心分离十分钟,取上清液检测苯酚和COD浓度,计算苯酚及COD降解率。
(2)甲醛气体的降解
① 对照组:将四块61cm×61cm不涂样品的玻璃板,放入一个密闭的1m3玻璃箱内,同时将盛有3μl甲醛的培养皿放入箱中;
② 样品组:将7g样品与28g水混匀,涂在四块61cm×61cm的玻璃板上,放入另一个密闭的1m3玻璃箱内,同时将盛有3μl甲醛的培养皿放入箱中;
③ 玻璃箱内装有30瓦日光灯,24小时连续照射,分别在放入1.5h、3h、5h、7h、9h、24h后取样测定两个玻璃箱内空气中甲醛的浓度。
(3)取样品0.1 g,10 mg/L罗丹明B溶液100 ml,250 W紫外灯下光照15分钟,离心分离10分钟,取上清液测吸光度,计算脱色率。
本发明的的有益效果如下:
(1)利用发电厂废料粉煤灰为原料,制备出具有良好吸附性能的吸附材料,并将TiO2负载于其表面,合成了一种新型光催化材料,该法不仅解决了粉煤灰难处理的问题,而且将粉煤灰变废为宝,重新应用于环境污染治理领域。
(2)TiO2/粉煤灰复合材料对焦化废水、甲醛气体以及罗丹明B均有良好的吸附、降解性能,在环境治理方面具有极大的应用潜力。
附图说明
图1 TiO2/粉煤灰光催化复合材料扫描电镜照片。
图2为未处理和700 ℃焙烧后粉煤灰吸附等温线。
图3为原粉煤灰吸附等温方程。
图4为精粉煤灰吸附等温方程。
具体实施方式
本发明以下将结合实施例作进一步描述:
实施例1
(1)将原料粉煤灰在焙烧温度为500℃条件下进行热处理,冷却后按2.5L: 1Kg的液固比取水和焙烧后粉煤灰粉体,搅拌混均后加入浓硫酸,调节PH值至2.5,在水浴温度保持100℃条件下,充分搅拌反应4.5小时,随后按水与上述焙烧后粉煤灰粉体的液固比15L: 1Kg加水进行稀释,反应1小时后将物料过滤、干燥制得精粉煤灰。
(2)冰水浴条件下,按液固比3L: 1Kg取蒸馏水和精粉煤灰,搅拌同时加入精粉煤灰质量15%的浓盐酸,随后滴入精粉煤灰质量28%的浓度为2.9 mol/L 的TiCl4溶液;静置片10min后,将溶有硫酸铵和浓盐酸的水溶液滴加到上述混合溶液中,加入量为上述混合溶液质量的25%,混合搅拌一段时间后,将混合物升温至30oC并保温1小时;所述溶有硫酸铵和浓盐酸的水溶液中的硫酸铵浓度为1.5 mol/L,浓盐酸浓度为10mol/L。
(3)滴入浓度为2mol/L的碳酸铵溶液,调节pH值为4.5,反应1小时后过滤、洗涤,然后在105℃下干燥3小时,在650℃条件下煅烧,保温4小时,即得到粉煤灰负载TiO2复合材料。
对于本实施例所得粉煤灰负载TiO2复合材料采用初始浓度为18 mg/L的焦化废水100 ml,催化剂用量为1g/L,初始液PH为7.0,紫外光下照射0.5 h,H2O23ml/L的实验条件下,苯酚的降解率达到99.87%,COD去除率达到97.93%。
实施例2
(1)将原料粉煤灰在焙烧温度为500℃条件下进行热处理,冷却后按3L: 1.2Kg的液固比取水和焙烧后粉煤灰粉体,搅拌混均后加入浓硫酸,调节PH值至2,在水浴温度保持100℃条件下,充分搅拌反应4小时,随后按水与上述焙烧后粉煤灰粉体的液固比16L: 1.1Kg加水进行稀释,反应1小时后将物料过滤、干燥制得精粉煤灰。
(2)冰水浴条件下,按液固比3.2L:1.1Kg取蒸馏水和精粉煤灰,搅拌同时加入精粉煤灰质量15%的浓盐酸,随后滴入精粉煤灰质量30%的浓度为3.0 mol/L 的TiCl4溶液;静置片13min后,将溶有硫酸铵和浓盐酸的水溶液滴加到上述混合溶液中,加入量为上述混合溶液质量的28%,混合搅拌一段时间后,将混合物升温至30oC并保温1小时;所述溶有硫酸铵和浓盐酸的水溶液中的硫酸铵浓度为1.8mol/L,浓盐酸浓度为8mol/L。
(3)滴入浓度为2mol/L的碳酸铵溶液,调节pH值在为5,反应1小时后过滤、洗涤,然后在110℃下干燥3小时,在680℃条件下煅烧,保温4小时,即得到粉煤灰负载TiO2复合材料。
将7gTiO2/粉煤灰复合材料与28g水混合,放入一个密闭的1m3玻璃箱内,同时将盛有3μl甲醛的培养皿放入箱中,玻璃箱内装有30瓦日光灯,24小时连续照射。试验结果显示,反应24h后甲醛的降解率达到80.77%,说明复合材料对甲醛气体具有较好地降解效果。
实施例3
(1)将原料粉煤灰在焙烧温度为500℃条件下进行热处理,冷却后按2L: 0.8Kg的液固比取水和焙烧后粉煤灰粉体,搅拌混均后加入浓硫酸,调节PH值至3,在水浴温度保持100℃条件下,充分搅拌反应4.5小时,随后按水与上述焙烧后粉煤灰粉体的液固比14L: 0.8Kg加水进行稀释,反应1小时后将物料过滤、干燥制得精粉煤灰。
(2)冰水浴条件下,按液固比2.5L: 0.8Kg取蒸馏水和精粉煤灰,搅拌同时加入精粉煤灰质量10%的浓盐酸,随后滴入精粉煤灰质量25%的浓度为2.9 mol/L 的TiCl4溶液;静置片10min后,将溶有硫酸铵和浓盐酸的水溶液滴加到上述混合溶液中,加入量为上述混合溶液质量的25%,混合搅拌一段时间后,将混合物升温至30oC并保温1小时;所述溶有硫酸铵和浓盐酸的水溶液中的硫酸铵浓度为1.5 mol/L,浓盐酸浓度为8mol/L。
(3)滴入浓度为1.8mol/L的碳酸铵溶液,调节pH值在4.5~5,反应1小时后过滤、洗涤,然后在110℃下干燥3小时,在690℃条件下煅烧,保温4小时,即得到粉煤灰负载TiO2复合材料。
取样品0.1 g,10 mg/L罗丹明B溶液100 ml,250 W紫外灯下光照15分钟,离心分离10分钟,取上清液测吸光度,计算脱色率。试验结果显示,复合材料对罗丹明B的最佳脱色率接近100%。

Claims (2)

1.一种纳米二氧化钛/粉煤灰复合材料的制备方法,其特征在于:所述方法包括以下步骤:
(1)将原料粉煤灰在焙烧温度为400-600℃条件下进行热处理,冷却后按2-3L:0.8-1.2㎏的液固比取水与焙烧后的粉煤灰粉进行搅拌混合,搅拌混均后加入浓硫酸,调节PH值至2-3,在水浴温度保持100℃条件下,充分搅拌反应4-5小时,随后按水与上述焙烧后的粉煤灰粉的液固比14-16L:0.8-1.2㎏加水进行稀释,反应1小时后将物料过滤、干燥制得精粉煤灰;
(2)在水浴条件下,按液固比2.5-3.5L:0.8-1.2㎏取蒸馏水和精粉煤灰,搅拌同时加入精粉煤灰质量10-15%的浓盐酸,随后滴入精粉煤灰质量25-30%的浓度为2.9-3.0 mol/L 的TiCl4溶液;静置10-15min后,将溶有硫酸铵和浓盐酸的水溶液滴加到上述混合溶液中,加入量为上述混合溶液质量的25-30%,混合搅拌一段时间后,将混合物升温至30oC并保温1小时;所述溶有硫酸铵和浓盐酸的水溶液中的硫酸铵浓度为1.5-2.0 mol/L,浓盐酸浓度为8-10mol/L;
(3)滴入浓度为1.8-2.2mol/L的碳酸铵溶液,调节pH值在4.5~5,反应1小时后过滤、洗涤,然后在100-110℃下干燥3小时,在600-700℃条件下煅烧,保温4小时,即得到粉煤灰负载TiO2复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述水浴为冰水浴。
CN201710111899.8A 2017-02-28 2017-02-28 一种纳米二氧化钛/粉煤灰复合材料的制备方法 Pending CN106861606A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710111899.8A CN106861606A (zh) 2017-02-28 2017-02-28 一种纳米二氧化钛/粉煤灰复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710111899.8A CN106861606A (zh) 2017-02-28 2017-02-28 一种纳米二氧化钛/粉煤灰复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN106861606A true CN106861606A (zh) 2017-06-20

Family

ID=59168093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710111899.8A Pending CN106861606A (zh) 2017-02-28 2017-02-28 一种纳米二氧化钛/粉煤灰复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106861606A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370270A (zh) * 2018-10-09 2019-02-22 合肥斯姆雷品牌管理有限公司 用于畜禽养殖场内墙体的功能性涂层及其制备方法
CN109761331A (zh) * 2019-03-06 2019-05-17 刘华 一种磁性污水处理剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195086A (zh) * 2006-12-06 2008-06-11 中国矿业大学(北京) 可用于水和空气净化的硅藻土负载纳米TiO2材料的制备方法
CN101584982A (zh) * 2009-06-19 2009-11-25 华南农业大学 粉煤灰负载纳米二氧化钛复合光催化材料的制备方法
CN101804338A (zh) * 2009-05-19 2010-08-18 王秀宝 纳米二氧化钛/硅藻土复合光催化材料的生产工艺
CN102198394A (zh) * 2010-03-26 2011-09-28 中国矿业大学(北京) 一种蛋白土负载纳米TiO2复合粉体材料的制备方法
CN103386309A (zh) * 2013-07-29 2013-11-13 上海华明高技术(集团)有限公司 以粉煤灰空心微球为基底的光催化复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101195086A (zh) * 2006-12-06 2008-06-11 中国矿业大学(北京) 可用于水和空气净化的硅藻土负载纳米TiO2材料的制备方法
CN101804338A (zh) * 2009-05-19 2010-08-18 王秀宝 纳米二氧化钛/硅藻土复合光催化材料的生产工艺
CN101584982A (zh) * 2009-06-19 2009-11-25 华南农业大学 粉煤灰负载纳米二氧化钛复合光催化材料的制备方法
CN102198394A (zh) * 2010-03-26 2011-09-28 中国矿业大学(北京) 一种蛋白土负载纳米TiO2复合粉体材料的制备方法
CN103386309A (zh) * 2013-07-29 2013-11-13 上海华明高技术(集团)有限公司 以粉煤灰空心微球为基底的光催化复合材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAE-YONG SHIN ET AL.: "Synthesis and Photocatalytic Properties of Nano TiO2 Coated on Fly Ash", 《MATERIALS SCIENCE FORUM》 *
王利剑等: "硅藻土负载二氧化钛复合材料的制备与光催化性能", 《硅酸盐学报》 *
陈俊涛等: "焙烧对粉煤灰孔径分布及吸附性能的影响", 《黑龙江科技学院学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109370270A (zh) * 2018-10-09 2019-02-22 合肥斯姆雷品牌管理有限公司 用于畜禽养殖场内墙体的功能性涂层及其制备方法
CN109761331A (zh) * 2019-03-06 2019-05-17 刘华 一种磁性污水处理剂及其制备方法
CN109761331B (zh) * 2019-03-06 2021-07-06 青岛洛克环保科技有限公司 一种磁性污水处理剂及其制备方法

Similar Documents

Publication Publication Date Title
CN108480360B (zh) 回转窑熔融法飞灰全资源回收利用及尾气超净排放方法
CN111872027B (zh) 一种垃圾焚烧飞灰与印染废液的协同处理方法
CN111068612B (zh) 利用固体废弃物制备类沸石型多孔材料的方法、类沸石型多孔材料及其应用
CN104998672A (zh) 一种g-C3N4/{001}TiO2复合可见光催化剂及其制备方法与应用
CN109331799B (zh) 一种粉煤灰负载二氧化钛光催化材料及其制备方法
CN103191766A (zh) CdS/g-C3N4复合可见光催化剂、制备方法及应用
CN109046229B (zh) 一种氢氧化镧改性羟基磷灰石材料及其制备方法与应用
CN104083945A (zh) 一种利用煤矸石和建筑垃圾制备的沸石陶粒及其制备技术
CN104437469A (zh) 一种用于烟气脱臭/脱硝催化剂的纳米二氧化钛粉体及其制备方法和应用
CN109292895B (zh) 一种光催化剂Li2SnO3的制备方法及运用
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
CN106495510B (zh) 一种具有光催化功能的纳米TiO2/沸石改性水泥及其制备方法
CN106861606A (zh) 一种纳米二氧化钛/粉煤灰复合材料的制备方法
Alsulmi et al. Rational engineering of S-scheme CeO2/g-C3N4 heterojunctions for effective photocatalytic destruction of rhodamine B dye under natural solar radiations
CN101830537B (zh) 一种可见光催化降解硫化矿选矿废水中有机成分的方法
CN103721713A (zh) 一种高效降解染料的三相复合可见光催化剂
CN106076422B (zh) 一种海泡石负载卟啉敏化Bi2WO6可见光催化剂的制备方法
CN109772293B (zh) 一种铟酸锑铋光催化材料及其制备与应用
CN115889397A (zh) 生活垃圾焚烧飞灰的水洗脱氯处理工艺
CN105561969A (zh) 一种多孔TixSn1-xO2固溶体微球的制备和应用
CN112642447B (zh) 一种近红外光响应的Ag2S-Bi4NbO8Cl复合光催化剂的制备方法
CN112174279B (zh) 一种聚合硅铝酸盐无机絮凝剂及其制备方法和应用
CN102389790B (zh) 纳米ZnO/累托石复合材料的制备方法
CN106118803B (zh) 生活垃圾低温热解炉内二噁英抑制剂及其制备方法与应用
KR20100129640A (ko) 전기로 제강 더스트를 이용한 광촉매 제조 방법 및 이를 통해 제조된 광촉매

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170620

RJ01 Rejection of invention patent application after publication