CN106567104A - 1,1’‑二吲哚甲烷类衍生物的电化学合成方法 - Google Patents

1,1’‑二吲哚甲烷类衍生物的电化学合成方法 Download PDF

Info

Publication number
CN106567104A
CN106567104A CN201610930550.2A CN201610930550A CN106567104A CN 106567104 A CN106567104 A CN 106567104A CN 201610930550 A CN201610930550 A CN 201610930550A CN 106567104 A CN106567104 A CN 106567104A
Authority
CN
China
Prior art keywords
indole
analog derivative
methyl hydride
derivatives
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610930550.2A
Other languages
English (en)
Other versions
CN106567104B (zh
Inventor
黄精美
杜克斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610930550.2A priority Critical patent/CN106567104B/zh
Publication of CN106567104A publication Critical patent/CN106567104A/zh
Application granted granted Critical
Publication of CN106567104B publication Critical patent/CN106567104B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/23Oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Indole Compounds (AREA)

Abstract

本发明公开了1,1’‑二吲哚甲烷类衍生物的电化学合成方法,该方法以吲哚衍生物与四氢呋喃及其衍生物为原料在电化学条件下合成1,1’‑二吲哚甲烷类衍生物的方法。具体包括以下步骤:取吲哚衍生物加入到四氢呋喃或其衍生物与乙腈的混合溶剂中,并加入催化量的氯化镧和电解质高氯酸锂;向反应液中插入铂电极,室温下搅拌并通电反应直到反应完全。对反应液进行萃取、浓缩、分离得到1,1’‑二吲哚甲烷衍生物。本发明利用电做催化,不需要昂贵的金属催化剂,不需要其他氧化剂,也不需要化学计量的路易斯酸或质子酸,更不需要加热,可以很温和的在室温下进行反应,选择性较好,收率较高,整个过程简单易行;绿色环保,符合绿色化学的理念。

Description

1,1’-二吲哚甲烷类衍生物的电化学合成方法
技术领域
本发明属于有机电合成化学领域,涉及合成1,1’-二吲哚甲烷类衍生物的方法,具体涉及一种以N-取代吲哚及衍生物与四氢呋喃及四氢呋喃衍生物为原料合成1,1’-二吲哚甲烷类衍生物类的方法。
背景技术
很多具有生物活性的天然产物都含有吲哚类衍生物,尤其是近年来人们从一些陆地和海洋生物体中分离出的1,1’-二吲哚甲烷类化合物表现出更好的生物活性,比如冠状动脉扩张特性、基因毒性、抗菌活性及抗癌活性。因此,引起了不少有机化学工作者的兴趣,进行了广泛的合成方法研究。
目前,主要的合成方法是醛或酮在质子酸或路易斯酸促进下与吲哚或吲哚衍生物的缩合,如2011年,Qu等人用RuCI3做催化剂,苯做溶剂,催化吲哚与醛类反应生成1,1’-二吲哚甲烷类衍生物(Qu,H.E;Xiao,C.;Hu,Q.S.;Wang,N,;Yu,K.H.;Liu,L.X.Molecules2011,16,3855)。同年,Dashbasi等用In(OTf)3做催化剂,四氢呋喃做溶剂,回流,催化N-取代的吲哚和酰基磷酸盐反应生成1,1’-二吲哚甲烷类衍生物(Dashbasi,T.;Polat Cakir,S.;Abdullah,M.;Demir,A.S.Tetrahedron 2011.67,3355)等。
此外,2005年,Ma等人用5%Sc(OTf)3做催化剂,乙腈为溶剂,室温下,由α-连烯酮与吲哚分步缩合成1,1’-二吲哚甲烷类衍生物(Org.Lett.,Vol.7,No.22,2005)。2009年,Yu等人用α-不饱和酮二缩醛与吲哚在三氟乙酸催化下合成1,1’-二吲哚烯酮类衍生物(Angew.Chem.2009,121,2973–2977)。也有人用胺类与吲哚缩合,如2011年,Ramachandiran等人用Pb(OAc)2做催化剂,Cu(OAc)2做氧化剂,无溶剂条件下催化吲哚与三乙安反应生成1,1’-二吲哚甲烷类衍生物(Ramachandiran,K.;Muralidharan,D.:Perumal.P.T.Tetrahedron Lett.2011,52,3579)。2009年,Li等人一锅法合成了对称和不对称的1,1’-二吲哚甲烷类衍生物,他们采用FeCI2做催化剂,(t-BuO)2做氧化剂,四氢呋喃做溶剂,氮气保护,80℃下搅拌反应(J.Org.Chem.Vol.74,No.22,2009,8848-8851)。上述举例,从醛、酮类,胺类、醚类描述了1,1’-二吲哚甲烷类衍生物的合成方法。从反应条件来看,使用路易斯酸催化或质子酸催化时,多数情况下都需要当量或者过量,有些情况甚至需要加热或回流;使用金属催化时,有时需要加入过量氧化剂促进金属氧化还原进行循环,或者使用的金属为贵金属,成本较高;当然,也有条件较为简单的,但是又具有底物特殊性,具有一定的局限性。
有机合成化学的发展逐渐朝绿色环保的方向进行,光化学、电化学逐渐表现出优势。以通电的方式取代氧化、还原剂,靠电流的电子作为清洁氧化、还原剂不光不会造成反应试剂残留给分离纯化带来麻烦,而且避免了传统氧化剂、还原剂的使用,避免了环境污染物的生成。
发明内容
本发明在传统有机化学方法合成1,1’-二吲哚甲烷类衍生物的基础上引入电有机合成的绿色观,提供了一种以电子作为清洁氧化剂的方法合成目标产物即1,1’-二吲哚甲烷类衍生物的电化学合成方法。
本发明的合成路线如下所示:
本发明目的通过以下技术方案实现。
1,1’-二吲哚甲烷类衍生物的电化学合成方法,包括如下步骤:
1)将催化剂氯化镧、电解质高氯酸锂、吲哚衍生物加入到电解溶剂中,插入电极,室温下搅拌并通电反应;
2)反应完毕后,萃取、分离纯化,得到产物1,1’-二吲哚甲烷类衍生物。
优选的,步骤1)所述的吲哚衍生物的通式如下所示:
其中,-R1为-H、-F、-Cl、-Br、-I、-NO2、-CN、-OCH3、-CH3或-COOCH3;-R2为-CH3、-CH2CH2CH2CH3或-Bn;-R3为-H、-CH3或-Ph。
优选的,步骤1)所述的电解溶剂为四氢呋喃(THF)或其衍生物和乙腈(MeCN)的混合溶剂。
优选的,所述四氢呋喃或其衍生物和乙腈的体积比为1:1-3:1。进一步优选为2:1。
优选的,步骤1)所述的催化剂为氯化镧(LaCl3),加入量为吲哚衍生物物质的量的10%-30%。
优选的,步骤1)所述的电解质为高氯酸锂(LiClO4),所述电解质在电解溶剂中的摩尔浓度为0.1mmol/ml-0.3mmol/ml。
优选的,步骤1)所述的电极中阴极和阳极距离10mm,阳极为直径0.03mm的铂丝;阴极为10mm×15mm的铂片、10mm×15mm的铜片、10mm×15mm的玻碳电极或直径5mm的碳棒。
优选的,步骤1)所述反应的电流强度为4mA-6mA。
优选的,步骤1)所述的反应的时间为3h-5h。
优选的,步骤2)所得产物为1,1’-二吲哚甲烷类衍生物,结构通式如下:
其中-R1为4、5、6、7-位未取代或取代-F、-Cl、-Br、-I、-NO2、-CN、-OCH3、-CH3、-COOCH3等基团,-R2为1-位取代的-CH3、-CH2CH2CH2CH3、-Bn等基团;-R3为2-位取代的-CH3、-Ph等基团。
以上方法合成的产物1,1’-二吲哚甲烷类衍生物的收率为45%-95%。
与现有技术比较,本发明具有如下优点:
(1)本发明的方法反应物适用范围广,反应选择性好、收率高,适合大规模的工业化生产;
(2)本发明通过电化学手段以清洁氧化剂-电子来氧化,避免了使用化学计量的传统氧化剂,从而避免氧化剂的还原物排放,污染环境。
(3)本发明条件温和,不需要高温,整个操作过程仅需要在传统的搅拌反应装置上通上直流电,简单易行,成本低。
附图说明
图1为本发明制备的产物1的1H-NMR图谱。
图2为本发明制备的产物1的13C-NMR图谱。
图3为本发明制备的产物2的1H-NMR图谱。
图4为本发明制备的产物2的13C-NMR图谱。
图5为本发明制备的产物3的1H-NMR图谱。
图6为本发明制备的产物3的13C-NMR图谱。
图7为本发明制备的产物4的1H-NMR图谱。
图8为本发明制备的产物4的13C-NMR图谱。
图9为本发明制备的产物5的1H-NMR图谱。
图10为本发明制备的产物5的13C-NMR图谱。
图11为本发明制备的产物6的1H-NMR图谱。
图12为本发明制备的产物6的13C-NMR图谱。
具体实施方式
下面结合实施例及附图对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例1
向5ml圆底瓶中依次加入19.5mg(0.08mmol)LaCl3,106.4mg(0.2mmol/ml)LiCIO4,104.9mg(0.8mmol)N-甲基吲哚;然后加入四氢呋喃3.3ml,乙腈1.7ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电5mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物1,产率82.4%。
实施例2
向5ml圆底瓶中依次加入19.5mg(0.08mmol)LaCl3,106.4mg(在电解溶剂中的浓度为0.2mmol/ml)LiCIO4,104.9mg(0.8mmol)N-甲基吲哚;然后加入四氢呋喃3.3ml,乙腈1.7ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电2.5mA or 8mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物1产率32.8%(2.5mA)or45.7%(8mA)。
实施例3
向5ml圆底瓶中依次加入19.5mg(0.08mmol)LaCl3,106.4mg(在电解溶剂中的浓度为0.2mmol/ml)LiCIO4,104.9mg(0.8mmol)N-甲基吲哚;然后加入四氢呋喃/乙腈(v/v)(1:1or 3:1)混合溶剂5ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电5mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物1产率47.5%(1:1)or62.3%(3:1)。
实施例4
向5ml圆底瓶中依次加入9.6mg(0.04mmol)or 39.0mg(0.16mmol)LaCl3,106.4mg(在电解溶剂中的浓度为0.2mmol/ml)LiCIO4,104.9mg(0.8mmol)N-甲基吲哚;然后加入四氢呋喃/乙腈(2:1)混合溶剂5ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电5mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物1产率75.1%(5mol%LaCI3)or 71.0%(20mol%LaCI3)。
实施例5
向5ml圆底瓶中依次加入19.5mg(0.08mmol)LaCl3,53.2mg(在电解溶剂中的浓度为0.1mmol/ml)or 159.6mg(在电解溶剂中的浓度为0.3mmol/ml)LiCIO4,104.9mg(0.8mmol)N-甲基吲哚;然后加入四氢呋喃3.3ml,乙腈1.7ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电5mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物1,产率68.3%(0.1mmol/ml LiCIO4)or 54.2%(0.3mmol/ml LiCIO4)。
实施例6
向5ml圆底瓶中依次加入19.5mg(0.08mmol)LaCl3,106.4mg(在电解溶剂中的浓度为0.2mmol/ml)LiCIO4,124.8mg(0.8mmol)N-甲基-5-氰基吲哚;然后加入四氢呋喃3.3ml,乙腈1.7ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电5mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物2产率92.6%。
实施例7
向5ml圆底瓶中依次加入19.5mg(0.08mmol)LaCl3,106.4mg(在电解溶剂中的浓度为0.2mmol/ml)LiCIO4,116.1mg(0.8mmol)1,2-二甲基吲哚;然后加入四氢呋喃3.3ml,乙腈1.7ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电5mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物3产率45.2%。
实施例8
向5ml圆底瓶中依次加入19.5mg(0.08mmol)LaCl3,106.4mg(在电解溶剂中的浓度为0.2mmol/ml)LiCIO4,151.3mg(0.8mmol)N-甲基-5-甲酸甲酯基吲哚;然后加入四氢呋喃3.3ml,乙腈1.7ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电5mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物3,产率76.2%。
实施例9
向5ml圆底瓶中依次加入19.5mg(0.08mmol)LaCl3,106.4mg(在电解溶剂中的浓度为0.2mmol/ml)LiCIO4,116.1mg(0.8mmol)1,5-二甲基吲哚;然后加入四氢呋喃3.3ml,乙腈1.7ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电5mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物3,产率52.5%。
实施例10
向5ml圆底瓶中依次加入19.5mg(0.08mmol)LaCl3,106.4mg(在电解溶剂中的浓度为0.2mmol/ml)LiCIO4,104.9mg(0.8mmol)N-甲基吲哚;然后加入二氧六环3.3ml,乙腈1.7ml。插入两支电极(铂丝为阳极,铂片为阴极),直流电源供电5mA,搅拌反应,TLC监测,4.5h反应完全。用乙酸乙酯(15ml×3)对粗产物进行萃取,合并有机层,饱和NaCI水溶液(40ml×1)洗,无水Na2SO4干燥,减压蒸干,分离得产物3,产率55.8%。
分析实施例1,4,5,6得到的产物结构,并与Zhiping Li等[J.Org.Chem.2009,74,8848-8851];Khadijeh Ghanbari等[Monatsh Chem.2014,145,1867-1871]报道的文献对照,结果证实该物质具有产物1,2,3,4结构。
以上实施例得到的产物1(图1、图2)的1H NMR图和13C NMR图如附图所示,鉴定数据如下:
1H NMR(400MHz,CDCl3,ppm)δ7.70(d,J=8.0Hz,2H),7.35(d,J=8.0Hz,2H),7.27(t,J=8.0Hz,2H),7.14(t,J=8.0Hz,2H),6.95(s,2H),4.59(t,J=8.0Hz,1H),3.75(s,6H),3.72(t,J=7.6Hz,2H),2.37(q,J=4Hz,2H),1.75(m,J=8.0Hz,3H).
13C NMR(100MHz,ppm)δ137.4,127.6,126.3,121.4,119.8,118.9,118.6,109.2,63.1,33.7,32.7,32.5,31.6.
以上实施例得到的产物2(图3、图4)的1H NMR图和13C NMR图如附图所示,鉴定数据如下:
1H NMR(400MHz,CDCl3,ppm)δ7.78(s,2H),7.37(d,J=8.0Hz,2H),7.31(d,J=8.0Hz,2H),7.08(s,2H),4.41(t,J=8.0Hz,1H),3.78(s,6H),3.69(t,J=8.0Hz,2H),2.29(q,J=8.0Hz,2H),1.79(s,1H),1.64(q,J=8.0Hz,2H).
13C NMR(100MHz,ppm)δ138.9,128.5,126.8,125.2,124.5,121.0,118.9,110.3,101.6,62.6,33.7,33.1,31.5,31.1
以上实施例得到的产物3(图5、图6)的1H NMR图和13C NMR图如附图所示,鉴定数据如下:
1H NMR(400MHz,CDCl3,ppm)δ7.84(d,J=8.0Hz,2H),7.30(d,J=8.0Hz,2H),7.21(t,J=8.0Hz,2H),7.11(t,J=8.0Hz,2H),4.59(t,J=8.0Hz,1H),3.73(t,J=8.0Hz,2H),3.64(s,6H),2.65(q,J=8.0Hz,2H),2.41(s,6H),1.7(m,J=8.0Hz,3H).
13C NMR(100MHz,ppm)δ136.7,132.9,127.3,120.0,119.6,118.7,114.4,108.6,63.2,35.6,32.3,31.6,29.4,10.9.
以上实施例得到的产物4(图7、图8)的1H NMR图和13C NMR图如附图所示,鉴定数据如下:
1H NMR(400MHz,CDCl3,ppm)δ8.37(s,2H),7.89(d,J=12Hz,2H),7.25(d,J=8.0Hz,2H),6.95(s,2H),4.56(t,J=8.0Hz,2H),3.88(s,6H),3.71(s,6H),3.67(t,J=8.0Hz,2H),2.32(q,J=8.0Hz,2H),1.79(s,1H),1.70(m,J=8.0Hz,2H).
13C NMR(100MHz,ppm)δ168.4,139.8,127.7,126.8,122.9,122.6,120.6,120.2,108.9,62.9,51.8,33.6,32.9,32.4,31.5.
以上实施例得到的产物5(图9、图10)的1H NMR图和13C NMR图如附图所示,鉴定数据如下:
1H NMR(ppm)δ7.43(s,2H),7.18(d,J=8Hz,2H),7.04(d,J=8.0Hz,2H),6.82(s,2H),4.46(t,J=8.0Hz,2H),3.70-3.67(m,8H),2.46(s,6H),2.26(m,2H),2.24(m,2H).
13C NMR(100MHz,ppm)δ135.8,127.7,127.6,126.4,122.9,119.3,118.3,108.8,63.2,33.6,32.7,32.6,31.7,21.6.
以上实施例得到的产物6(图11、图12)的1H NMR图和13C NMR图如附图所示,鉴定数据如下:
1H NMR(400MHz,CDCl3,ppm)δ7.62(d,J=8.0Hz,2H),7.30(d,J=8Hz,2H),7.22(t,J=8.0Hz,2H),7.07(t,J=8Hz,2H),6.90(s,2H),4.88(t,J=8.0Hz,2H),4.15(d,J=8Hz,2H),3.73(s,6H),3.64(m,J=8.0Hz,2H),3.62(m,2H).
13C NMR(100MHz,ppm)δ137.2,127.5,126.9,121.5,119.6,118.7,115.7,109.2,72.0,61.7,34.5,32.7.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.1,1’-二吲哚甲烷类衍生物的电化学合成方法,其特征在于,包括如下步骤:
1)将催化剂氯化镧、电解质高氯酸锂、吲哚衍生物加入到电解溶剂中,插入电极,室温下搅拌并通电反应;
2)反应完毕后,萃取、分离纯化,得到产物1,1’-二吲哚甲烷类衍生物。
2.根据权利要求1所述的1,1’-二吲哚甲烷类衍生物的电化学合成方法,特征在于,步骤1)所述的吲哚衍生物的通式如下:
其中,-R1为-H、-F、-Cl、-Br、-I、-NO2、-CN、-OCH3、-CH3或-COOCH3;-R2为-CH3、-CH2CH2CH2CH3或-Bn;-R3为-H、-CH3或-Ph。
3.根据权利要求1所述的1,1’-二吲哚甲烷类衍生物的电化学合成方法,特征在于,步骤1)所述的电解溶剂为四氢呋喃或其衍生物和乙腈的混合溶剂。
4.根据权利要求3所述的1,1’-二吲哚甲烷类衍生物的电化学合成方法,特征在于,所述四氢呋喃或其衍生物和乙腈的体积比为1:1-3:1。
5.根据权利要求1所述的1,1’-二吲哚甲烷类衍生物的电化学合成方法,特征在于,步骤1)所述的催化剂氯化镧的加入量为吲哚衍生物物质的量的5%-20%。
6.根据权利要求1所述的1,1’-二吲哚甲烷类衍生物的电化学合成方法,特征在于,步骤1)所述电解质高氯酸锂在电解溶剂中的摩尔浓度为0.1mmol/ml-0.3mmol/ml。
7.根据权利要求1所述的1,1’-二吲哚甲烷类衍生物的电化学合成方法,特征在于,步骤1)所述的电极中阴极和阳极距离10mm,阳极为直径0.03mm的铂丝;阴极为10mm×15mm的铂片、10mm×15mm的铜片、10mm×15mm的玻碳电极或直径5mm的碳棒。
8.根据权利要求1所述的1,1’-二吲哚甲烷类衍生物的电化学合成方法,特征在于,步骤1)所述反应的电流强度为4mA-6mA。
9.根据权利要求1所述的1,1’-二吲哚甲烷类衍生物的电化学合成方法,特征在于,步骤1)所述的反应的时间为3h-5h。
CN201610930550.2A 2016-10-31 2016-10-31 1,1’-二吲哚甲烷类衍生物的电化学合成方法 Expired - Fee Related CN106567104B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610930550.2A CN106567104B (zh) 2016-10-31 2016-10-31 1,1’-二吲哚甲烷类衍生物的电化学合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610930550.2A CN106567104B (zh) 2016-10-31 2016-10-31 1,1’-二吲哚甲烷类衍生物的电化学合成方法

Publications (2)

Publication Number Publication Date
CN106567104A true CN106567104A (zh) 2017-04-19
CN106567104B CN106567104B (zh) 2018-12-11

Family

ID=60414471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610930550.2A Expired - Fee Related CN106567104B (zh) 2016-10-31 2016-10-31 1,1’-二吲哚甲烷类衍生物的电化学合成方法

Country Status (1)

Country Link
CN (1) CN106567104B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107620088A (zh) * 2017-09-14 2018-01-23 浙江工业大学 一种电化学催化氧化合成3‑巯基吲哚类化合物的方法
CN108977840A (zh) * 2018-07-19 2018-12-11 西北师范大学 阳极氧化制备n-芳基胺基甲酰基膦酸酯的方法
CN111593370A (zh) * 2020-05-29 2020-08-28 中国科学技术大学 低温电催化合成2,3-氢化吲哚啉类化合物的方法
CN112144074A (zh) * 2020-10-26 2020-12-29 南京先进生物材料与过程装备研究院有限公司 一种利用电化学微通道装置制备二位溴代吲哚的方法
CN114717582A (zh) * 2022-04-08 2022-07-08 云南大学 一种绿色电化学偶联制备茶碱类衍生物的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034589A (ja) * 1998-06-19 2000-02-02 Basf Ag 電解セル中の有機基質の電気化学的反応法
CN103130702A (zh) * 2011-11-23 2013-06-05 中国科学院大连化学物理研究所 一种合成3-取代吲哚和2,3-二取代吲哚的方法
CN103342675A (zh) * 2013-05-17 2013-10-09 安徽工业大学 一种催化制备二吲哚甲烷衍生物的方法
CN103436911A (zh) * 2013-09-05 2013-12-11 北京工业大学 氮杂环丙烷类化合物的电化学催化合成方法
CN103880728A (zh) * 2014-03-21 2014-06-25 台州学院 一种制备二吲哚甲烷类化合物的方法
CN106048648A (zh) * 2016-07-13 2016-10-26 北京工业大学 3‑磺酸基取代的氧代吲哚类化合物的电化学催化合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000034589A (ja) * 1998-06-19 2000-02-02 Basf Ag 電解セル中の有機基質の電気化学的反応法
CN103130702A (zh) * 2011-11-23 2013-06-05 中国科学院大连化学物理研究所 一种合成3-取代吲哚和2,3-二取代吲哚的方法
CN103342675A (zh) * 2013-05-17 2013-10-09 安徽工业大学 一种催化制备二吲哚甲烷衍生物的方法
CN103436911A (zh) * 2013-09-05 2013-12-11 北京工业大学 氮杂环丙烷类化合物的电化学催化合成方法
CN103880728A (zh) * 2014-03-21 2014-06-25 台州学院 一种制备二吲哚甲烷类化合物的方法
CN106048648A (zh) * 2016-07-13 2016-10-26 北京工业大学 3‑磺酸基取代的氧代吲哚类化合物的电化学催化合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
K.RAMACHANDIRAN ET AL.: ""Palladium catalyzed alkylation of indole via aliphatic C-H bond activation of tertiary amine"", 《TETRAHEDRON LETT.》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107620088A (zh) * 2017-09-14 2018-01-23 浙江工业大学 一种电化学催化氧化合成3‑巯基吲哚类化合物的方法
CN108977840A (zh) * 2018-07-19 2018-12-11 西北师范大学 阳极氧化制备n-芳基胺基甲酰基膦酸酯的方法
CN111593370A (zh) * 2020-05-29 2020-08-28 中国科学技术大学 低温电催化合成2,3-氢化吲哚啉类化合物的方法
CN112144074A (zh) * 2020-10-26 2020-12-29 南京先进生物材料与过程装备研究院有限公司 一种利用电化学微通道装置制备二位溴代吲哚的方法
CN112144074B (zh) * 2020-10-26 2021-12-03 南京先进生物材料与过程装备研究院有限公司 一种利用电化学微通道装置制备二位溴代吲哚的方法
CN114717582A (zh) * 2022-04-08 2022-07-08 云南大学 一种绿色电化学偶联制备茶碱类衍生物的方法
CN114717582B (zh) * 2022-04-08 2023-09-19 云南大学 一种绿色电化学偶联制备茶碱类衍生物的方法

Also Published As

Publication number Publication date
CN106567104B (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN106567104A (zh) 1,1’‑二吲哚甲烷类衍生物的电化学合成方法
Ruan et al. Late-stage azolation of benzylic C‒H bonds enabled by electrooxidation
CN111364057B (zh) 一种利用电化学微通道反应装置连续制备c-3位多氟甲基取代香豆素的方法
Li et al. Electrochemical generation of diaza-oxyallyl cation for cycloaddition in an all-green electrolytic system
CN111560624B (zh) 一种利用微通道反应装置连续制备异苯并呋喃类化合物的方法
CN111235598B (zh) 一种利用微反应装置连续电合成螺[4.5]三烯酮的方法
CN112251771B (zh) 一种利用电化学微通道装置合成c-2位溴代吲哚的方法
Liu et al. Continuous-flow electro-oxidative coupling of sulfides with activated methylene compounds leading to sulfur ylides
KR20230119704A (ko) 피리딘피롤루테늄 배위결합복합체, 이의 제조방법 및암모니아의 전기 촉매 산화에 의한 하이드라진 제조를 위한 촉매제로서의 응용
Guo et al. Photoredox-catalyzed coupling of aryl sulfonium salts with CO 2 and amines to access O-aryl carbamates
CN113930792B (zh) 一种3-氰基吲哚类化合物的电化学制备方法
CN101691664B (zh) 一种利用电化学反应合成3-烯-1,6-二酸的方法
CN112062706A (zh) 一种利用微通道反应装置连续制备吲哚酮类化合物的方法
CN113584507B (zh) 一种利用微反应装置连续电合成磺酰化异吲哚啉酮的方法
CN113957461B (zh) 一种1,1′-联萘类化合物的电化学合成方法
CN112410807B (zh) 一种电催化下四取代磺化烯醚的制备方法
Zhang et al. Metal-free electrochemical oxidative intramolecular cyclization of N-propargylbenzamides: facile access to oxazole ketals
CN110438521B (zh) 一种电化学条件下n-甲基-n-(2-氰乙基)苯胺选择性脱甲基的方法
CN114182272A (zh) 一种醇/频哪醇衍生物的制备方法
CN114507866B (zh) 一种电化学介导的2-芳基苯并呋喃类化合物的合成方法
CN111621805A (zh) 一种电催化选择性脱氢制备3,4—二氢异喹啉的方法
CN113549939B (zh) 一种利用微反应装置连续电合成异吲哚啉酮的方法
CN109518211B (zh) 一种芳香偶酰类化合物的电化学合成方法
CN115011974B (zh) 一种电催化制备反式烯丙基苯类化合物的方法
CN114438529B (zh) 一种1-硫氰基-1-氰基-2-氨基丙烯化合物的电化学制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181211

Termination date: 20211031

CF01 Termination of patent right due to non-payment of annual fee