CN106512965A - 一种金属有机骨架纳米复合材料的合成方法及其应用 - Google Patents

一种金属有机骨架纳米复合材料的合成方法及其应用 Download PDF

Info

Publication number
CN106512965A
CN106512965A CN201611061203.7A CN201611061203A CN106512965A CN 106512965 A CN106512965 A CN 106512965A CN 201611061203 A CN201611061203 A CN 201611061203A CN 106512965 A CN106512965 A CN 106512965A
Authority
CN
China
Prior art keywords
composite material
organic framework
nano composite
metallic organic
synthetic method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611061203.7A
Other languages
English (en)
Inventor
邓春晖
谢伊沁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201611061203.7A priority Critical patent/CN106512965A/zh
Publication of CN106512965A publication Critical patent/CN106512965A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • G01N33/6851Methods of protein analysis involving laser desorption ionisation mass spectrometry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明所提出的一种金属有机骨架(MOF)纳米复合材料的合成方法及其应用。首先将用传统的水热法合成的四氧化三铁磁球分散在多巴胺盐酸盐弱碱性溶液中,使多巴胺在磁球表面自聚合;将聚多巴胺包覆的磁球先后分散在氯化锆和2‑氨基对苯二甲酸的二甲基甲酰胺溶液中,获得磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料。该材料具有较大的比表面积、良好的亲水性、合适的孔道结构,可应用于蛋白质组学的进一步研究。可特异性富集磷酸化肽段和糖肽,该合成方法简单快捷,合成的材料具有较好的亲水性和生物相容性,可用于复杂生物样品中内源性磷酸化肽段以及糖肽的选择性富集。

Description

一种金属有机骨架纳米复合材料的合成方法及其应用
技术领域
本发明属于先进纳米材料与纳米技术领域,具体涉及一种金属有机骨架(MOF)纳米复合材料的合成方法及其应用,尤其涉及一种用于磷酸化肽富集以及糖肽富集与MALDI-TOF MS以及LC-MS/MS检测的磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的合成方法及其双向应用。
背景技术
蛋白质的糖基化以及磷酸化是生命过程中两种重要且普遍的翻译后修饰,它们与细胞间信号传递、细胞分裂、增殖、分化和相互作用等许多重要的复杂生物过程息息相关。一些研究表明,糖肽或磷酸化肽的表达水平异常,可作为很多疾病的生物标志,尤其是癌症等人类重大疾病。所以对糖肽以及磷酸化肽的研究对疾病的早期诊断有着重要的意义。然而糖肽和磷酸化肽的丰度往往非常低,并且它们的质谱响应会受到高丰度非磷酸化肽/糖肽和蛋白质的压制,样品中的盐分和表面活性剂同样也会对其质谱行为产生干扰,使得其电离效率非常低,质谱检测相对较为困难。因此在使用质谱方法分析复杂生物样品中的糖肽和磷酸化肽段之前,对样品中的肽段进行选择性富集是十分必要的。
自19世纪80年代以来,一系列新的软电离技术如快原子轰击电离、基质辅助激光解吸电离、电喷雾电离等发现后,生物质谱技术迅速发展。由于质谱技术(MassSpectrometry,MS)具有高准确性、高灵敏度和自动化操作的特点,并且它能够准确测量肽段和蛋白质的相对分子量和氨基酸序列等,快速、精确地获得多种蛋白质属性参数,结合生物信息学工具,可迅速进行蛋白质的鉴定,从而为蛋白质的结构解析提供可靠依据。因此质谱技术无可争议地成为当前蛋白质组学研究中不可或缺的平台,质谱数据的信息质量直接决定了蛋白质鉴定的可靠性和鉴定数量。
随着近年来研究的不断深入,许多方法都被用来选择性分离富集糖基化蛋白和多肽,比如硼酸亲和色谱、肼化学、亲水相互作用色谱(HILIC)、色谱分析法、体积排阻法等。其中HILIC方法应用最为广泛,效果也较其他方法更好,HILIC方法中,例如金属有机骨架材料、纳米材料等等,都在糖肽富集方面引起了广泛的重视。
此外,许多方法也都被用来选择性分离富集磷酸化蛋白和多肽,比如免疫沉淀法、固相萃取法、超滤法、强阳离子交换色谱法、固定金属离子亲和层析法(IMAC)、金属氧化物亲和层析法(MOAC)等等。其中IMAC方法应用广泛,效果也较好。通过金属离子与磷酸化多肽上的磷酸基团间发生配位相互作用,从而起到富集磷酸化多肽的效果,MOF作为IMAC的一种,受到了广泛的重视。
因此,本发明将HILIC与IMAC技术相结合,设计了一种磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料,通过锆离子与磷酸化肽的紧密结合,以及亲水相互作用与糖肽的紧密结合,达到一种材料双向应用的效果。这种材料由于具有磁性,操作简便、易于制得、且具备MOF的一管优异性能,在糖肽以及磷酸化肽富集方面有着很好的应用前景。
金属-有机骨架材料是指由有机官能团为支架、金属离子或金属簇为中心节点,通过自组装形成的具有规则纳米孔道的三维周期性的网格结构多孔材料。具有非常大的比表面积、稳定的纳米级孔道、可调控的孔道结构、良好的热稳定性等优异性能,且不饱和的配位金属可能与含有羧基、氨基等官能团的被分析物质发生配位作用,MOFs材料已成为有机化学、无机化学、物理化学领域的研究热点。MOFs如今在气体分离、苯及其同系物的选择性吸附、药物研发等发挥了其不小的作用。近年来,MOFs材料已初步应用于蛋白质/肽的分离富集,并显示MOFs材料在蛋白质组研究中,如低丰度肽富集等有很好的潜力。
发明内容
本发明的目的在于提供一种金属有机骨架(MOF)纳米复合材料的合成方法,尤其提出一种磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的合成方法及其在糖肽以及磷酸化肽富集与MALDI-TOF MS以及LC-MS/MS检测中的应用。
本发明提出一种金属有机骨架(MOF)纳米复合材料的合成方法,具体步骤如下:
(1)将FeCl3•6H2O溶于乙二醇中,磁力搅拌至澄清,加醋酸钠充分搅拌,超声后,转移至反应釜中,在200℃条件下反应16小时后,冷却,用去离子水及乙醇充分洗涤所生成的四氧化三铁磁球,在50℃下真空干燥;
(2)将步骤(1)所得的四氧化三铁磁球分散于三羟甲基氨基甲烷(Tris)缓冲液中,超声15分钟左右,加入多巴胺盐酸盐,在室温下机械搅拌反应6-20小时,制得聚多巴胺包覆的磁球,用磁铁分离产物后,用去离子水和无水乙醇充分洗涤,在50℃下真空干燥,得到聚多巴胺包覆的磁球;
(3)在二甲基甲酰胺中分散步骤(2)所得产物聚多巴胺包覆的磁球,超声数分钟,充分分散后加入氯化锆,搅拌均匀,在反应温度100-140℃下,反应15-45分钟;
(4)在步骤(3)所得产物中加入配体2-氨基对苯二甲酸,在120℃下继续加热约15分钟;
(5)步骤(4)所得产物用磁铁分离后,用二甲基甲酰胺、蒸馏水和无水乙醇充分洗涤,在50℃下真空干燥,即得所需的金属有机骨架(MOF)纳米复合材料。
本发明中,步骤(1)中FeCl3•6H2O和乙二醇的配比范围为(0.9-1.8)g:(50-100)mL。
本发明中,步骤(1)中FeCl3•6H2O和乙二醇的配比为1.35g:75mL。
本发明中,步骤(2)中Tris缓冲液的溶剂为去离子水和乙醇,体积比为1:1,pH值为8.5。
本发明中,步骤(2)中四氧化三铁磁球和多巴胺盐酸盐的质量比为2.4:1。
本发明中,步骤(3)中聚多巴胺包覆的磁球和氯化锆的质量比为(75-125):(120-200)。
本发明中,步骤(3)中聚多巴胺包覆的磁球和氯化锆的质量比为5:8,反应温度为120℃,反应时间为30分钟。
本发明中,步骤(2)中所得产物聚多巴胺包覆的磁球和步骤(4)中的2-氨基对苯二甲酸的质量比范围为(75-125):(90-150),反应温度为100-140℃,反应时间为10-20分钟。
本发明中,步骤(2)中所得产物聚多巴胺包覆的磁球和步骤(4)中的2-氨基对苯二甲酸的质量比为5:6,反应温度为120℃,反应时间为15分钟。
本发明还提出一种所述合成方法得到的金属有机骨架(MOF)纳米复合材料在糖肽富集与质谱鉴定中的应用,具体为:将金属有机骨架(MOF)纳米复合材料以超纯水为溶剂配置成为10 mg/mL的材料分散液,将该材料分散液与目标糖肽溶液加入90%乙腈/1%三氟乙酸缓冲液中,混合并在酶解仪中孵育;通过离心分离出纳米复合材料,用90%乙腈/1%三氟乙酸以及80%乙腈/1%磷酸缓冲液洗涤材料,随后用30%乙腈/0.1%甲酸洗脱;取1μL洗脱液直接在MALDI-TOF MS进样靶板上点靶,干燥后再点加1μL浓度为30mg/mL的2,5-二羟基苯甲酸(DHB)溶液于该液滴上,形成基质结晶,进行质谱分析。
本发明还提出一种所述合成方法得到的金属有机骨架(MOF)纳米复合材料在内源性磷酸化肽富集与质谱鉴定中的应用,具体为:将金属有机骨架(MOF)纳米复合材料配置成为10 mg/mL的材料分散液(溶剂为超纯水),将该材料分散液与目标磷酸化肽段溶液加入50%乙腈/0.1%三氟乙酸缓冲液中,混合并在酶解仪中孵育;通过离心分离出纳米复合材料,用50%乙腈/0.1%三氟乙酸缓冲液洗涤材料,随后用0.4M氨水洗脱;取1μL洗脱液直接在MALDI-TOF MS进样靶板上点靶,干燥后再点加1μL浓度为20mg/mL的2,5-二羟基苯甲酸(DHB)溶液于该液滴上,形成基质结晶,进行质谱分析。
本发明的有益效果在于:首次合成了结合传统IMAC材料和HILIC(MOF)材料优点的纳米复合材料,并成功应用于糖肽和磷酸化肽的分离富集。本发明提出的合成方法合成的磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料,合成方法简单快速,锆离子对磷酸化肽具有高灵敏度和高选择性,氨基和糖肽可通过亲水相互作用紧密结合,MOF提高了有效表面以及较好的体孔道结构。此纳米复合材料可用于选择性地富集生物样品中的低丰度的糖肽和磷酸化肽,并用于MALDI-TOF MS以及LC-MS/MS检测。由于MOF较高的表面积以及锆离子与磷酸基团间的亲和作用和氨基与糖肽间的亲水相互作用,使得该纳米复合材料可以对复杂生物样品中的糖肽和磷酸化肽进行选择性富集,大大提高了其质谱信号,本发明所提供的材料对磷酸化肽检测限达20 amol/μL,糖肽检测限达200 amol/μL,对非磷酸化肽段的选择性达1:500(质量比),对非糖肽的选择性达1:100(质量比),可直接从人体血清中检测到4条内源性磷酸化肽,以及307条氮端糖肽对应于121种不同的糖蛋白。被富集肽段信噪比放大倍数高,具有较好的选择性和高灵敏度,对复杂生物样品中的糖肽和磷酸化肽的检测有很好的。
附图说明
图1为实施例1制得的金属有机骨架(MOF)纳米复合材料的扫描电子显微镜照片以及透射电子显微镜照片;其中:SEM: a)为Fe3O4@PDA,b)为Fe3O4@PDA@UiO-66-NH2,TEM: c)为Fe3O4@PDA@UiO-66-NH2,d)为Fe3O4@PDA@UiO-66-NH2(放大图);
图2为实施例1制得的金属有机骨架(MOF)纳米复合材料的能量色散X射线光谱及元素含量分布图;
图3为实施例1制得的金属有机骨架(MOF)纳米复合材料的氮吸附曲线;附图:孔径分布曲线;
图4为实施例1制得的金属有机骨架(MOF)纳米复合材料的磁滞回曲线;
图5为实施例1制得的金属有机骨架(MOF)纳米复合材料的亲水性测试图,其中(a)为5分钟后,(b)为10分钟后,(c)为30分钟后,(d)为磁性分离3秒钟后;
图6为实施例1制得的金属有机骨架(MOF)纳米复合材料的红外表征谱图;
图7为实施例1制得的金属有机骨架(MOF)纳米复合材料的拉曼表征谱图;
图8为实施例1制得的金属有机骨架(MOF)纳米复合材料的X射线衍射图;
图9为实施例1制得的金属有机骨架(MOF)纳米复合材料的Zeta电势图;其中:a)Fe3O4,b) Fe3O4@PDA,c) Fe3O4@PDA@UiO-66-NH2
图10为实施例2中经金属有机骨架(MOF)纳米复合材料富集前后的质谱图,其中;a)是250 fmol/μL 的HRP酶解液富集前原液的质谱图;b) 是250 fmol/μL 的HRP酶解液经金属有机骨架(MOF)纳米复合材料富集后洗脱液的质谱图;c)1 pmol/μL 的IgG酶解液富集前原液的质谱图;d)是1 pmol/μL 的IgG酶解液经金属有机骨架(MOF)纳米复合材料富集后洗脱液的质谱图;e)是200 fmol/μL 的β-Casein酶解液富集前原液的质谱图;f)是200 fmol/μL的β-Casein酶解液经金属有机骨架(MOF)纳米复合材料富集后洗脱液的质谱图;
图11为实施例2中250 fmol/μL 的HRP酶解液经过金属有机骨架(MOF)纳米复合材料质谱图,a)新鲜制得材料所得富集后洗脱液的质谱图,b)材料循环使用5次后所得富集后洗脱液的质谱图;200 fmol/μL 的β-Casein酶解液经过金属有机骨架(MOF)纳米复合材料,c)新鲜制得材料所得富集后洗脱液的质谱图,d)材料循环使用5次后所得富集后洗脱液的质谱图;
图12为实施例2中250 fmol/μL 的HRP酶解液经过金属有机骨架(MOF)纳米复合材料质谱图,a)新鲜制得材料所得富集后洗脱液的质谱图,b)材料在-20℃保存1个月后所得富集后洗脱液的质谱图;200 fmol/μL 的β-Casein酶解液经过金属有机骨架(MOF)纳米复合材料,c)新鲜制得材料所得富集后洗脱液的质谱图,d)材料在-20℃保存1个月后所得富集后洗脱液的质谱图;
图13为实施例2中HRP酶解液经过金属有机骨架(MOF)纳米复合材料富集后质谱图,HRP酶解液浓度为:a) 25 fmol/μL; b) 5 fmol/μL; c) 1 fmol/μL;d) 0.2 fmol/μL;β-Casein酶解液经过金属有机骨架(MOF)纳米复合材料富集后质谱图,β-Casein酶解液浓度为:e) 25 fmol/μL; f) 1 fmol/μL;
图14为实施例3中质量比为1:50的HRP和BSA酶解液的混合溶液a)富集前的质谱图;b)经过金属有机骨架(MOF)纳米复合材料富集后质谱图;质量比为1:100的HRP和BSA酶解液的混合溶液c)富集前的质谱图;d) 经过金属有机骨架(MOF)纳米复合材料富集后质谱图;质量比为1:500的β-Casein和BSA酶解液的混合溶液e)富集前的质谱图;f) 经过金属有机骨架(MOF)纳米复合材料富集后质谱图;
图15为实施例4中未经过酶解处理的健康人血清质谱图,a)原液质谱图,b)经过金属有机骨架(MOF)纳米复合材料富集后上清液质谱图。
具体实施方式
下面的实施实例是对本发明的进一步说明,而不是限制本发明的范围。
实施例1:一种磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的合成。
(1)用乙二醇作为溶剂合成四氧化三铁磁球,将1.35g FeCl3•6H2O溶于75mL乙二醇,磁力搅拌(手套封口)至澄清,后加3.6g压碎醋酸钠搅拌至溶解并继续搅拌0.5h(手套封口)。超声5min后,转移至反应釜,200℃,16h。取出反应釜,冷却过夜。倒出磁球,水洗5次(每次超声5min)。用去离子水及乙醇充分洗涤磁球,到洗涤液清澈纯净,在50℃下真空干燥;
(2)配置三羟甲基氨基甲烷(Tris)缓冲液(溶剂为去离子水和乙醇,体积比1:1,pH=8.5),将步骤(1)所得的四氧化三铁磁球120 mg分散于80mLTris缓冲液(内含0.05g Tris、40mL水、40mL乙醇)中,超声15分钟左右,加入0.32g多巴胺盐酸盐,室温搅拌反应16h。磁铁分离产物,用去离子水和无水乙醇充分洗涤,在50℃下真空干燥;
(3)在75 mL二甲基甲酰胺中分散步骤(2)所得产物100 mg,超声一段时间,充分分散;加入氯化锆160mg,搅拌均匀,120℃加热搅拌30分钟;
(4)在步骤(3)所得体系中加入配体2-氨基对苯二甲酸120mg,搅拌均匀,120℃加热搅拌15分钟,磁铁分离产物,用二甲基甲酰胺、去离子水和无水乙醇充分洗涤,在50℃下真空干燥。
图1为实施例1的扫描电子显微镜照片及透射电子显微镜照片。扫描电子显微镜图可以看出在磁球外包覆了一层较薄的聚合物层,在修饰MOF后,表面的结晶形貌与聚合物的光滑层不同;透射电子显微镜图可以看出聚合物@MOF层约为70纳米厚;扫描电镜型号为Philips XL30,将纯化后的磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料均匀涂抹在导电胶上,喷金后进行SEM表征;透射电镜型号为JEM-2100F(J0EL),将纯化后的磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的乙醇分散液滴在覆有碳膜的铜网上,干燥后进行透射电子显微镜观察并拍照;
图2为实施例1的元素分析,其中Zr元素的质量分数占8.0%,与预期一致,表如下;
图3为实施例1的氮吸附曲线及孔径分布曲线,由图中可以看出,该纳米复合材料具有较大的比表面积,且孔的大小为3.11纳米左右;
图4为实施例1的磁滞回线,虽然包覆了聚合物及MOF层之后,材料的磁响应有所下降,但仍保持着较高的磁响应强度,约为45.6emu·g-1
图5为实施例1的亲水性测试图,将材料分散在水溶液中形成稳定均一的水溶液,并在5分钟、10分钟、30分钟后仍保持分散均一;而用磁铁吸引后,则立刻变成澄清溶液与材料分离;
图6为实施例1的红外表征谱图,该纳米材料出现了较多的特征峰,如3400cm-1处的羧基特征峰、1500-1600cm-1处的苯环特征峰、560cm-1处的Fe-O-Fe振动峰;
图7为实施例1的拉曼表征谱图,<500cm-1处出现磁球的特征峰、1500-1600cm-1处在包覆多巴胺层后出现苯环特征峰,说明材料的成功合成;
图8为实施例1的X射线衍射图样,2θ= 5.2, 7.0, 12.3, 18.2,22.3°是来自于MOF,而2θ= 30.3, 35.4, 43.2, 57.2,63.0°是来自于磁球内核,这也就说明磁性MOF材料的成功合成;X射线衍射仪型号为Bruker D4 X-ray diffractometer;
图9为实施例1的Zeta电势图,Zeta电势经过一层层包覆后先降后升是由于磁球表面被带负电的邻二酚羟基所占据导致电势的下降,而之后MOF层的进一步修饰使表面带正电导致电势的上升,进一步说明材料表面的成功修饰。
实施例2:将实施例1得到的磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料作为固相微萃取吸附分离介质用于低浓度HRP酶解液以及β-Casein酶解液的富集与MALDI-TOF MS检测。
(1)标准蛋白酶解液的制备:准确称取2 mg HRP标准蛋白,用25 mM碳酸氢铵溶液配成浓度为 2 mg/mL的标准蛋白溶液,pH大约为8.3,煮沸十分钟。按照质量比为1:50的胰蛋白酶与标准蛋白的比例,加入胰蛋白酶(trypsin),37°C孵育16小时,可得到2 mg/mL的HRP胰蛋白酶解液;准确称取4 mg IgG标准蛋白,用25 mM碳酸氢铵溶液配成浓度为 4 mg/mL的标准蛋白溶液,pH大约为8.3,煮沸十分钟。按照质量比为1:50的胰蛋白酶与标准蛋白的比例,加入胰蛋白酶(trypsin),37°C孵育16小时,可得到4 mg/mL的IgG胰蛋白酶解液;准确称取2.5 mg β-Casein标准蛋白,用25 mM碳酸氢铵溶液配成浓度为 2.5mg/mL的标准蛋白溶液,pH大约为8.3,煮沸十分钟。按照质量比为1:50的胰蛋白酶与标准蛋白的比例,加入胰蛋白酶(trypsin),37°C孵育16小时,可得到2.5 mg/mL的β-Casein胰蛋白酶解液。
(2)样品的富集:
糖肽富集:用超纯水配制10 mg/mL磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的溶液。取20 μL的材料溶液于0.6 mL的离心管,用体积分数为90%乙腈和1%TFA的缓冲溶液洗涤2次后去除上清,加入用缓冲溶液稀释后不同浓度的HRP酶解液(总体积为100μL),混匀,在37°C下震荡富集30分钟;离心分离材料,吸去上清液,用90%乙腈1%TFA溶液洗涤材料一遍,再用80%乙腈/1%磷酸溶液洗涤材料两遍,然后加入10 μL的30%乙腈/0.1%甲酸溶液,37℃震荡洗脱20分钟,离心分离材料,吸出洗脱液备后用。
磷酸化肽富集:用超纯水配制10 mg/mL磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的溶液。取20 μL的材料溶液于0.6 mL的离心管,用体积分数为50%乙腈和0.1%TFA的缓冲溶液洗涤2次后去除上清,加入用缓冲溶液稀释后不同浓度的β-Casein酶解液(总体积为100μL),混匀,在37°C下震荡富集30分钟;离心分离材料,吸去上清液,用50%乙腈0.1%TFA溶液洗涤材料三遍,然后加入10 μL的0.4mol/L的氨水,37℃震荡洗脱20分钟,离心分离材料,吸出洗脱液备后用。
(3)点靶:取1 μL步骤(2)所述的洗脱液点到MALDI-TOF MS进样靶板上,干燥后再点加1 μL浓度为30 mg/mL(糖肽)或20 mg/mL(磷酸化肽)的2,5-二羟基苯甲酸(DHB)溶液于该液滴上,形成基质结晶,干燥后再进行质谱分析。
(4)质谱分析以磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料作为固相微萃取吸附分离介质富集得到的糖肽和磷酸化肽并与富集前的原液质谱图作对比。
浓度为250 fmol/ μL的HRP酶解液经过磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料富集后,质谱图中出现了十九条归属于HRP的糖肽峰(m/z=1843.0, m/z=2541.4, m/z=2591.4, m/z=2611.4, m/z=3074.5, m/z=3087.7, m/z=3222.9, m/z=3321.8, m/z=3353.7, m/z=3369.7, m/z=3605.0, m/z=3672.1, m/z=3894.1, m/z=4056.2, m/z=4222.4, m/z=4719.6, m/z=4821.7, m/z=4838.7, m/z=4984.7)。
浓度为1 pmol/ μL的IgG酶解液经过磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料富集后,质谱图中出现了二十一条归属于IgG的糖肽峰(m/z=2399.3,m/z=2431.3,m/z=2457.3,m/z=2488.3,m/z=2561.4,m/z=2602.4,m/z=2618.4,m/z=2634.4,m/z=2650.4,m/z=2764.5,m/z=2781.5,m/z=2796.5,m/z=2805.5,m/z=2837.5,m/z=2853.5,m/z=2926.6,m/z=2958.6,m/z=2967.6,m/z=3000.0,m/z=3130.0,m/z=3161.7)
浓度为200 fmol/ μL的β-Casein酶解液经过磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料富集后,质谱图中出现了六条归属于β-Casein的磷酸化肽段的峰(m/z=1031.4,m/z=1279.1,m/z=1561.2, m/z=2061.9,m/z=2556.2,m/z=3122.5),四条去磷酸化峰(m/z=1963.9,m/z=2458.0,m/s=2927.3,m/z=3024.2)以及两条来源于α-Casein的磷酸化肽段的峰(m/z=1466.7,m/z=1660.9,)。
实施例3:将实施例1得到的磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料作为固相微萃取吸附分离介质用于HRP酶解液或β-Casein酶解液和牛血清白蛋白(BSA)酶解液的混合溶液的富集与MALDI-TOF MS检测。
(1)标准蛋白酶解液的制备:准确称取2 mg 标准蛋白HRP、2.5 mg 标准蛋白β-Casein和5 mg标准蛋白BSA,用25 mM碳酸氢铵溶液配成浓度为2 mg/mL、2.5 mg/mL和5 mg/mL的标准蛋白溶液,pH大约为8.3,煮沸10分钟。按照质量比为1:50的胰蛋白酶与标准蛋白的比例,加入胰蛋白酶(trypsin),37°C孵育16小时,可得到2 mg/mL的HRP胰蛋白酶解液、2.5 mg/mL的β-Casein酶解液和5 mg/mL的BSA酶解液。
(2)样品的富集:
糖肽富集:用超纯水配制10 mg/mL磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的溶液。取20 μL的材料溶液于0.6 mL的离心管,用体积分数为90%乙腈和1%TFA的缓冲溶液洗涤2次后去除上清,先加入1 μL的2 mg/mL的HRP胰蛋白酶解液,分别按照HRP和BSA的质量比为1:50、1:100加入BSA酶解液,随后加入相应体积的体积分数为90%乙腈/1%TFA的水溶液使体系配成总体积为100 μL的体系,混匀,在37°C下震荡富集30分钟;离心分离材料,吸去上清液,用90%乙腈1%TFA溶液洗涤材料一遍,再用80%乙腈/1%磷酸溶液洗涤材料两遍,然后加入10 μL的30%乙腈/0.1%甲酸溶液,37℃震荡洗脱20分钟,离心分离材料,吸出洗脱液备后用。
磷酸化肽富集:用超纯水配制10 mg/mL磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的溶液。取20 μL的材料溶液于0.6 mL的离心管,用体积分数为50%乙腈和0.1%TFA的缓冲溶液洗涤2次后去除上清,先加入1 μL的2.5 mg/mL的β-Casein酶解液后,按照β-Casein和BSA的质量比为1:1:500加入BSA酶解液,随后加入相应体积的体积分数为50%乙腈和0.1%TFA的水溶液使体系配成总体积为100 μL的体系,混匀,在37°C下震荡富集30分钟;离心分离材料,吸去上清液,用50%乙腈0.1%TFA溶液洗涤材料三遍,然后加入10 μL的0.4 mol/L的氨水,37℃震荡洗脱20分钟,离心分离材料,吸出洗脱液备后用。
(3)点靶:取1 μL步骤(2)所述的洗脱液点到MALDI-TOF MS进样靶板上,干燥后再点加1 μL浓度为30 mg/mL(糖肽)或20 mg/mL(磷酸化肽)的2,5-二羟基苯甲酸(DHB)溶液于该液滴上,形成基质结晶,干燥后再进行质谱分析。
(4)质谱分析以磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料作为固相微萃取吸附分离介质富集得到的糖肽和磷酸化肽并与富集前的原液质谱图作对比。
质量比为1:50的HRP和BSA的酶解混合液经过磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料富集后,从质谱图中可以清楚地看到十二条来源于HRP的糖肽峰(m/z=2541.4, m/z=2591.4, m/z=2611.4, m/z=3222.9,m/z=3321.8, m/z=3353.7, m/z=3369.7, m/z=3672.1, m/z=4056.2, m/z=4222.4, m/z=4838.7, m/z=4984.7)
质量比为1:500的β-Casein和BSA的酶解液混合液经过磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料富集后,从质谱图中可以清楚地看到五条来源于β-Casein的磷酸化肽段的峰(m/z=1031.4,m/z=1561.2,m/z=2061.9,m/z=2556.2,m/z=3122.5),四条去磷酸化峰(m/z=1952.0,m/z=2433.2,m/z=2927.6,m/z=3024.6)。
实施例4:将实施例1得到的磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料作为固相微萃取吸附分离介质用于健康人血清样品中糖肽和磷酸化肽的富集与MALDI-TOF MS和LC-MS/MS检测。
(1)样品准备:
糖肽富集准备:2μL人体血清分散于198μL 25 mM碳酸氢铵溶液,煮沸10分钟进行变形。后在60℃加入10 mM 二硫苏糖醇(DTT)进行30分钟还原反应,后在37℃在暗处加入20 mM吲哚-3-乙酸(IAA)进行1小时烷基化反应。之后按照质量比为1:50的胰蛋白酶与蛋白浓度的比例,加入胰蛋白酶(trypsin),37°C孵育16小时,冻干待用。
磷酸化肽富集准备:用体积分数为50%乙腈和0.1%TFA的水溶液稀释健康人血清样品十倍。用体积分数为50%乙腈和0.1%TFA的水溶液配制10 mg/mL磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的溶液。
(2)样品的富集:
糖肽富集:用超纯水配制10 mg/mL磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的溶液。取40 μL的材料溶液于0.6 mL的离心管,用体积分数为90%乙腈和1%TFA的缓冲溶液洗涤2次后去除上清,加入100μL用90%乙腈和1%TFA的缓冲溶液稀释的血清酶解冻干液,混匀,在37°C下震荡富集30分钟;离心分离材料,吸去上清液,用90%乙腈1%TFA溶液洗涤材料一遍,再用80%乙腈/1%磷酸溶液洗涤材料两遍,然后加入10 μL的30%乙腈/0.1%甲酸溶液,37℃震荡洗脱20分钟,离心分离材料,吸出洗脱液冻干后备用。(LC-MS/MS)
磷酸化肽富集:用超纯水配制10 mg/mL磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料的溶液。取20 μL的材料溶液于0.6 mL的离心管,用体积分数为50%乙腈和0.1%TFA的缓冲溶液洗涤2次后去除上清,在0.6 mL的离心管内加入10 μL的稀释过的健康人血清,加入190 μL的体积分数为50%乙腈和0.1%TFA的水溶液,混匀,在37°C下震荡富集30分钟;离心分离材料,吸去上清液,用50%乙腈0.1%TFA溶液洗涤材料三遍,然后加入10 μL的0.4 mol/L的氨水,37℃震荡洗脱20分钟,离心分离材料,吸出洗脱液备后用。(MALDI-TOF MS)
(3)糖肽质谱分析:
LC-MSMS:由步骤(2)所得的冻干液分散在10 μL A相(H2O/0.1%FA)中。该仪器为EASY-nLC 1000 system并连有Orbitrap Fusion mass spectrometer。4 μL分散液根据线性梯度在110分钟内从2% B相(乙腈/0.1%FA)到40% B相进样入分析柱(C18, 75 μm x 50 cm)。色谱柱在最初状态回稳10分钟,柱流速为200 nL/min。激光电压为 2.0 kV。Orbitrap质谱软件在MS和MS/MS模式间自动切换。可达到m/z=200的分辨率。由质谱得到的数据基于2015年3月11日发布的Uniprot-SwissProt数据库进行搜库,碎片离子质量数容忍偏差度为0.050Da,错误率(FDR)小于1%。
健康人血清经过磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料富集后,可辨识到307条氮端糖肽对应于121种不同的糖蛋白。
(4)磷酸化肽质谱分析:
点靶:取1 μL步骤(2)所述的洗脱液点到MALDI-TOF MS进样靶板上,干燥后再点加1 μL浓度为20 mg/mL的2,5-二羟基苯甲酸(DHB)溶液于该液滴上,形成基质结晶,干燥后再进行质谱分析。
MALDI-TOF MS:质谱分析以磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料作为固相微萃取吸附分离介质富集得到的磷酸化肽并与富集前的原液和富集后的上清液的质谱图作对比。
健康人血清富集前,由于受到严重的烦扰,无法看到内源性磷酸化肽的质谱峰,而经过磁球表面包覆聚多巴胺和氨基修饰的以锆为中心金属离子的金属有机骨架(MOF)纳米复合材料富集后,质谱图中可以看到四条健康人血清中的内源性磷酸化肽的峰(m/z=1389.4,m/z=1460.5,m/z=1545.5,m/z=1616.5)。

Claims (11)

1.一种金属有机骨架纳米复合材料的合成方法,其特征在于具体步骤如下:
(1)将FeCl3•6H2O溶于乙二醇中,磁力搅拌至澄清,加醋酸钠充分搅拌,超声后,转移至反应釜中,在200℃条件下反应16小时后,冷却,用去离子水及乙醇充分洗涤所生成的四氧化三铁磁球,在50℃下真空干燥;
(2)将步骤(1)所得的四氧化三铁磁球分散于三羟甲基氨基甲烷(Tris)缓冲液中,超声15分钟,加入多巴胺盐酸盐,在室温下机械搅拌反应6-20小时,制得聚多巴胺包覆的磁球,用磁铁分离产物后,用去离子水和无水乙醇充分洗涤,在50℃下真空干燥,得到聚多巴胺包覆的磁球;
(3)在二甲基甲酰胺中分散步骤(2)所得产物聚多巴胺包覆的磁球,超声数分钟,充分分散后加入氯化锆,搅拌均匀,在反应温度100-140℃下,反应15-45分钟;
(4)在步骤(3)所得产物中加入配体2-氨基对苯二甲酸,在120℃下继续加热15分钟;
(5)步骤(4)所得产物用磁铁分离后,用二甲基甲酰胺、蒸馏水和无水乙醇充分洗涤,在50℃下真空干燥,即得所需的金属有机骨架纳米复合材料。
2.根据权利要求1所述的一种金属有机骨架纳米复合材料的合成方法,其特征在于步骤(1)中FeCl3•6H2O和乙二醇的配比为(0.9-1.8)g:(50-100)mL。
3.根据权利要求1所述的一种金属有机骨架纳米复合材料的合成方法,其特征在于步骤(1)中FeCl3•6H2O和乙二醇的配比为1.35g:75mL。
4.根据权利要求1所述的一种金属有机骨架纳米复合材料的合成方法,其特征在于步骤(2)中Tris缓冲液的溶剂为去离子水和乙醇,体积比为1:1,pH值为8.5。
5.根据权利要求1所述的一种金属有机骨架纳米复合材料的合成方法,其特征在于步骤(2)中四氧化三铁磁球和多巴胺盐酸盐的质量比为2.4:1。
6.根据权利要求1所述的一种金属有机骨架纳米复合材料的合成方法,其特征在于步骤(3)中聚多巴胺包覆的磁球和氯化锆的质量比为(75-125):(120-200)。
7.根据权利要求1所述的一种金属有机骨架纳米复合材料的合成方法,其特征在于步骤(3)中聚多巴胺包覆的磁球和氯化锆的质量比为5:8,反应温度为120℃,反应时间为30分钟。
8.根据权利要求1所述的一种金属有机骨架纳米复合材料的合成方法,其特征在于,步骤(2)中所得产物聚多巴胺包覆的磁球和步骤(4)中的2-氨基对苯二甲酸的质量比为(75-125):(90-150),反应温度为100-140℃,反应时间为10-20分钟。
9.根据权利要求1所述的一种金属有机骨架纳米复合材料的合成方法,其特征在于,步骤(2)中所得产物聚多巴胺包覆的磁球和步骤(4)中的2-氨基对苯二甲酸的质量比为5:6,反应温度为120℃,反应时间为15分钟。
10.一种如权利要求1所述合成方法得到的金属有机骨架纳米复合材料在糖肽富集与质谱鉴定中的应用,其特征在于:将金属有机骨架(MOF)纳米复合材料以超纯水为溶剂配置成为10 mg/mL的材料分散液,将该材料分散液与目标糖肽溶液加入90%乙腈/1%三氟乙酸缓冲液中,混合并在酶解仪中孵育;通过离心分离出纳米复合材料,用90%乙腈/1%三氟乙酸以及80%乙腈/1%磷酸缓冲液洗涤材料,随后用30%乙腈/0.1%甲酸洗脱;取1μL洗脱液直接在MALDI-TOF MS进样靶板上点靶,干燥后再点加1μL浓度为30mg/mL的2,5-二羟基苯甲酸(DHB)溶液于该液滴上,形成基质结晶,进行质谱分析。
11.一种如权利要求1所述合成方法得到的金属有机骨架纳米复合材料合成方法在内源性磷酸化肽富集与质谱鉴定中的应用,其特征在于:将金属有机骨架(MOF)纳米复合材料配置成为10 mg/mL的材料分散液(溶剂为超纯水),将该材料分散液与目标磷酸化肽段溶液加入50%乙腈/0.1%三氟乙酸缓冲液中,混合并在酶解仪中孵育;通过离心分离出纳米复合材料,用50%乙腈/0.1%三氟乙酸缓冲液洗涤材料,随后用0.4M氨水洗脱;取1μL洗脱液直接在MALDI-TOF MS进样靶板上点靶,干燥后再点加1μL浓度为20mg/mL的2,5-二羟基苯甲酸(DHB)溶液于该液滴上,形成基质结晶,进行质谱分析。
CN201611061203.7A 2016-11-28 2016-11-28 一种金属有机骨架纳米复合材料的合成方法及其应用 Pending CN106512965A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611061203.7A CN106512965A (zh) 2016-11-28 2016-11-28 一种金属有机骨架纳米复合材料的合成方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611061203.7A CN106512965A (zh) 2016-11-28 2016-11-28 一种金属有机骨架纳米复合材料的合成方法及其应用

Publications (1)

Publication Number Publication Date
CN106512965A true CN106512965A (zh) 2017-03-22

Family

ID=58357607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611061203.7A Pending CN106512965A (zh) 2016-11-28 2016-11-28 一种金属有机骨架纳米复合材料的合成方法及其应用

Country Status (1)

Country Link
CN (1) CN106512965A (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096504A (zh) * 2017-05-03 2017-08-29 武汉理工大学 含有二羟基苯基的化合物修饰的硫化铜纳米材料及其在糖肽富集中的应用
CN107607640A (zh) * 2017-08-30 2018-01-19 复旦大学 一种硼酸修饰的纳米复合材料的糖肽富集与质谱检测方法
CN107643337A (zh) * 2017-09-18 2018-01-30 亿纳谱(浙江)生物科技有限公司 一种基质及其制备方法、生物样品检测方法
CN107754765A (zh) * 2017-11-23 2018-03-06 南昌航空大学 一种镧掺杂金属有机骨架材料及其制备方法和应用
CN108295303A (zh) * 2018-02-08 2018-07-20 中山大学附属第三医院(中山大学肝脏病医院) 一种钛金属植入物及其制备方法和用途
CN108440641A (zh) * 2018-02-07 2018-08-24 复旦大学 一种特异性分离富集磷酸化肽和糖基化肽的方法
CN108767279A (zh) * 2018-06-21 2018-11-06 阜阳师范学院 一种NiCo金属有机骨架纳米片/碳纳米管复合材料及其制备方法和应用
CN109400889A (zh) * 2017-08-16 2019-03-01 中国科学院大连化学物理研究所 一种磁性修饰的金属有机多孔材料及其制备和应用
CN109439647A (zh) * 2018-09-25 2019-03-08 浙江工业大学 一种核壳结构的磁性固定化酶载体及其制备方法和应用
CN109569026A (zh) * 2018-01-11 2019-04-05 南开大学 制备多孔框架材料为基质的色谱固定相用于手性分离
CN109603910A (zh) * 2018-12-07 2019-04-12 山东大学 一种光热增强降解化学战剂模拟物的纳米核壳复合物及其复合纤维膜的制备方法与应用
CN109806778A (zh) * 2019-03-14 2019-05-28 东华大学 一种固定锆硅烷界面改性聚偏氟乙烯膜及其制备和应用
CN109942667A (zh) * 2019-03-04 2019-06-28 南京师范大学 二维金属有机骨架纳米片富集磷酸化肽段的方法和应用
CN110025596A (zh) * 2019-04-25 2019-07-19 上海理工大学 一种纳米复合颗粒及其制备方法
CN110342487A (zh) * 2019-06-27 2019-10-18 浙江工业大学 一种聚多巴胺改性mof衍生碳分子筛的制备方法
CN111484990A (zh) * 2020-04-21 2020-08-04 陕西师范大学 聚多巴胺修饰的钴多级孔材料负载辣根过氧化物酶纳米反应器及其应用
CN112159854A (zh) * 2020-10-28 2021-01-01 上海市食品药品检验所 一种大肠杆菌O157:H7的CRISPR/Cas12a检测用引物组合物和检测方法
CN113262210A (zh) * 2021-05-07 2021-08-17 杭州仁德医药有限公司 一种治疗乳腺增生的中药贴膏及其制备方法
CN113457630A (zh) * 2021-05-17 2021-10-01 北京化工大学 一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法
CN114085154A (zh) * 2021-12-01 2022-02-25 浙江解氏新材料股份有限公司 一种基于高活性骨架镍合成对氟苯胺的方法
CN114160105A (zh) * 2021-11-26 2022-03-11 武汉工程大学 一种高选择性的核壳结构硼酸掺杂的金属有机骨架磁性吸附剂及其制备方法和应用
CN114942286A (zh) * 2022-05-17 2022-08-26 复旦大学 一种亲水性多肽的检测方法
CN115078612A (zh) * 2022-06-01 2022-09-20 长沙理工大学 一种基于改性Cr-MOF检测化学品的分析方法
WO2023274367A1 (zh) * 2021-07-02 2023-01-05 上海交通大学 纳米增强芯片的制备及其在小分子代谢物激光解离质谱检测中的应用
CN117343341A (zh) * 2023-11-03 2024-01-05 河南大学 一种空心纳米花形貌的mof基材料及其制备方法和应用
TWI835609B (zh) * 2023-03-24 2024-03-11 長庚大學 具有修飾的磁性鐵金屬有機骨架、其製備方法及電化學感測套組

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101684005A (zh) * 2008-09-28 2010-03-31 复旦大学 表面修饰硼酸基团的纳米磁性材料及其制备方法和应用
CN103894161A (zh) * 2014-04-09 2014-07-02 复旦大学 一种磁性金属有机骨架复合材料的合成方法及其应用
CN103940894A (zh) * 2013-01-23 2014-07-23 复旦大学 一种同时富集磷酸化肽段和糖基化肽段并质谱分析的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101684005A (zh) * 2008-09-28 2010-03-31 复旦大学 表面修饰硼酸基团的纳米磁性材料及其制备方法和应用
CN103940894A (zh) * 2013-01-23 2014-07-23 复旦大学 一种同时富集磷酸化肽段和糖基化肽段并质谱分析的方法
CN103894161A (zh) * 2014-04-09 2014-07-02 复旦大学 一种磁性金属有机骨架复合材料的合成方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAICHAI LIN ET AL.: "Selective dispersive solid phase extraction-chromatography tandem mass spectrometry based on aptamer-functionalized UiO-66-NH2 for determination of polychlorinated biphenyls", 《JOURNAL OF CHROMATOGRAPHY A》 *

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107096504B (zh) * 2017-05-03 2019-10-25 武汉理工大学 含有二羟基苯基的化合物修饰的硫化铜纳米材料及其在糖肽富集中的应用
CN107096504A (zh) * 2017-05-03 2017-08-29 武汉理工大学 含有二羟基苯基的化合物修饰的硫化铜纳米材料及其在糖肽富集中的应用
CN109400889B (zh) * 2017-08-16 2021-09-24 中国科学院大连化学物理研究所 一种磁性修饰的金属有机多孔材料及其制备和应用
CN109400889A (zh) * 2017-08-16 2019-03-01 中国科学院大连化学物理研究所 一种磁性修饰的金属有机多孔材料及其制备和应用
CN107607640A (zh) * 2017-08-30 2018-01-19 复旦大学 一种硼酸修饰的纳米复合材料的糖肽富集与质谱检测方法
CN107643337A (zh) * 2017-09-18 2018-01-30 亿纳谱(浙江)生物科技有限公司 一种基质及其制备方法、生物样品检测方法
CN107754765A (zh) * 2017-11-23 2018-03-06 南昌航空大学 一种镧掺杂金属有机骨架材料及其制备方法和应用
CN107754765B (zh) * 2017-11-23 2020-08-21 南昌航空大学 一种镧掺杂金属有机骨架材料及其制备方法和应用
CN109569026A (zh) * 2018-01-11 2019-04-05 南开大学 制备多孔框架材料为基质的色谱固定相用于手性分离
CN108440641B (zh) * 2018-02-07 2021-11-19 复旦大学 一种特异性分离富集磷酸化肽和糖基化肽的方法
CN108440641A (zh) * 2018-02-07 2018-08-24 复旦大学 一种特异性分离富集磷酸化肽和糖基化肽的方法
CN108295303A (zh) * 2018-02-08 2018-07-20 中山大学附属第三医院(中山大学肝脏病医院) 一种钛金属植入物及其制备方法和用途
CN108767279A (zh) * 2018-06-21 2018-11-06 阜阳师范学院 一种NiCo金属有机骨架纳米片/碳纳米管复合材料及其制备方法和应用
CN109439647B (zh) * 2018-09-25 2020-10-13 浙江工业大学 一种核壳结构的磁性固定化酶载体及其制备方法和应用
CN109439647A (zh) * 2018-09-25 2019-03-08 浙江工业大学 一种核壳结构的磁性固定化酶载体及其制备方法和应用
CN109603910B (zh) * 2018-12-07 2021-09-07 山东大学 一种光热增强降解化学战剂模拟物的纳米核壳复合物及其复合纤维膜的制备方法与应用
CN109603910A (zh) * 2018-12-07 2019-04-12 山东大学 一种光热增强降解化学战剂模拟物的纳米核壳复合物及其复合纤维膜的制备方法与应用
CN109942667A (zh) * 2019-03-04 2019-06-28 南京师范大学 二维金属有机骨架纳米片富集磷酸化肽段的方法和应用
CN109806778A (zh) * 2019-03-14 2019-05-28 东华大学 一种固定锆硅烷界面改性聚偏氟乙烯膜及其制备和应用
CN110025596A (zh) * 2019-04-25 2019-07-19 上海理工大学 一种纳米复合颗粒及其制备方法
CN110342487B (zh) * 2019-06-27 2021-07-27 浙江工业大学 一种聚多巴胺改性mof衍生碳分子筛的制备方法
CN110342487A (zh) * 2019-06-27 2019-10-18 浙江工业大学 一种聚多巴胺改性mof衍生碳分子筛的制备方法
CN111484990B (zh) * 2020-04-21 2023-04-07 陕西师范大学 聚多巴胺修饰的钴多级孔材料负载辣根过氧化物酶纳米反应器及其应用
CN111484990A (zh) * 2020-04-21 2020-08-04 陕西师范大学 聚多巴胺修饰的钴多级孔材料负载辣根过氧化物酶纳米反应器及其应用
CN112159854A (zh) * 2020-10-28 2021-01-01 上海市食品药品检验所 一种大肠杆菌O157:H7的CRISPR/Cas12a检测用引物组合物和检测方法
CN112159854B (zh) * 2020-10-28 2023-12-22 上海市食品药品检验研究院 一种大肠杆菌O157:H7的CRISPR/Cas12a检测用引物组合物和检测方法
CN113262210A (zh) * 2021-05-07 2021-08-17 杭州仁德医药有限公司 一种治疗乳腺增生的中药贴膏及其制备方法
CN113457630B (zh) * 2021-05-17 2023-08-29 北京化工大学 一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法
CN113457630A (zh) * 2021-05-17 2021-10-01 北京化工大学 一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法
WO2023274367A1 (zh) * 2021-07-02 2023-01-05 上海交通大学 纳米增强芯片的制备及其在小分子代谢物激光解离质谱检测中的应用
CN114160105A (zh) * 2021-11-26 2022-03-11 武汉工程大学 一种高选择性的核壳结构硼酸掺杂的金属有机骨架磁性吸附剂及其制备方法和应用
CN114160105B (zh) * 2021-11-26 2024-04-30 武汉工程大学 一种高选择性的核壳结构硼酸掺杂的金属有机骨架磁性吸附剂及其制备方法和应用
CN114085154A (zh) * 2021-12-01 2022-02-25 浙江解氏新材料股份有限公司 一种基于高活性骨架镍合成对氟苯胺的方法
CN114085154B (zh) * 2021-12-01 2024-03-19 浙江解氏新材料股份有限公司 一种基于高活性骨架镍合成对氟苯胺的方法
CN114942286A (zh) * 2022-05-17 2022-08-26 复旦大学 一种亲水性多肽的检测方法
CN115078612A (zh) * 2022-06-01 2022-09-20 长沙理工大学 一种基于改性Cr-MOF检测化学品的分析方法
TWI835609B (zh) * 2023-03-24 2024-03-11 長庚大學 具有修飾的磁性鐵金屬有機骨架、其製備方法及電化學感測套組
CN117343341A (zh) * 2023-11-03 2024-01-05 河南大学 一种空心纳米花形貌的mof基材料及其制备方法和应用
CN117343341B (zh) * 2023-11-03 2024-06-25 河南大学 一种空心纳米花形貌的mof基材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106512965A (zh) 一种金属有机骨架纳米复合材料的合成方法及其应用
CN103894161B (zh) 一种磁性金属有机骨架复合材料的合成方法及其应用
CN107607640A (zh) 一种硼酸修饰的纳米复合材料的糖肽富集与质谱检测方法
CN106732409A (zh) 磺酸基修饰的金属有机骨架纳米复合材料的合成方法及其应用
Yang et al. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment
CN103143331A (zh) 磁性微球四氧化三铁表面包覆[Cu3(btc)2]金属有机骨架复合材料的合成方法及其应用
Xiong et al. Ti 4+-immobilized multilayer polysaccharide coated magnetic nanoparticles for highly selective enrichment of phosphopeptides
Sun et al. Hydrophilic Nb5+-immobilized magnetic core–shell microsphere–A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides
Wang et al. Facile synthesis of magnetic poly (styrene‐co‐4‐vinylbenzene‐boronic acid) microspheres for selective enrichment of glycopeptides
CN105363426B (zh) 一种介孔二氧化硅复合材料结合质谱鉴定肽段的方法
Feng et al. Facile and easily popularized synthesis of L-cysteine-functionalized magnetic nanoparticles based on one-step functionalization for highly efficient enrichment of glycopeptides
CN105536748B (zh) 一种纳米复合材料结合质谱鉴定磷酸化肽段的方法
Bie et al. Preparation of salbutamol imprinted magnetic nanoparticles via boronate affinity oriented surface imprinting for the selective analysis of trace salbutamol residues
CN105823847A (zh) 一种两性亲水复合纳米材料的糖肽富集与检测方法
CN106770614B (zh) 亲水性纳米复合材料结合质谱分析鉴定糖基化肽段的方法
CN109942667A (zh) 二维金属有机骨架纳米片富集磷酸化肽段的方法和应用
CN111617746B (zh) 聚离子液体改性纳米材料及其制备方法及其在富集磷酸化肽中的应用
Hu et al. Dual metal cations coated magnetic mesoporous silica probe for highly selective capture of endogenous phosphopeptides in biological samples
CN101196527A (zh) 一种在maldi-tof-ms样品靶上快速富集、鉴定磷酸肽的方法
CN113721028B (zh) 一种go@cs@zif-8泡沫材料的合成方法及应用
CN106432644A (zh) 一种亲水型聚合物功能化磁性纳米微球及其制备方法和应用
Qin et al. Preparation of zirconium arsenate‐modified monolithic column for selective enrichment of phosphopeptides
Zhang et al. A novel hydrophilic polymer-coated magnetic nanomaterial based on the HILIC strategy for fast separation of glycopeptides and glycosylated exosomes
CN102788833A (zh) 一种检测低丰度低分子量蛋白谱的试剂盒
CN109855929B (zh) 一种多模式捕获、连续强洗脱糖基化肽和磷酸化肽的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170322