CN106669756A - 一种纳米层状g‑C3N4/Ag@AgCl复合光催化材料的制备方法 - Google Patents

一种纳米层状g‑C3N4/Ag@AgCl复合光催化材料的制备方法 Download PDF

Info

Publication number
CN106669756A
CN106669756A CN201610499188.8A CN201610499188A CN106669756A CN 106669756 A CN106669756 A CN 106669756A CN 201610499188 A CN201610499188 A CN 201610499188A CN 106669756 A CN106669756 A CN 106669756A
Authority
CN
China
Prior art keywords
agcl
porous
nano lamellar
nano
nano layered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610499188.8A
Other languages
English (en)
Other versions
CN106669756B (zh
Inventor
夏明珠
王有亮
李克斌
沈新林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610499188.8A priority Critical patent/CN106669756B/zh
Publication of CN106669756A publication Critical patent/CN106669756A/zh
Application granted granted Critical
Publication of CN106669756B publication Critical patent/CN106669756B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种纳米层状g‑C3N4/Ag@AgCl复合光催化材料的制备方法。本发明先通过两段式加热尿素热聚合制得多孔g‑C3N4,利用溶剂热处理多孔g‑C3N4,然后在水中超声剥离,得到纳米层状g‑C3N4胶体,然后以乙醇为溶剂,以氯化钠为模板,硝酸银为银源制备了空心立方状Ag@AgCl纳米材料,最后将纳米层状g‑C3N4与Ag@AgCl超声复合制备纳米层状g‑C3N4/Ag@AgCl复合材料。本发明制备的纳米层状g‑C3N4/Ag@AgCl复合光催化材料,纳米层状g‑C3N4分布在Ag@AgCl的表面形成异质结结构,有效地增强了复合光催化材料的稳定性,减缓了Ag@AgCl被光腐蚀,在可见光、太阳光下催化性能优良,在光催化治理水污染方面具有非常好的应用前景。

Description

一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法
技术领域
本发明涉及一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法,属于复合材料制备和光催化技术领域。
背景技术
g-C3N4/Ag@AgX(X=Cl,Br,I),由于金属银的表面等离子体共振特性,其对可见光有明显的吸收,抗酸和碱,并且结构和性能易于调控,具有较好的光催化性能,成为光催化领域的研究热点。
传统的块状g-C3N4/Ag@AgX复合材料比表面积很小,与Ag@AgX复合产率低、稳定性差、光催化性能提升不明显。为了提升g-C3N4/Ag@AgX复合材料的复合效率、可见光催化活性和催化稳定性,研究人员研究了各种大比表面积g-C3N4用于与Ag@AgX复合。其中,纳米片层g-C3N4由于在水中具有很好的分散性和吸附性,容易和Ag@AgX形成稳定的复合材料,增强复合光催化剂的催化活性和稳定性,受到了广泛关注。目前,在g-C3N4/Ag@AgBr(Yang-Sen Xu,et al.Chemcatchem,2013,5(8):2343–2351.)和g-C3N4/Ag@AgCl(Shouwei Z,et al.AcsApplied Materials&Interfaces,2014,6(24):22116-25.)复合光催化剂中,Ag@AgX都以小颗粒的形式分布在纳米片层氮化碳的表面,虽然催化剂的光催化性能得到了提升,但是Ag@AgX依旧容易被光腐蚀,催化剂的重复利用率低。
有鉴于此,开发一种环境友好、稳定性好的纳米层状g-C3N4/Ag@AgCl复合光催化材料的方法对于提高g-C3N4/Ag@AgCl复合光催化剂的性能是非常必要的。
发明内容
针对现有技术中g-C3N4/Ag@AgBr复合光催化剂的催化性能不高、重复利用率低的问题,本发明提供了一种环境友好、形貌特殊、稳定性好、催化性能增强的纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法,该方法制备的g-C3N4/Ag@AgCl材料具有良好的光生电子-空穴分离效率以及光催化降解污染物性能。
本发明的技术方案如下:
一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法,通过两段式加热尿素热聚合制得多孔g-C3N4,以异丙醇为溶剂利用溶剂热法处理多孔g-C3N4,然后在水中超声剥离得到纳米层状g-C3N4,并以乙醇为溶剂,以氯化钠为模板,硝酸银为银源制备空心立方状的Ag@AgCl纳米材料,最后将纳米层状g-C3N4胶体与空心立方状的Ag@AgCl超声复合制备纳米层状g-C3N4/Ag@AgCl复合光催化材料,具体步骤如下:
步骤1,制备多孔g-C3N4
将前驱体尿素在160℃~180℃下进行一段热缩聚,升温速率为5~10℃/min,之后在550℃~580℃下进行二段热缩聚,升温速率为20~30℃/min,得到多孔g-C3N4
步骤2,制备纳米片层g-C3N4
溶剂热处理多孔g-C3N4,之后进行超声剥离,离心取上层液体后烘干即得纳米片层g-C3N4
步骤3,制备纳米层状g-C3N4/Ag@AgCl复合光催化材料:
持续搅拌条件下将硝酸银和聚乙烯吡咯烷酮(PVP(K30))溶于乙醇中,然后缓慢滴加饱和氯化钠溶液,搅拌20~30h,得悬浊液A,将纳米片层g-C3N4胶体加入悬浊液A中,超声处理后,紫外光照20~30min,离心、洗涤、干燥后,得到纳米层状g-C3N4/Ag@AgCl复合光催化材料。
优选地,步骤1中,所述的一段热缩聚的保温时间为40~60min,二段热缩聚的保温时间为2~3h。
步骤2中,所述的溶剂热处理为将多孔g-C3N4分散于异丙醇中,溶剂热处理温度为150℃~180℃,处理时间为12~18h;超声剥离所用溶剂为水,超声功率为150W,超声时间为30~60min;离心转速为3000rpm,离心时间为5~10min。
步骤3中,硝酸银、聚乙烯吡咯烷酮、氯化钠、纳米片层g-C3N4的质量比为1:4:1~1.5:0.1~0.5。
与现有的技术相比,本发明具有以下优点:
(1)通过二段式煅烧前驱体尿素,制备的多孔石墨相氮化碳产率更高,比表面积更大;
(2)先对多孔石墨相氮化碳进行溶剂热处理,然后超声剥离,制得的纳米片层石墨相氮化碳产率更高,片层更小;
(3)制备的纳米层状g-C3N4/Ag@AgCl复合光催化材料,形貌特殊,纳米层状g-C3N4分布在立方Ag@AgCl的表面形成异质结结构,有效地增强了复合光催化材料的稳定性,减缓了Ag@AgCl被光腐蚀;
(4)三种材料之间快速的光生电子-空穴分离效果和电子迁移能力使复合光催化材料具有更加高效的光催化活性。
附图说明
图1为Ag@AgCl、多孔g-C3N4、纳米层状g-C3N4、纳米层状g-C3N4/Ag@AgCl的XRD图。
图2为本发明的多孔g-C3N4和现有方法制备的多孔g-C3N4的BET图。
图3为纳米层状g-C3N4/Ag@AgCl的紫外可见漫反射光谱图。
图4为Ag@AgCl、多孔g-C3N4、纳米层状g-C3N4、纳米层状g-C3N4/Ag@AgCl的透射电子显微镜图。
图5为Ag@AgCl、多孔g-C3N4、纳米层状g-C3N4、本发明的纳米层状g-C3N4/Ag@AgCl和现有的纳米层状g-C3N4/Ag@AgCl在可见光条件下对罗丹明B的光催化降解曲线图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
实施例1
首先制备多孔石墨相氮化碳粉体,称取30g尿素于坩埚中,置于马弗炉中,升温至160℃,保温60min,升温速率为5℃/min,继续升温到550℃,升温速率为20℃/min,保温2h,冷却后取出研磨后备用;称取400mg多孔石墨相氮化碳粉体置于聚四氟乙烯内胆中,加入80mL异丙醇,搅拌30min后,180℃保温12h,冷却后离心得到固体;将上述固体加入100mL水中,超声剥离60min;将经过超声剥离的液体进行离心处理10min,离心机转速为3000rpm,取上层液体烘干得到纳米层状g-C3N4。将0.1g硝酸银和0.4g PVP(K30)溶于50mL无水乙醇中,得到黄色溶液;向上述黄色溶液中缓慢滴入300μL氯化钠饱和溶液,搅拌20h,得到乳白色悬浊液;将10mg纳米层状g-C3N4分散于10mL水中,然后加入上述乳白色悬浊液中,超声处理2h,离心后用去离子水和无水乙醇反复洗涤多次后真空干燥,得到纳米层状g-C3N4/Ag@AgCl复合光催化材料。
实施例2
首先制备多孔石墨相氮化碳粉体,称取30g尿素于坩埚中,置于马弗炉中,升温至170℃,保温50min,升温速率为8℃/min,继续升温到560℃,升温速率为25℃/min,保温2.5h,冷却后取出研磨后备用;称取400mg多孔石墨相氮化碳粉体置于聚四氟乙烯内胆中,加入80mL异丙醇,搅拌30min后,165℃保温15h,冷却后离心得到固体;将上述固体加入100mL水中,超声剥离50min;将经过超声剥离的液体进行离心处理10min,离心机转速为3000rpm,取上层液体烘干得到纳米层状g-C3N4。将0.1g硝酸银和0.4g PVP(K30)溶于50mL无水乙醇中,得到黄色溶液;向上述黄色溶液中缓慢滴入400μL氯化钠饱和溶液,搅拌25h,得到乳白色悬浊液;将20mg纳米层状g-C3N4分散于20mL水中,然后加入上述乳白色悬浊液中,超声处理2h,离心后用去离子水和无水乙醇反复洗涤多次后真空干燥,得到纳米层状g-C3N4/Ag@AgCl复合光催化材料。
实施例3
首先制备多孔石墨相氮化碳粉体,称取30g尿素于坩埚中,置于马弗炉中,升温至180℃,保温40min,升温速率为10℃/min,继续升温到580℃,升温速率为30℃/min,保温2h,冷却后取出研磨后备用;称取400mg多孔石墨相氮化碳粉体置于聚四氟乙烯内胆中,加入80mL异丙醇,搅拌30min后,150℃保温18h,冷却后离心得到固体;将上述固体加入100mL水中,超声剥离40min;将经过超声剥离的液体进行离心处理10min,离心机转速为3000rpm,取上层液体烘干得到纳米层状g-C3N4。将0.1g硝酸银和0.4g PVP(K30)溶于50mL无水乙醇中,得到黄色溶液;向上述黄色溶液中缓慢滴入500μL氯化钠饱和溶液,搅拌30h,得到乳白色悬浊液;将30mg纳米层状g-C3N4分散于30mL水中,然后加入上述乳白色悬浊液中,超声处理2h,离心后用去离子水和无水乙醇反复洗涤多次后真空干燥,得到纳米层状g-C3N4/Ag@AgCl复合光催化材料。
实施例4
首先制备多孔石墨相氮化碳粉体,称取30g尿素于坩埚中,置于马弗炉中,升温至180℃,保温40min,升温速率为10℃/min,继续升温到560℃,升温速率为30℃/min,保温2.5h,冷却后取出研磨后备用;称取400mg多孔石墨相氮化碳粉体置于聚四氟乙烯内胆中,加入80mL异丙醇,搅拌30min后,180℃保温12h,冷却后离心得到固体;将上述固体加入100mL水中,超声剥离60min;将经过超声剥离的液体进行离心处理10min,离心机转速为3000rpm,取上层液体烘干得到纳米层状g-C3N4。将0.1g硝酸银和0.4g PVP(K30)溶于50mL无水乙醇中,得到黄色溶液;向上述黄色溶液中缓慢滴入500μL氯化钠饱和溶液,搅拌25h,得到乳白色悬浊液;将40mg纳米层状g-C3N4分散于40mL水中,然后加入上述乳白色悬浊液中,超声处理2h,离心后用去离子水和无水乙醇反复洗涤多次后真空干燥,得到纳米层状g-C3N4/Ag@AgCl复合光催化材料。
实施例5
首先制备多孔石墨相氮化碳粉体,称取30g尿素于坩埚中,置于马弗炉中,升温至180℃,保温40min,升温速率为10℃/min,继续升温到560℃,升温速率为30℃/min,保温2.5h,冷却后取出研磨后备用;称取400mg多孔石墨相氮化碳粉体置于聚四氟乙烯内胆中,加入80mL异丙醇,搅拌30min后,180℃保温12h,冷却后离心得到固体;将上述固体加入100mL水中,超声剥离60min;将经过超声剥离的液体进行离心处理10min,离心机转速为3000rpm,取上层液体烘干得到纳米层状g-C3N4。将0.1g硝酸银和0.4g PVP(K30)溶于50mL无水乙醇中,得到黄色溶液;向上述黄色溶液中缓慢滴入500μL氯化钠饱和溶液,搅拌25h,得到乳白色悬浊液;将50mg纳米层状g-C3N4分散于50mL水中,然后加入上述乳白色悬浊液中,超声处理2h,离心后用去离子水和无水乙醇反复洗涤多次后真空干燥,得到纳米层状g-C3N4/Ag@AgCl复合光催化材料。
实施例6
1.XRD表征
图1为Ag@AgCl、多孔g-C3N4、纳米层状g-C3N4、纳米层状g-C3N4/Ag@AgCl的XRD图,经过与JCPDS标准卡片对比可以确认,纳米层状g-C3N4,13.3°的峰变得很弱,说明g-C3N4被剥离为层状;复合材料中3个强的衍射峰都可以很好的指认为AgCl对应的晶面,由于复合材料样品中g-C3N4比例不够大,AgCl结晶度太高,XRD图谱中无法观察到明显的g-C3N4的衍射峰。
2.BET表征
图2为多孔g-C3N4的BET图。图2(a)为文献【Zhang Y,Liu J,Wu G,et al.Porousgraphitic carbon nitride synthesized via direct polymerization of urea forefficient sunlight-driven photocatalytic hydrogen production.[J].Nanoscale,2012,4(17):5300-3.】制备的多孔氮化碳BET图,图2(b)为经过两段式加热制备的多孔氮化碳BET图。从图中可以看出,经过两段式加热制备的多孔g-C3N4与直接加热尿素制备的多孔g-C3N4相比,比表面积更大,孔径集中分布在0~50nm。
3.紫外可见漫反射光谱检测
图3为纳米层状g-C3N4/Ag@AgCl的紫外可见漫反射光谱图。从图中我们可以看出,该复合材料在整个紫外可见光区(200-800nm)都具有较好的吸收。
4.TEM表征
图4为Ag@AgCl、多孔g-C3N4、纳米层状g-C3N4、纳米层状g-C3N4/Ag@AgCl的透射电子显微镜图,其中,(a)为Ag@AgCl、(b)为多孔g-C3N4,(c)为纳米层状g-C3N4,(d)为纳米层状g-C3N4/Ag@AgCl。从图4中可以清晰看到Ag@AgCl为空心立方状,纳米层状g-C3N4为很小的片层状附着在Ag@AgCl表面,形成异质结结构。
实施例7
有机染料罗丹明B的光催化降解实验,具体步骤如下:
将25mg Ag@AgCl、多孔g-C3N4、纳米层状g-C3N4、本发明的纳米层状g-C3N4/Ag@AgCl复合光催化材料以及参考文献(Shouwei Z,Jiaxing L,Xiangke W,et al.In Situ IonExchange Synthesis of Strongly Coupled Ag@AgCl/g-C3N4Porous Nanosheets asPlasmonic Photocatalyst for Highly Efficient Visible-Light Photocatalysis[J].Acs Applied Materials&Interfaces,2014,6(24):22116-25.)制备的纳米层状g-C3N4/Ag@AgCl分散于100mL10ppm的罗丹明B溶液中超声5min,混合均匀的分散液转移到光催化反应试管中,黑暗条件下搅拌30min使其达到脱附吸附平衡;打开氙灯(420nm滤光片),每隔10min用注射器抽取4mL照射后的液体转移到做好标记的离心试管中,可见光照射一定时间后关闭光源,将所有离心试管中的样品离心分离;将上层清夜转移到比色皿中利用紫外可见分光光度计测定不同样品的吸光度,从而得到可见光照射下对罗丹明B的光催化降解曲线图。
图5为Ag@AgCl、多孔g-C3N4、纳米层状g-C3N4、纳米层状g-C3N4/Ag@AgCl,参考文献(Shouwei Z,Jiaxing L,Xiangke W,et al.In Situ Ion Exchange Synthesis ofStrongly Coupled Ag@AgCl/g-C3N4Porous Nanosheets as Plasmonic Photocatalystfor Highly Efficient Visible-Light Photocatalysis[J].Acs Applied Materials&Interfaces,2014,6(24):22116-25.)制备的纳米层状g-C3N4/Ag@AgCl在可见光条件下对罗丹明B的光催化降解曲线图。从图5可以看出,本发明的复合材料在可见光照射下40min对罗丹明B的降解率超过90%,60min后罗丹明B基本不存在,说明纳米层状g-C3N4/Ag@AgCl光催化复合材料在可见光下对罗丹明B有较好的光催化效果,与现有文献报道的g-C3N4/Ag@AgCl光催化复合材料相比有较大的提升。

Claims (4)

1.一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法,其特征在于,具体步骤如下:
步骤1,制备多孔g-C3N4
将前驱体尿素在160℃~180℃下进行一段热缩聚,升温速率为5~10℃/min,之后在550℃~580℃下进行二段热缩聚,升温速率为20~30℃/min,得到多孔g-C3N4
步骤2,制备纳米片层g-C3N4
溶剂热处理多孔g-C3N4,之后进行超声剥离,离心取上层液体后烘干即得纳米片层g-C3N4
步骤3,制备纳米层状g-C3N4/Ag@AgCl复合光催化材料:
持续搅拌条件下将硝酸银和聚乙烯吡咯烷酮(PVP(K30))溶于乙醇中,然后缓慢滴加饱和氯化钠溶液,搅拌20~30h,得悬浊液A,将纳米片层g-C3N4胶体加入悬浊液A中,超声处理后,紫外光照20~30min,离心、洗涤、干燥后,得到纳米层状g-C3N4/Ag@AgCl复合光催化材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤1中,所述的一段热缩聚的保温时间为40~60min,二段热缩聚的保温时间为2~3h。
3.根据权利要求1所述的制备方法,其特征在于,步骤2中,所述的溶剂热处理为将多孔g-C3N4分散于异丙醇中,溶剂热处理温度为150℃~180℃,处理时间为12~18h;超声剥离所用溶剂为水,超声功率为150W,超声时间为30~60min;离心转速为3000rpm,离心时间为5~10min。
4.根据权利要求1所述的制备方法,其特征在于,步骤3中,所述的硝酸银、聚乙烯吡咯烷酮、氯化钠、纳米片层g-C3N4的质量比为1:4:1~1.5:0.1~0.5。
CN201610499188.8A 2016-06-29 2016-06-29 一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法 Active CN106669756B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610499188.8A CN106669756B (zh) 2016-06-29 2016-06-29 一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610499188.8A CN106669756B (zh) 2016-06-29 2016-06-29 一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法

Publications (2)

Publication Number Publication Date
CN106669756A true CN106669756A (zh) 2017-05-17
CN106669756B CN106669756B (zh) 2020-05-22

Family

ID=58839820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610499188.8A Active CN106669756B (zh) 2016-06-29 2016-06-29 一种纳米层状g-C3N4/Ag@AgCl复合光催化材料的制备方法

Country Status (1)

Country Link
CN (1) CN106669756B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108745415A (zh) * 2018-05-04 2018-11-06 江苏大学 一种聚邻苯二胺修饰AgCl/g-C3N4复合光催化剂及其制备与应用
CN108940324A (zh) * 2018-07-20 2018-12-07 宝鸡文理学院 一种具有光催化性的多壁碳纳米管-Ag@AgCl复合纳米材料及其制备方法
CN108940330A (zh) * 2017-05-18 2018-12-07 南京理工大学 一种BiOCl/g-C3N4异质结光催化剂的制备方法
CN109012721A (zh) * 2017-06-08 2018-12-18 南京理工大学 一种磷酸银/石墨相氮化碳复合光催化剂的制备方法
CN110127654A (zh) * 2019-05-31 2019-08-16 天津大学 一种均匀微米孔径三维碳网络的制备方法
CN110496593A (zh) * 2018-05-18 2019-11-26 南京理工大学 层状石墨相氮化碳/蒙脱土复合材料及其制备方法和应用
CN111514882A (zh) * 2020-05-11 2020-08-11 福州大学 一种Ag-AgCl/三氧化钨/类石墨相氮化碳三元复合光催化剂及其制备方法和应用
CN112680108A (zh) * 2020-12-18 2021-04-20 三棵树(上海)新材料研究有限公司 一种银氮化碳除醛抗菌涂料及其制备方法
CN113398957A (zh) * 2021-06-28 2021-09-17 宿州学院 一种AgCl立方/多孔碳纳米管复合材料及其制备方法
CN115180600A (zh) * 2022-08-03 2022-10-14 重庆工商大学 一种制备大面径比纳米片的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QING HAN等: "tomically Thin Mesoporous Nanomesh of Graphitic C3N4 for High-Efficiency Photocatalytic Hydrogen Evolution", 《ACS NANO》 *
SHOUWEI ZHANG等: "In Situ Ion Exchange Synthesis of Strongly Coupled Ag@AgCl/g-C3N4 Porous Nanosheets as Plasmonic Photocatalyst for Highly Effcient Visible-Light Photocatalysis", 《ACS APPL.MATER.INTERFACES》 *
YUXIN YANG等: "Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C3N4 with enhanced visible-light photocatalytic activity", 《JOURNAL OF HAZARDOUS MATERIALS》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108940330A (zh) * 2017-05-18 2018-12-07 南京理工大学 一种BiOCl/g-C3N4异质结光催化剂的制备方法
CN109012721A (zh) * 2017-06-08 2018-12-18 南京理工大学 一种磷酸银/石墨相氮化碳复合光催化剂的制备方法
CN108745415B (zh) * 2018-05-04 2021-05-25 江苏大学 一种聚邻苯二胺修饰AgCl/g-C3N4复合光催化剂及其制备与应用
CN108745415A (zh) * 2018-05-04 2018-11-06 江苏大学 一种聚邻苯二胺修饰AgCl/g-C3N4复合光催化剂及其制备与应用
CN110496593A (zh) * 2018-05-18 2019-11-26 南京理工大学 层状石墨相氮化碳/蒙脱土复合材料及其制备方法和应用
CN108940324A (zh) * 2018-07-20 2018-12-07 宝鸡文理学院 一种具有光催化性的多壁碳纳米管-Ag@AgCl复合纳米材料及其制备方法
CN110127654A (zh) * 2019-05-31 2019-08-16 天津大学 一种均匀微米孔径三维碳网络的制备方法
CN111514882A (zh) * 2020-05-11 2020-08-11 福州大学 一种Ag-AgCl/三氧化钨/类石墨相氮化碳三元复合光催化剂及其制备方法和应用
CN111514882B (zh) * 2020-05-11 2023-02-21 福州大学 一种Ag-AgCl/三氧化钨/类石墨相氮化碳三元复合光催化剂及其制备方法和应用
CN112680108A (zh) * 2020-12-18 2021-04-20 三棵树(上海)新材料研究有限公司 一种银氮化碳除醛抗菌涂料及其制备方法
CN113398957A (zh) * 2021-06-28 2021-09-17 宿州学院 一种AgCl立方/多孔碳纳米管复合材料及其制备方法
CN113398957B (zh) * 2021-06-28 2022-08-23 宿州学院 一种AgCl立方/多孔碳纳米管复合材料及其制备方法
CN115180600A (zh) * 2022-08-03 2022-10-14 重庆工商大学 一种制备大面径比纳米片的方法

Also Published As

Publication number Publication date
CN106669756B (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
CN106669756A (zh) 一种纳米层状g‑C3N4/Ag@AgCl复合光催化材料的制备方法
CN103657619B (zh) 一种尺寸可控的二氧化钛纳米片光催化材料的制备方法
Yue et al. High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization
CN103480353A (zh) 一种用水热法合成碳量子点溶液制备复合纳米光催化剂的方法
CN105195197A (zh) 一种大比表面积-可见光响应TiO2催化剂及其制备方法
CN102553560A (zh) 一种二氧化钛/石墨烯复合光催化剂的制备方法
CN103934004A (zh) 一种二硫化锡/石墨烯复合光催化剂及其制备方法
CN102008959B (zh) 具有高光催化活性的三氧化钨负载纳米银的制备方法
CN103877959B (zh) 氢化二氧化钛纳米管/纳米颗粒复合光催化材料及制备方法
CN104707542A (zh) 一种光催化剂/SiO2复合气凝胶材料及其制备方法
CN105126799A (zh) TiO2/SiO2复合氧化物的制备及其光催化降解方法
CN101780404A (zh) 具有高比表面积介孔二氧化钛光催化剂的一种新型制备方法
CN102909045B (zh) 微米级负载型TiO2催化剂的制备方法
CN104722298A (zh) 一种二氧化钛复合纳米金光催化剂的制备方法
CN106994349A (zh) 一种分级结构的层状钙钛矿光催化剂钛酸铁铋的制备方法及用途
CN110013841A (zh) 一种二维二氧化钛纳米片光催化材料及其制备方法
CN107381520A (zh) 一种带隙可调并高效降解有机染料的类石墨烯氮化碳的制备方法
CN105536765B (zh) 一种贝壳基掺硼二氧化钛复合光催化剂及其制备方法
Chen et al. Effect of cerium nitrate concentration on morphologies, structure and photocatalytic activities of CeO2 nanoparticles synthesized by microwave interface method
CN106902857A (zh) 一种膨胀g‑C3N4光催化剂及其制备方法
CN102389787B (zh) 一种碳掺杂氧化钛中空球光催化剂及其制备方法
CN104001489A (zh) 一种高光催化活性花状多孔二氧化钛纳米材料及其制备方法
CN103191708A (zh) 一种量子点TiO2负载SiO2光催化剂及其制备方法
Sadjadi et al. Synthesis of nanosize MCM-41 loaded with TiO2 and study of its photocatalytic activity
CN104923197A (zh) 具有高效光催化性能的复合物溶胶制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant