CN106744805A - 原位氮掺杂的超大孔径介孔碳材料及其制备方法 - Google Patents

原位氮掺杂的超大孔径介孔碳材料及其制备方法 Download PDF

Info

Publication number
CN106744805A
CN106744805A CN201710056669.6A CN201710056669A CN106744805A CN 106744805 A CN106744805 A CN 106744805A CN 201710056669 A CN201710056669 A CN 201710056669A CN 106744805 A CN106744805 A CN 106744805A
Authority
CN
China
Prior art keywords
nitrogen
ultra
large aperture
preparation
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710056669.6A
Other languages
English (en)
Other versions
CN106744805B (zh
Inventor
林倩
潘红艳
杨春亮
曹建新
王贤书
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN201710056669.6A priority Critical patent/CN106744805B/zh
Publication of CN106744805A publication Critical patent/CN106744805A/zh
Application granted granted Critical
Publication of CN106744805B publication Critical patent/CN106744805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种原位氮掺杂的超大孔径介孔碳材料及其制备方法,其孔径集中在17.4‑26.8nm之间,BET比表面为428‑984m2/g,孔容为0.72‑2.38cm3/g,氮元素含量为4.17‑4.63wt%,氮原子掺杂形式为吡啶氮、吡咯氮及季铵氮。制备方法是利用含氮的生物高分子壳聚糖作为碳源,正硅酸乙酯(TEOS)为硅源,商业化表面活性剂F127为结构导向剂,去离子水作为主溶剂,利用溶胶‑凝胶法,使壳聚糖与水解后的正硅酸乙酯结合成高聚合度的杂化材料,并与结构导向剂F127通过氢键作用自组装成介观结构,脱除模板后即得。本发明方法简单,原料易得,可调节孔径大小。

Description

原位氮掺杂的超大孔径介孔碳材料及其制备方法
技术领域
本发明属于材料技术领域,具体涉及一种原位氮掺杂的超大孔径介孔碳材料,同时还涉及该原位氮掺杂的超大孔径介孔碳材料的制备方法。
背景技术
超大孔径介孔(10-50nm)碳材料是近年来纳米材料科学研究的一个热点,它在生物传感器、大分子尤其是蛋白质分子的吸附分离、大分子药物载体的靶向输送等方面有着广泛的应用前景。由于这些应用领域对碳材料生物兼容性有较高要求的特点,使得所需超大孔径介孔碳材料不仅应具有较大的孔径、孔容及比表面积,而且也应是无毒无害、高生物相容性的材料,同时应有较好的亲水性,以提高其单分散性。氮原子的掺杂是改善碳材料亲水性的常用方法,包括原位氮掺杂和后处理氮掺杂。
中国专利公开号CN101153051A 2008年4月2日公布了一种发明名称为“一种具有超大孔径的有序介孔材料及其制备方法”,其利用具有超大分子量疏水嵌段的两亲性PEO-b-PS三嵌段共聚物作为结构导向剂,酚醛树脂作为碳前驱体,通过溶剂挥发诱导自组装,制备孔径在10-100nm之间的介孔碳材料, 其不足之处是PEO-b-PS三嵌段共聚物需通过实验室多步有机反应合成,极大的限制该方法的应用推广,且所制备的碳材料亲水性问题需通过后序处理得到完善。
中国专利公开号CN101823706A 2010年9月8日公布了一种发明名称为“一种具有超大孔径壁厚可控的有序介孔碳材料及其制备方法”,其利用具有超大分子量疏水嵌段的两亲性ABC三嵌段共聚物作为结构导向剂,酚醛树脂作为碳前驱体,通过溶剂挥发诱导自组装,制备孔径在10-100nm之间的介孔碳材料。但其亦使用实验室自制ABC三嵌段共聚物作为结构导向剂,酚醛树脂作为碳前驱体,同样没有解决中国专利公开号CN101153051A存在的问题。
最近,Mitome等人以F127作为结构导向剂,利用软模板法和溶剂自挥发技术相结合的方法,也制备出孔径在6.8-56nm之间的介孔碳材料。(TakahitoMitome,Porousstructure and pore size control of mesoporous carbons using a combination ofa soft-templating method and a solvent evaporation technique, Colloids andSurfaces A:Physicochem.Eng.Aspects 494(2016)180–185),虽然他们成功制备出超大孔径介孔碳材料,但是选用的碳源与上述专利公布的一样,仍然是酚醛树脂,所以整个反应过程中亦都是在有机溶剂中进行,不能从根本上满足制备过程环境友好、生物医药材料无有害残余的要求,且亲水性问题需通过后处理工序解决,很大程度限制了其在生物传感器、生物活性分子的吸附分离、大分子药物载体的靶向输送等方面的应用。因此,制备一种在原位合成超大孔介孔炭材料的同时实现原位氮掺杂不仅使制备的碳材料具有较大的孔径、孔容及比表面积,而且使制备的碳材料实现原料无毒无害、高生物相容性,同时具有较好的亲水性。可见,研制一种原位氮掺杂的超大孔径介孔碳材料及其制备方法是非常有意义的。
发明内容
本发明的目的在于克服上述缺点而提供的一种方法简单,原料易得,可调节孔径大小的原位氮掺杂的超大孔径介孔碳材料。
本发明的另一目的在于提供该原位氮掺杂的超大孔径介孔碳材料的制备方法。
本发明的目的通过下述方法实现:
本发明的一种原位氮掺杂的超大孔径介孔碳材料,其孔径集中在17.4-26.8nm之间,BET比表面为428-984m2/g,孔容为0.72-2.38cm3/g,氮元素含量为4.17-4.63wt%,氮原子掺杂形式为吡啶氮、吡咯氮及季铵氮。
上述的一种原位氮掺杂的超大孔径介孔碳材料,其中:制备方法是利用含氮的生物高分子壳聚糖作为碳源,正硅酸乙酯(TEOS)为硅源,商业化表面活性剂F127为结构导向剂,去离子水作为主溶剂,利用溶胶-凝胶法,使壳聚糖与水解后的正硅酸乙酯结合成高聚合度的杂化材料,并与结构导向剂F127通过氢键作用自组装成介观结构,脱除模板后形成含氮且具有超大孔径的介孔材料。此处,TEOS和F127起共模板的作用。
本发明的一种原位氮掺杂的超大孔径介孔碳材料的制备方法,包括如下步骤:
(1)将0.75-1.5g壳聚糖粉末均匀分散在23.5-42ml去离子水中,再加入1.5-3ml2M HCL溶液,搅拌15min后得到壳聚糖酸性溶液A;将0.75-1.5gF127溶于3-6ml乙醇中,再加入1ml0.2MHCL,搅拌5min后逐滴滴入3.7ml正硅酸乙酯,反应10min后得到B溶液;将A逐滴加入B中,在40℃下搅拌1.5-3h,得到混合物(该步骤所有搅拌功率在100-350W之间,搅拌速度为100-350rpm);
(2)将所得混合物移入培养皿中, 15-25℃下老化48-72h,得到成熟的凝胶,再放入烘箱80-100℃固化8-12h,然后置于管式炉中,在惰性气氛(N2)保护下以2-3℃/min的速率升温至900℃并保温2h,得到碳-硅杂化材料;
(3)用2-3mol/L氢氧化钠溶液浸渍上述得到的碳-硅杂化材料,置于80-95℃的恒温水浴箱12-24h,然后将混浊液抽虑洗涤至中性,最后经过干燥得到具有超大孔径的介孔碳材料。
上述的一种原位氮掺杂的超大孔径介孔碳材料的制备方法,其中所述的壳聚糖作为碳源,为含氮的生物高分子材料,脱乙酰度在80-95%之间,粘度在50-800mPa.s之间。
上述的一种原位氮掺杂的超大孔径介孔碳材料的制备方法,其中所述的F127作为结构导向剂,为两亲性三嵌段聚合物(EO106PO70EO106),其亲水嵌段为聚乙氧基(EO)嵌段,疏水嵌段为聚丙氧基(PO)嵌段,化学物质登录号:9003-11-6,临界胶束浓度为950-1000ppm(25℃)。
上述的一种原位氮掺杂的超大孔径介孔碳材料的制备方法,其中所述的正硅酸乙酯为硅源,为试剂级,所述有机醇为分析纯的无水乙醇。
本发明与现有技术相比,具有明显的有益效果,从以上技术方案可知:本发明采用无毒无害且具有较好生物相容性的天然高分子壳聚糖作为碳源,由于壳聚糖是一种生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能的天然高分子,而且壳聚糖分子上含有丰富的胺基官能团,因此可原位氮掺杂制备具有优良的生物相容性的大孔径介孔碳材料。该制备方法既克服了苯酚和甲醛合成碳源(酚醛树脂)过程中对操作人员和环境的毒害作用,也消除了酚醛树脂部分残留于所得碳材料的可能性,同时又原位将氮元素掺杂到超大孔径介孔碳中,使其不仅在药物载体、生物活性大分子的控释、蛋白质大分子的吸附分离等生物医药方面具有广阔的应用前景,而且在锂硫电池正极材料、超级电容器等领域也有巨大的发展潜力。本发明方法简单,原料易得,可改变结构导向剂F127的加入量调节孔径大小,可改变硅碳质量比调节比表面积和孔容。
具体实施方案
实施例1
一种原位氮掺杂的超大孔径介孔碳材料的制备方法,包括如下步骤:
(1)将1g壳聚糖粉末(生化试剂,脱乙酰度在80-95%之间,粘度在50-800mPa.s之间)均匀分散在29ml去离子水中,再加入2ml2MHCL溶液,搅拌15min后得到壳聚糖酸性溶液A;将1gF127溶于4ml乙醇中,再加入1ml0.2MHCL,搅拌5min后逐滴滴入3.7ml正硅酸乙酯,反应10min后得到B溶液;将A逐滴加入B中,在40℃下搅拌2h,得到混合物(该步骤所有搅拌功率在100-350W之间,搅拌速度为200rpm);
(2)将所得混合物移入培养皿中, 25℃下老化48h,得到成熟的凝胶,再放入烘箱80℃固化12h,然后置于管式炉中,在惰性气氛(N2)保护下以2℃/min的速率升温至900℃并保温2h,得到碳-硅杂化材料;
(3)用2mol/L氢氧化钠溶液浸渍上述得到的碳-硅杂化材料,置于80℃的恒温水浴箱24h,然后将混浊液抽虑洗涤至中性,将滤渣放入80℃烘箱中干燥12h,得到原位氮掺杂的超大孔径介孔碳材料,其孔径集中在22.3nm,BET比表面积和总孔容分别为605.3m2/g和1.51cm3/g,氮元素含量为4.29wt%,氮原子掺杂形式为吡啶氮、吡咯氮及季铵氮。
实施例2
一种原位氮掺杂的超大孔径介孔碳材料的制备方法,包括如下步骤:
(1)将1g壳聚糖粉末(生化试剂,脱乙酰度在80-95%之间,粘度在50-800mPa.s之间)均匀分散在29ml去离子水中,再加入2ml2M HCL溶液,搅拌15min后得到壳聚糖酸性溶液A;将1.5gF127溶于6ml乙醇中,再加入1ml0.2M HCL,搅拌5min后逐滴滴入3.7ml正硅酸乙酯,反应10min后得到B溶液;将A逐滴加入B中,在40℃下搅拌3h,得到混合物(该步骤所有搅拌功率在100-350W之间,搅拌速度为250rpm);
(2)将所得混合物移入培养皿中, 25℃下老化48h,得到成熟的凝胶,再放入烘箱100℃固化8h,然后置于管式炉中,在惰性气氛(N2)保护下以3℃/min的速率升温至900℃并保温2h,得到碳-硅杂化材料;
(3)用2mol/L氢氧化钠溶液浸渍上述得到的碳-硅杂化材料,置于80℃的恒温水浴箱24h,然后将混浊液抽虑洗涤至中性,将滤渣放入80℃烘箱中干燥12h,得到原位氮掺杂的超大孔径介孔碳材料,其孔径集中在17.4nm,BET比表面积和总孔容分别为735.6m2/g和1.63cm3/g,氮元素含量为4.36wt%,氮原子掺杂形式为吡啶氮、吡咯氮及季铵氮。
实施例3
一种原位氮掺杂的超大孔径介孔碳材料的制备方法,包括如下步骤:
(1)将1g壳聚糖粉末(生化试剂,脱乙酰度在80-95%之间,粘度在50-800mPa.s之间)均匀分散在29ml去离子水中,再加入2ml2M HCL溶液,搅拌15min后得到壳聚糖酸性溶液A;将0.75gF127溶于3ml乙醇中,再加入1ml0.2MHCL,搅拌5min后逐滴滴入3.7ml正硅酸乙酯,反应10min后得到B溶液;将A逐滴加入B中,在40℃下搅拌1.5h,得到混合物(该步骤所有搅拌功率在100-350W之间,搅拌速度为100rpm);
(2)将所得混合物移入培养皿中, 15℃下老化72h,得到成熟的凝胶,再放入烘箱80℃固化12h,然后置于管式炉中,在惰性气氛(N2)保护下以3℃/min的速率升温至900℃并保温2h,得到碳-硅杂化材料;
(3)用2mol/L氢氧化钠溶液浸渍上述得到的碳-硅杂化材料,置于95℃的恒温水浴箱12h,然后将混浊液抽虑洗涤至中性,将滤渣放入80℃烘箱中干燥12h,得到原位氮掺杂的超大孔径介孔碳材料,其孔径集中在26.8nm,BET比表面积和总孔容分别为428m2/g和0.72cm3/g,氮元素含量为4.63wt%,氮原子掺杂形式为吡啶氮、吡咯氮及季铵氮。
实施例4
一种原位氮掺杂的超大孔径介孔碳材料的制备方法,包括如下步骤:
(1)将0.75g壳聚糖粉末(生化试剂,脱乙酰度在80-95%之间,粘度在50-800mPa.s之间)均匀分散在23.5ml去离子水中,再加入1.5ml2M HCL溶液,搅拌15min后得到壳聚糖酸性溶液A;将1gF127溶于4ml乙醇中,再加入1ml0.2MHCL,搅拌5min后逐滴滴入3.7ml正硅酸乙酯,反应10min后得到B溶液;将A逐滴加入B中,在40℃下搅拌1.5h,得到混合物(该步骤所有搅拌功率在100-350W之间,搅拌速度为350rpm);
(2)将所得混合物移入培养皿中, 25℃下老化48h,得到成熟的凝胶,再放入烘箱100℃固化8h,然后置于管式炉中,在惰性气氛(N2)保护下以2℃/min的速率升温至900℃并保温2h,得到碳-硅杂化材料;
(3)用3mol/L氢氧化钠溶液浸渍上述得到的碳-硅杂化材料,置于90℃的恒温水浴箱18h,然后将混浊液抽虑洗涤至中性,将滤渣放入80℃烘箱中干燥12h,得到原位氮掺杂的超大孔径介孔碳材料,其孔径集中在21.5nm,BET比表面积和总孔容分别为769m2/g和2.35cm3/g,氮元素含量为4.17wt%,氮原子掺杂形式为吡啶氮、吡咯氮及季铵氮。
实施例5
一种原位氮掺杂的超大孔径介孔碳材料的制备方法,包括如下步骤:
(1)将1.5g壳聚糖粉末(生化试剂,脱乙酰度在80-95%之间,粘度在50-800mPa.s之间)均匀分散在42ml去离子水中,再加入3ml 2M HCL溶液,搅拌15min后得到壳聚糖酸性溶液A;将1gF127溶于4ml乙醇中,再加入1ml0.2M HCL,搅拌5min后逐滴滴入3.7ml正硅酸乙酯,反应10min后得到B溶液;将A逐滴加入B中,在40℃下搅拌2.5小时,得到混合物(该步骤所有搅拌功率在100-350W之间,搅拌速度为250rpm);
(2)将所得混合物移入培养皿中, 20℃下老化60h,得到成熟的凝胶,再放入烘箱80℃固化12h,然后置于管式炉中,在惰性气氛(N2)保护下以3℃/min的速率升温至900℃并保温2h,得到碳-硅杂化材料;
(3)用2mol/L氢氧化钠溶液浸渍上述得到的碳-硅杂化材料,置于90℃的恒温水浴箱18h,然后将混浊液抽虑洗涤至中性,将滤渣放入80℃烘箱中干燥12h,得到原位氮掺杂的超大孔径介孔碳材料,其孔径集中在20.4nm,BET比表面积和总孔容分别为984m2/g和2.38cm3/g,氮元素含量为4.32wt%,氮原子掺杂形式为吡啶氮、吡咯氮及季铵氮。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,任何未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (6)

1.一种原位氮掺杂的超大孔径介孔碳材料,其孔径集中在17.4-26.8nm之间,BET比表面为428-984m2/g,孔容为0.72-2.38cm3/g,氮元素含量为4.17-4.63wt%,氮原子掺杂形式为吡啶氮、吡咯氮及季铵氮。
2.如权利要求1所述的一种原位氮掺杂的超大孔径介孔碳材料,其中:制备方法是利用含氮的生物高分子壳聚糖作为碳源,正硅酸乙酯(TEOS)为硅源,商业化表面活性剂F127为结构导向剂,去离子水作为主溶剂,利用溶胶-凝胶法,使壳聚糖与水解后的正硅酸乙酯结合成高聚合度的杂化材料,并与结构导向剂F127通过氢键作用自组装成介观结构,脱除模板后形成含氮且具有超大孔径的介孔材料。
3.一种原位氮掺杂的超大孔径介孔碳材料的制备方法,包括如下步骤:
(1)将0.75-1.5g壳聚糖粉末均匀分散在23.5-42ml去离子水中,再加入1.5-3ml2M HCL溶液,搅拌15min后得到壳聚糖酸性溶液A;将0.75-1.5gF127溶于3-6ml乙醇中,再加入1ml0.2MHCL,搅拌5min后逐滴滴入3.7ml正硅酸乙酯,反应10min后得到B溶液;将A逐滴加入B中,在40℃下搅拌1.5-3h,得到混合物,该步骤所有搅拌功率在100-350W之间,搅拌速度为100-350rpm;
(2)将所得混合物移入培养皿中, 15-25℃下老化48-72h,得到成熟的凝胶,再放入烘箱80-100℃固化8-12h,然后置于管式炉中,在惰性气氛N2保护下以2-3℃/min的速率升温至900℃并保温2h,得到碳-硅杂化材料;
(3)用2-3mol/L氢氧化钠溶液浸渍上述得到的碳-硅杂化材料,置于80-95℃的恒温水浴箱12-24h,然后将混浊液抽虑洗涤至中性,最后经过干燥得到具有超大孔径的介孔碳材料。
4.如权利要求3所述的一种原位氮掺杂的超大孔径介孔碳材料的制备方法,其中所述的壳聚糖作为碳源,为含氮的生物高分子材料,脱乙酰度在80-95%之间,粘度在50-800mPa.s之间。
5.如权利要求3所述的一种原位氮掺杂的超大孔径介孔碳材料的制备方法,其中所述的F127作为结构导向剂,为两亲性三嵌段聚合物(EO106PO70EO106),其亲水嵌段为聚乙氧基(EO)嵌段,疏水嵌段为聚丙氧基(PO)嵌段,化学物质登录号:9003-11-6,临界胶束浓度为950-1000ppm(25℃)。
6.如权利要求3所述的一种原位氮掺杂的超大孔径介孔碳材料的制备方法,其中所述的正硅酸乙酯为硅源,为试剂级,所述有机醇为分析纯的无水乙醇。
CN201710056669.6A 2017-01-25 2017-01-25 原位氮掺杂的超大孔径介孔碳材料及其制备方法 Active CN106744805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710056669.6A CN106744805B (zh) 2017-01-25 2017-01-25 原位氮掺杂的超大孔径介孔碳材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710056669.6A CN106744805B (zh) 2017-01-25 2017-01-25 原位氮掺杂的超大孔径介孔碳材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106744805A true CN106744805A (zh) 2017-05-31
CN106744805B CN106744805B (zh) 2019-03-15

Family

ID=58943090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710056669.6A Active CN106744805B (zh) 2017-01-25 2017-01-25 原位氮掺杂的超大孔径介孔碳材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106744805B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108622874A (zh) * 2018-05-29 2018-10-09 青岛科技大学 一种形貌及孔结构可控的炭材料的制备方法
CN109896516A (zh) * 2019-04-28 2019-06-18 贵州大学 一种原位氮掺杂介孔碳纳米球的制备方法
CN111627725A (zh) * 2020-06-09 2020-09-04 刘庆信 一种孔隙可调节的n,s共掺杂多孔碳的电极材料及其制法
CN111969190A (zh) * 2020-08-21 2020-11-20 天津大学 一种通过氮掺杂和富缺陷纳米壳提高钠储存性能方法
CN113321200A (zh) * 2021-05-12 2021-08-31 首都师范大学 一种氮掺杂或铁氮共掺杂多级孔碳球的制备方法及其在电催化氧还原反应中的应用
CN113937307A (zh) * 2021-09-10 2022-01-14 华中科技大学 一种硅掺杂非贵金属燃料电池阴极催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435792A (zh) * 2008-12-17 2009-05-20 中国科学院上海硅酸盐研究所 氮掺杂介孔碳固定化酶生物传感材料及其制备方法
CN101823705A (zh) * 2009-03-04 2010-09-08 南京大学 一种高表面积含氮中孔碳材料的制备方法
CN101955180A (zh) * 2010-10-09 2011-01-26 复旦大学 一种通过直接自组装制备有序介孔碳材料的方法
CN102530922A (zh) * 2012-03-12 2012-07-04 南京大学 一种氮掺杂空心碳纳米笼的制备方法
CN103553023A (zh) * 2013-11-14 2014-02-05 黑龙江大学 一种氮杂化球形介孔碳的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101435792A (zh) * 2008-12-17 2009-05-20 中国科学院上海硅酸盐研究所 氮掺杂介孔碳固定化酶生物传感材料及其制备方法
CN101823705A (zh) * 2009-03-04 2010-09-08 南京大学 一种高表面积含氮中孔碳材料的制备方法
CN101955180A (zh) * 2010-10-09 2011-01-26 复旦大学 一种通过直接自组装制备有序介孔碳材料的方法
CN102530922A (zh) * 2012-03-12 2012-07-04 南京大学 一种氮掺杂空心碳纳米笼的制备方法
CN103553023A (zh) * 2013-11-14 2014-02-05 黑龙江大学 一种氮杂化球形介孔碳的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDRZEJ OLEJNICZAK等: "Novel nitrogen-containing mesoporous carbons prepared from chitosan", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108622874A (zh) * 2018-05-29 2018-10-09 青岛科技大学 一种形貌及孔结构可控的炭材料的制备方法
CN109896516A (zh) * 2019-04-28 2019-06-18 贵州大学 一种原位氮掺杂介孔碳纳米球的制备方法
CN111627725A (zh) * 2020-06-09 2020-09-04 刘庆信 一种孔隙可调节的n,s共掺杂多孔碳的电极材料及其制法
CN111969190A (zh) * 2020-08-21 2020-11-20 天津大学 一种通过氮掺杂和富缺陷纳米壳提高钠储存性能方法
CN113321200A (zh) * 2021-05-12 2021-08-31 首都师范大学 一种氮掺杂或铁氮共掺杂多级孔碳球的制备方法及其在电催化氧还原反应中的应用
CN113321200B (zh) * 2021-05-12 2022-08-16 首都师范大学 一种氮掺杂或铁氮共掺杂多级孔碳球的制备方法及其在电催化氧还原反应中的应用
CN113937307A (zh) * 2021-09-10 2022-01-14 华中科技大学 一种硅掺杂非贵金属燃料电池阴极催化剂及其制备方法
CN113937307B (zh) * 2021-09-10 2023-03-14 华中科技大学 一种硅掺杂非贵金属燃料电池阴极催化剂及其制备方法

Also Published As

Publication number Publication date
CN106744805B (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
CN106744805A (zh) 原位氮掺杂的超大孔径介孔碳材料及其制备方法
CN101798403B (zh) 一种壳聚糖/聚乙烯醇/聚乳酸共混致密膜的制备方法
CN103342870B (zh) 一种改性SiO2/PVA薄膜及其制备方法
CN111019359A (zh) 一种耐高温的抗菌型硅橡胶及其制备方法
CN106927718A (zh) 一种防霉抗菌瓷砖填缝剂及其制备方法
CN102502667B (zh) 一种大孔径、大窗口、三维连通的有序介孔材料及其制备方法
KR20070001954A (ko) 유기무기 복합 나노파이버, 유기무기 복합 구조체 및이들의 제조 방법
CN104909378B (zh) 一种单分散多孔二氧化硅微球的制备方法
CN109942751B (zh) 一种塑料抗菌材料的制备方法
JP2005264421A (ja) 有機無機複合ナノファイバ、有機無機複合構造体及びこれらの製造方法
WO2023000744A1 (zh) 一种电致黏附水凝胶及其制备方法
CN114685907B (zh) 一种可调节双疏性荧光聚苯乙烯微球填料的制备方法以及应用
CN105368055A (zh) 一种改性抗菌硅橡胶的制备方法
CN106832129A (zh) 一种衣康酸均聚物接枝羧甲基壳聚糖纳米粒的制备方法
CN111777772A (zh) 一种微生物矿化增强水凝胶的方法
Deng et al. The effect of dopamine modified titanium dioxide nanoparticles on the performance of Poly (vinyl alcohol)/titanium dioxide composites
CN114128710A (zh) 一种基于咖啡酸的复合材料及其制备方法
CN107162388B (zh) 一种以树枝状聚乙烯亚胺为模板剂和催化剂制备大孔生物活性玻璃纳米簇的方法
CN109265912A (zh) 一种钛改性硼酚醛树脂及其制备方法与应用
CN101864023A (zh) 聚含氟丙烯酸酯/蒙脱土复合乳液的制备工艺
CN102924725B (zh) 一种聚氨基酸/壳聚糖复合材料及其制备方法
CN109568675A (zh) 降解速率可荧光标记的聚酯/周期性介孔骨填充复合材料的制备及产品和应用
CN101905891B (zh) 一种有序介孔氧化钛硅分子筛的合成方法
CN103030134A (zh) 有序介孔碳-二氧化锆复合材料及其制备方法
CN105063805B (zh) 多孔结构钛酸钙纳米带的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant