CN113457630A - 一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法 - Google Patents

一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法 Download PDF

Info

Publication number
CN113457630A
CN113457630A CN202110532577.7A CN202110532577A CN113457630A CN 113457630 A CN113457630 A CN 113457630A CN 202110532577 A CN202110532577 A CN 202110532577A CN 113457630 A CN113457630 A CN 113457630A
Authority
CN
China
Prior art keywords
metal organic
organic framework
magnetic
framework material
muio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110532577.7A
Other languages
English (en)
Other versions
CN113457630B (zh
Inventor
苏萍
王震
李梦
宋佳一
杨屹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202110532577.7A priority Critical patent/CN113457630B/zh
Publication of CN113457630A publication Critical patent/CN113457630A/zh
Application granted granted Critical
Publication of CN113457630B publication Critical patent/CN113457630B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28009Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/16Extraction; Separation; Purification by chromatography
    • C07K1/22Affinity chromatography or related techniques based upon selective absorption processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)

Abstract

一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法,属于蛋白质及多肽富集领域。本发明步骤:首先合成羟基化的Fe3O4@SiO2磁性纳米粒子;然后通过Zr4+与羟基之间的络合作用将UiO‑66‑NH2生长在Fe3O4@SiO2纳米粒子表面;最后通过植酸替换UiO‑66‑NH2中部分配体的方式对其进行后合成修饰,得到磁性双亲水性金属有机骨架材料。基于植酸的超高的亲水性以及MOFs中剩余配体的亲水性,材料表现出双亲水性可用于糖肽的富集。本发明的磁性双亲水性金属有机骨架材料制备简单、糖肽富集效率高、灵敏度优异、易于从反应体系中分离、且具有良好的重复使用性,在实际样的检测中也得到了较好的效果。

Description

一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备 方法
技术领域
本发明属于蛋白质及多肽富集技术领域,具体涉及一种富集糖肽的磁性双亲水性金属有机骨架材料的制备和应用。
背景技术
糖基化是蛋白质最基本和重要的翻译后修饰之一,与细胞生长、识别、通讯等多种生理过程息息相关。因此,在各种疾病尤其是癌症的发生发展过程中,往往伴随着糖基化的异常变化,比如支链N-聚糖的表达增加和末端唾液酸聚糖的异常表达等。而目前美国食品药品监督管理局发布的大多数肿瘤标志物也均为糖蛋白。因此,研究蛋白质的糖基化具有重大的生物学研究意义。现今基于生物质谱的糖蛋白研究策略主要有两种,即“自上而下”法(Top-down)和“自下而上”法(Bottom-up),但由于“自上而下”法研究的主要对象为完整的糖蛋白,其分离富集十分困难,因此“自下而上”法在糖蛋白分析领域应用更广,主要先将糖蛋白酶解成肽段,再对其中的糖肽进行质谱分析。但由于酶解后的混合物中糖肽的含量一般仅占总体的2-5%,一些非糖肽、脂质、无机盐会对糖肽的分析鉴定产生巨大干扰。因此,在进行质谱分析之前,对糖肽的分离富集是十分必要的。
目前,对糖肽的分离富集方法主要有酰肼化学法、凝集素亲和作用法、硼酸亲和法以及亲水相互作用法等。其中,亲水相互作用法由于其富集条件温和、通用性强、在富集之后不会损失糖链结构和重现性好等诸多优点,在糖肽富集领域应用最广。而金属有机骨架材料(MOFs)作为一种具有大比表面积的多孔材料,在分离富集方面具有天然优势,其中部分金属有机骨架材料配体含有亲水基团本身便可用于富集糖肽,但由于配体的亲水基团有限,对糖肽的富集效率较低,所以需要对金属有机骨架材料进行一些合后合成改性提高其亲水性。同时,近年来磁分离技术在分离富集领域应用很广,能够依靠外部磁场将材料用体系中分离出来简化整个富集流程。因此,通过后合成改性的方式制备一种具有超高亲水性的磁性金属有机骨架材料来实现糖肽的高效富集是本领域仍需解决的问题。
发明内容
本发明的目的是制备一种能够用于糖肽富集的磁性双亲水性金属有机骨架材料的方法,以克服金属有机骨架材料本身亲水性有限使得富集糖肽效率较低的缺点。同时该材料还具有良好的磁性,能够凭借磁场将材料从体系中分离,简化糖肽富集流程,更方便其重复使用。本发明的磁性双亲水性金属有机骨架材料制备简单、条件温和、对糖肽的富集效率高、重复使用性好,且易于从反应体系中分离出来。
该发明首先通过溶胶凝胶法合成Fe3O4@SiO2,将其表面羟基化之后将UiO-66-NH2修饰在磁性载体表面,然后将植酸、聚乙烯吡咯烷酮(PVP)、与上述材料共同孵育,凭借植酸与Zr4+之间的络合作用替换部分原始配体,得到具有双亲水性的磁性金属有机骨架材料。
为了达到上述目的,本发明按照以下技术方案实现:
一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法,其特征在于包括以下步骤:
(1)称取Fe3O4纳米粒子1.0g于三口烧瓶中,加入50mL去离子水和150mL无水乙醇并超声15min使之分散均匀。然后加入5mL NH3·H2O在碱性条件下反应10min。最后滴入2mL原硅酸四乙基酯和50mL无水乙醇的混合溶液,并在常温下搅拌8h。在超声辅助下通过以下步骤对得到Fe3O4@SiO2的进行洗涤:水(2次,每次用量100mL,时间5min,除NH3·H2O)、1M HCl溶液(3次,每次用量50mL,时间5min,羟基化)、水(4次,每次用量100mL,时间5min,除酸)、乙醇(1次,100mL,5min,方便溶剂挥发)。之后在60℃真空烘箱中烘6h,得到Fe3O4@SiO2纳米粒子。
(2)称取Fe3O4@SiO2纳米粒子0.20g,ZrCl4 0.489g,2-氨基对苯二甲酸0.380g于45mL DMF溶剂中并分散均匀,并在120℃油浴中搅拌6h。反应结束后,用磁铁分离所得产物,并用DMF和无水乙醇在超声辅助下依次洗涤三次(每次DMF和无水乙醇的用量为100mL,时间为5min),之后在60℃真空烘箱中烘6h。
(3)称取MUiO-66-NH2 0.15g,PVP 0.3g使之分散于30mL无水乙醇中,并在室温下搅拌60min。然后加入植酸乙醇溶液(v/v,1/40)20mL,并在室温下搅拌6h。反应结束后,将得到的产物用去离子水和无水乙醇在超声辅助下依次洗涤三次(每次去离子水和无水乙醇的用量为100mL,时间为5min),之后置于60℃真空烘箱中烘6h,得到所需的磁性双亲水性金属有机骨架材料MUiO-66-NH2/PA。
进一步,上述步骤(1)中所描述的原硅酸四乙基酯与无水乙醇的体积比为1:25。
进一步,步骤(1)中使用1M HCl溶液进行洗涤的目的是将表面暴露的Si羟基化,使得在进行UiO-66-NH2修饰时可以先将Zr4+与羟基发生络合作用,进而将UiO-66-NH2长在Fe3O4@SiO2表面。
进一步,上述步骤(2)中采取2-氨基对苯二甲酸与对苯二甲酸相比,羧基邻位的氨基使得MOFs本身的亲水性更高,对糖肽富集也更具优势。
进一步,上述步骤(3)中MUiO-66-NH2与PVP的质量比为1:2。
采取上述进一步添加PVP的作用和必要性在于其可以保护MUiO-66-NH2的晶体结构,使其不易坍塌。
进一步,步骤(3)中所用植酸乙醇溶液的配制方式为:将植酸水溶液(50%)在超声辅助下边搅拌边滴加入到无水乙醇中,植酸水溶液(50%)与乙醇的体积比为1:40。
进一步,发明的磁性双亲水性金属有机骨架材料保持了良好的磁饱和强度,在磁场的控制下易于从反应体系中分离。
本发明的优点在于:
(1)该材料依靠修饰的植酸和MOFs中残余配体的2-氨基对苯二甲酸表现出的双亲水性用于富集糖肽。这种方法进行糖肽富集时反应条件温和、富集前后不会损失糖肽的糖基化信息,具有较高的通用性。
(2)MOFs本身即具有较高的稳定性,用植酸替换配体后合成修饰之后,使得此材料的稳定性进一步增加,在较强酸的环境中依然能够保持稳定的结构。
(3)植酸通过替换配体的方式对材料进行后合成修饰,而不是直接接枝在MOFs表面,这种方式不会堵塞MOFs的孔道。研究发现,在植酸修饰之后材料的孔径基本保持不变,但孔容增大,比表面积有所增加,这更有助于将材料用在糖肽富集领域。
(4)与其他糖肽富集材料相比,本发明制备的磁性双亲水性金属有机骨架材料在磁场的控制下易于从反映体系中分离,可大大简化糖肽富集流程,并显著提高材料的重复使用性。
(5)本发明可成功应用于人血清酶解液中糖肽的富集鉴定,其也可广泛应用于不同基质中糖肽的富集,是一种通用的糖肽富集材料。
具体实施方式
下面结合实施例对本发明作详细说明,但并不构成对本发明的限制。
实施例1:应用磁性双亲水性金属有机骨架材料富集HRP和IgG酶解液中的糖肽
(1)磁性双亲水性金属有机骨架材料的制备过程
(a)Fe3O4@SiO2纳米粒子的制备过程:称取Fe3O4纳米粒子1.0g于三口烧瓶中,加入50mL去离子水和150mL无水乙醇并超声15min使之分散均匀。然后加入5mL NH3·H2O在碱性条件下反应10min。最后滴入2mL原硅酸四乙基酯和50mL无水乙醇的混合溶液,并在常温下搅拌8h。在超声辅助下通过以下步骤对得到Fe3O4@SiO2的进行洗涤:水(2次,每次用量100mL,时间5min,除NH3·H2O)、1M HCl溶液(3次,每次用量50mL,时间5min,羟基化)、水(4次,每次用量100mL,时间5min,除酸)、乙醇(1次,100mL,5min,方便溶剂挥发)。之后在60℃真空烘箱中烘6h,得到Fe3O4@SiO2纳米粒子。
(b)MUiO-66-NH2的制备过程:称取Fe3O4@SiO2纳米粒子0.20g,ZrCl40.489g,2-氨基对苯二甲酸0.380g于45mL DMF溶剂中并分散均匀,并在120℃油浴中搅拌6h。反应结束后,用磁铁分离所得产物,并用DMF和无水乙醇在超声辅助下依次洗涤三次(每次DMF和无水乙醇的用量为100mL,时间为5min),之后在60℃真空烘箱中烘6h。
(c)MUiO-66-NH2/PA的制备过程:称取MUiO-66-NH2 0.15g,PVP 0.3g使之分散于30mL无水乙醇中,并在室温下搅拌60min。然后加入植酸乙醇溶液(v/v,1/40)20mL,并在室温下搅拌6h。反应结束后,将得到的产物用去离子水和无水乙醇在超声辅助下依次洗涤三次(每次去离子水和无水乙醇的用量为100mL,时间为5min),得到所需的磁性双亲水性金属有机骨架材料MUiO-66-NH2/PA。
(2)HRP(IgG)酶解液的制备过程:称取1mg HRP(IgG)溶于400μL含有8M尿素的变性缓冲液(50mM NH4HCO3)中。加入200mM的DTT 10μL,并在56℃水浴中加热50min,待降至室温后,加入400mM的IAA 10μL,在30℃摇床中烷基化50min。随后,将反应混合物用50mM NH4HCO3水溶液稀释至5mL,加入胰蛋白酶(w/w=1:25)在37℃下孵育18h。酶解完成后,加入2μL甲酸溶液将反应体系调至酸性终止酶解,将最后得到的肽段混合物置于-20℃冰箱中冷冻保存待用。
(3)MUiO-66-NH2/PA制备过程中植酸含量的确定
(a)在MUiO-66-NH2/PA的制备过程中,植酸的含量对材料的富集效果尤为重要,植酸含量的增加能够提高材料的亲水性,使其糖肽富集性能增加,但过多植酸会使MOFs材料的结构崩塌,导致糖肽富集性能的降低。首先配制植酸乙醇溶液:将2mL植酸水溶液(50%)在超声辅助下滴加到80mL无水乙醇中。
(b)在MUiO-66-NH2/PA的制备过程中,分别制备植酸乙醇溶液加入量为5、10、15、20和25mL条件下的MUiO-66-NH2/PA。然后分别称取各个合成条件下的磁性材料1mg并均匀分散在含有20μL HRP酶解液的上样缓冲液(200μL,ACN/TFA=99:1,v/v)中(均作三组平行),将此混合物涡旋35min;然后用磁铁分离材料,弃去上层液体。依次用200μL清洗缓冲液(ACN/H2O/TFA=90:9:1,v/v/v)将所得产物清洗三次除去表面的非特异性吸附;最后用20μL洗脱液(H2O/TFA=99:1,v/v)将得到的MUiO-66-NH2/PA涡旋10分钟。收集的洗脱液直接通过MALDI-TOF-MS进行检测。结果表明:当植酸乙醇溶液的加入量从5mL增加到20mL时,所能富集出糖肽种类相应增加,当植酸乙醇溶液加入量为20mL时,所能富集出的糖肽种类最多,共有21种。但当植酸乙醇溶液的量增加到25mL时,所能富集出糖肽的数量减少,仅富集出18种糖肽,并且非糖肽峰的信号有所增强。这说明,当植酸乙醇溶液的量为20mL时,对糖肽的富集效果最好。
(4)用于富集HRP酶解液中糖肽:称取制备的磁性材料MUiO-66-NH2/PA1mg并均匀分散在含有20μL HRP酶解液的上样缓冲液(200μL,ACN/TFA=99:1,v/v)中,并将混合物涡旋35min;然后用磁铁分离材料,弃去上层液体。依次用200μL清洗缓冲液(ACN/H2O/TFA=90:9:1,v/v/v)将所得产物清洗三次除去表面的非特异性吸附;最后用20μL洗脱液(H2O/TFA=99:1,v/v)将得到的MUiO-66-NH2/PA涡旋10分钟。将得到含有糖肽的洗脱液直接作MALDI-TOF-MS分析(共作三组平行试验)。同时,将HRP酶解液直接用作MALDI-TOF-MS检测作为对比实验。结果表明:当HRP酶解液直接用作MALDI-TOF-MS检测时,几乎看不到糖肽信号。当用MUiO-66-NH2/PA进行糖肽富集后,能够富集出21种糖肽,并且所得到糖肽的信号也大大增强,这表明发明的MUiO-66-NH2/PA对HRP酶解液中糖肽具有优异的富集效果。
(5)用于富集IgG酶解液中糖肽:称取制备的磁性材料MUiO-66-NH2/PA1mg并均匀分散在含有20μL IgG酶解液的上样缓冲液(200μL,ACN/TFA=99:1,v/v)中,并将混合物涡旋35min;然后用磁铁分离材料,弃去上层液体。依次用200μL清洗缓冲液(ACN/H2O/TFA=90:9:1,v/v/v)将所得产物清洗三次除去表面的非特异性吸附;最后用20μL洗脱液(H2O/TFA=99:1,v/v)将得到的MUiO-66-NH2/PA涡旋10分钟。将得到含有糖肽的洗脱液直接作MALDI-TOF-MS分析(共作三组平行试验)。同时,将IgG酶解液直接用作MALDI-TOF-MS检测作为对比实验。结果表明:当IgG酶解液直接用作MALDI-TOF-MS检测时,几乎看不到糖肽信号。当用MUiO-66-NH2/PA进行糖肽富集后,能够富集出34种糖肽,并且所得到糖肽的信号也大大增强,这表明MUiO-66-NH2/PA对IgG酶解液中糖肽也具有优异的富集效果。
(6)磁性双亲水性金属有机骨架材料灵敏度的考察:在实际复杂生物样本中,糖蛋白酶解之后糖肽的数量较少,通常仅占肽段混合物的2%–5%。因此,只有达到足够低的检出限,才能够满足实际的分析检测需求。为了考察MUiO-66-NH2/PA富集糖肽的灵敏度,先用去离子水将步骤(2)中HRP酶解液用去离子水分别稀释90倍、450倍和4500倍,分别得到浓度为到50、10和1fmol/μL的HRP酶解液。然后称取制备的磁性材料MUiO-66-NH2/PA(1mg×3)并均匀分散在200μL上样缓冲液(ACN/TFA=99:1,v/v)中,之后分别加入浓度为50、10和1fmol/μL的HRP酶解液20μL,并将混合物涡旋35min;然后用磁铁分离材料,弃去上层液体。依次用200μL清洗缓冲液(ACN/H2O/TFA=90:9:1,v/v/v)将所得产物清洗三次除去表面的非特异性吸附;最后用20μL洗脱液(H2O/TFA=99:1,v/v)将得到的MUiO-66-NH2/PA涡旋10分钟。将得到含有糖肽的洗脱液直接作MALDI-TOF-MS分析。(每个HRP酶解液浓度均作三组平行试验)。结果表明:HRP酶解液浓度为50fmol/μL时,MUiO-66-NH2/PA能够富集出13种糖肽,5fmol/μL时能够富集出7种糖肽。即使浓度降至1fmol/μL,仍然可以检测出4种信噪比较高的糖肽信号,说明MUiO-66-NH2/PA富集糖肽时表现出较高的灵敏度。
(7)磁性双亲水性金属有机骨架材料重复使用性的考察:
(a)糖肽的富集过程:称取制备的磁性材料MUiO-66-NH2/PA 1mg并均匀分散在含有20μL HRP酶解液的上样缓冲液(200μL,ACN/TFA=99:1,v/v)中,并将混合物涡旋35min;然后用磁铁分离材料,弃去上层液体。依次用200μL清洗缓冲液(ACN/H2O/TFA=90:9:1,v/v/v)将所得产物清洗三次除去表面的非特异性吸附;最后用20μL洗脱液(H2O/TFA=99:1,v/v)将得到的MUiO-66-NH2/PA涡旋10分钟。将得到含有糖肽的洗脱液直接作MALDI-TOF-MS分析。作三组平行实验。
(b)用磁铁收集(a)中洗脱液中的磁性材料MUiO-66-NH2/PA,分别用200μL洗脱液(TFA/ACN=99:1,v/v)和200μL上样液(ACN/TFA=99:1,v/v)在涡旋条件下清洗10min,弃去上清液后,再用作下一循环中富集HRP酶解液中糖肽的富集。此过程共循环5次,每次得到的洗脱液均用作MALDI-TOF-MS分析。
(c)磁性复合材料MUiO-66-NH2/PA具有良好的磁响应性,可利用磁铁将其从溶液中快速分离,更方便其进行重复使用。经考察,本发明制备的磁性双亲水性金属有机骨架材料具有很好的重复使用性。重复使用5次后富集出糖肽的个数没有减少,特征糖肽信号的平均信噪比仍可达到初始水平的90%以上;与其他封装多酶体系相比,本发明制备的磁性双亲水性金属有机骨架材料在磁场控制下易于从反应体系中分离,重复使用性及易回收的优势明显。
实施例2:磁性双亲水性金属有机骨架材料用于人血清酶解液中糖肽的富集
(1)磁性双亲水性金属有机骨架材料MUiO-66-NH2/PA的制备过程:同实施例1中(1)。
(2)人血清酶解液的制备:首先将10μL混合人血清用含有8M尿素的变性缓冲液(50mM NH4HCO3)稀释到100μL。之后分别用二硫苏糖醇(DTT,5μL,200mM)和碘代乙酰胺(IAA,20μL,400mM)处理上述混合物。随后将反应混合物用50mM NH4HCO3水溶液稀释至1mL,并加入胰蛋白酶(w/w=1:25)在37℃下孵育18h。酶解完成后,加入2μL甲酸溶液将溶液调为酸性终止酶解,并置于-20℃冰箱中冷冻保存待用。
(3)称取制备的磁性材料MUiO-66-NH2/PA 1mg并均匀分散在含有20μL糖肽人血清酶解液的上样缓冲液(200μL,ACN/TFA=99:1,v/v)中,并将混合物涡旋35min;然后用磁铁分离材料,弃去上层液体。依次用200μL清洗缓冲液(ACN/H2O/TFA=90:9:1,v/v/v)将所得产物清洗三次除去表面的非特异性吸附;最后用20μL洗脱液(H2O/TFA=99:1,v/v)将得到的MUiO-66-NH2/PA涡旋10分钟。得到的洗脱液置于-20℃冰箱中冷冻保存待用。
(4)将(3)中溶液于冷冻干燥机中冻干后,重新溶于17μL去离子水中,并加入10×GlycoBuffer 2缓冲液(2μL)和PNGase F糖苷酶(1μL)。在37℃摇床中孵育18h后,所得的酶解液直接用LC-MS进行检测。
(5)将得到的结果利用搜库软件搜索并筛选出可靠的糖肽信息。一共鉴定出101种糖肽,归属于48个不同的糖蛋白中,磁性复合材料MUiO-66-NH2/PA对能够用于复杂实际样本中糖肽的富集,在糖肽富集领域有着广阔的应用前景。

Claims (3)

1.一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法,其特征在于,包括以下步骤:
(1)称取Fe3O4纳米粒子1.0g于三口烧瓶中,加入50mL去离子水和150mL无水乙醇并超声15min使之分散均匀;然后加入5mL NH3·H2O在碱性条件下反应10min;最后滴入2mL原硅酸四乙基酯和50mL无水乙醇的混合溶液,并在常温下搅拌8h;反应结束后在超声辅助下分别用去离子水、HCl溶液、去离子水和无水乙醇对得到Fe3O4@SiO2的进行洗涤;并在60℃真空烘箱中烘6h,得到Fe3O4@SiO2纳米粒子;
(2)将Fe3O4@SiO2纳米粒子、ZrCl4和2-氨基对苯二甲酸均匀分散在于45mLDMF溶剂中,其中Fe3O4@SiO2、ZrCl4与2-氨基对苯二甲酸的质量分别为0.2g、0.489g和0.38g;并在120℃油浴中搅拌6h后,用磁铁分离所得产物,并用DMF和乙醇在超声辅助下洗涤得到的MUiO-66-NH2,之后在60℃真空烘箱中烘6h;
(3)将MUiO-66-NH2和PVP均匀分散于30mL无水乙醇中,并在室温下搅拌60min;其中MUiO-66-NH2与PVP的质量比为1:2;然后加入植酸乙醇溶液20mL,并在室温下搅拌6h;反应结束后,分别用水和乙醇在超声辅助下清洗得到的产物,之后置于60℃真空烘箱中烘6h,得到所需的磁性双亲水性金属有机骨架材料MUiO-66-NH2/PA。
2.按照权利要求1所述的一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法,其特征在于,步骤(1)中反应结束后洗涤的具体条件和目的为:水2次,每次用量100mL,时间5min,除NH3·H2O;1M HCl溶液3次,每次用量50mL,时间5min,羟基化;水4次,每次用量100mL,时间5min,除酸;乙醇(1次,100mL,5min,方便溶剂挥发。
3.按照权利要求1所述的一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法,其特征在于,步骤(3)中所用植酸乙醇溶液的配制方式为:将质量百分比浓度为50%的植酸水溶液在超声辅助下边搅拌边滴入到无水乙醇中,植酸水溶液与乙醇的体积比为1:40。
CN202110532577.7A 2021-05-17 2021-05-17 一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法 Active CN113457630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110532577.7A CN113457630B (zh) 2021-05-17 2021-05-17 一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110532577.7A CN113457630B (zh) 2021-05-17 2021-05-17 一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法

Publications (2)

Publication Number Publication Date
CN113457630A true CN113457630A (zh) 2021-10-01
CN113457630B CN113457630B (zh) 2023-08-29

Family

ID=77870801

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110532577.7A Active CN113457630B (zh) 2021-05-17 2021-05-17 一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法

Country Status (1)

Country Link
CN (1) CN113457630B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114288995A (zh) * 2021-12-24 2022-04-08 武汉承启医学检验实验室有限公司 一种尿液中糖基化蛋白和糖肽的富集材料及方法
CN114480321A (zh) * 2022-01-21 2022-05-13 商洛学院 磁性Zr-MOF@PVP@Fe3O4固定化酶反应器及其应用
CN114835912A (zh) * 2022-05-18 2022-08-02 华中科技大学 一种铁基金属有机骨架材料制备方法
CN116068190A (zh) * 2021-11-03 2023-05-05 复旦大学 金属有机骨架修饰的磁性纳米探针及其合成方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106512965A (zh) * 2016-11-28 2017-03-22 复旦大学 一种金属有机骨架纳米复合材料的合成方法及其应用
CN109433158A (zh) * 2018-09-29 2019-03-08 四川大学 用于多模式肽段富集的磁性纳米复合材料及其制备方法与应用
CN111375386A (zh) * 2020-04-07 2020-07-07 中国医学科学院放射医学研究所 一种功能化磁性mof复合纳米材料、其制备及其核工业用途
US20210023528A1 (en) * 2018-01-11 2021-01-28 Nankai University Preparation of chromatographic stationary phase having porous framework material as matrix for chiral separation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106512965A (zh) * 2016-11-28 2017-03-22 复旦大学 一种金属有机骨架纳米复合材料的合成方法及其应用
US20210023528A1 (en) * 2018-01-11 2021-01-28 Nankai University Preparation of chromatographic stationary phase having porous framework material as matrix for chiral separation
CN109433158A (zh) * 2018-09-29 2019-03-08 四川大学 用于多模式肽段富集的磁性纳米复合材料及其制备方法与应用
CN111375386A (zh) * 2020-04-07 2020-07-07 中国医学科学院放射医学研究所 一种功能化磁性mof复合纳米材料、其制备及其核工业用途

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
PING SU ET AL: ""Fabrication of magnetic dual-hydrophilic metal organic framework for highly efficient glycopeptide enrichment"" *
XUXU WANG ET AL: ""Phytic Acid-Assisted Formation of Hierarchical Porous CoP/C Nanoboxes for Enhanced Lithium Storage and Hydrogen Generation"" *
YINI PAN ET AL: ""Dual-functionalized magnetic bimetallic metal-organic framework composite for highly specific enrichments of phosphopeptides and glycopeptides"" *
原野: ""功能化磁性纳米材料的制备及其在糖肽分离富集和核素去除中的应用"" *
王震: ""亲水性磁性金属有机骨架材料的制备及其在糖肽分离富集中的应用研究"" *
王静楠等: ""金属-有机骨架材料在多肽富集中的研究进展"" *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116068190A (zh) * 2021-11-03 2023-05-05 复旦大学 金属有机骨架修饰的磁性纳米探针及其合成方法和应用
CN114288995A (zh) * 2021-12-24 2022-04-08 武汉承启医学检验实验室有限公司 一种尿液中糖基化蛋白和糖肽的富集材料及方法
CN114288995B (zh) * 2021-12-24 2024-05-17 武汉承启医学检验实验室有限公司 一种尿液中糖基化蛋白和糖肽的富集材料及方法
CN114480321A (zh) * 2022-01-21 2022-05-13 商洛学院 磁性Zr-MOF@PVP@Fe3O4固定化酶反应器及其应用
CN114480321B (zh) * 2022-01-21 2023-06-27 商洛学院 磁性Zr-MOF@PVP@Fe3O4固定化酶反应器及其应用
CN114835912A (zh) * 2022-05-18 2022-08-02 华中科技大学 一种铁基金属有机骨架材料制备方法

Also Published As

Publication number Publication date
CN113457630B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN113457630A (zh) 一种用于富集糖肽的磁性双亲水性金属有机骨架材料的制备方法
Li et al. Highly selective and rapid enrichment of phosphorylated peptides using gallium oxide‐coated magnetic microspheres for MALDI‐TOF‐MS and nano‐LC‐ESI‐MS/MS/MS analysis
CN106512965A (zh) 一种金属有机骨架纳米复合材料的合成方法及其应用
CN109148067B (zh) 表面共价有机框架材料修饰的磁性纳米材料及制备、应用
CN106268707B (zh) 一种基于磁性多孔材料的磷酸肽富集新方法
CN1714145A (zh) 用质谱法高灵敏度定量肽
CN103364494B (zh) 一种对血清糖肽组高选择性富集的方法
CN109433158A (zh) 用于多模式肽段富集的磁性纳米复合材料及其制备方法与应用
CN112924695B (zh) 基于dna四面体的复合磁性纳米材料、制备及应用
Yi et al. Facile preparation of polymer-grafted ZIF-8-modified magnetic nanospheres for effective identification and capture of phosphorylated and glycosylated peptides
CN110779789A (zh) 一种亲水基团修饰二维磁性纳米材料的制备及其在糖肽规模化富集中的应用
CN110841612A (zh) 一种磁性NH2-MOFs纳米材料的制备及其应用
CN111617746B (zh) 聚离子液体改性纳米材料及其制备方法及其在富集磷酸化肽中的应用
CN101463105A (zh) 一种蛋白质印迹材料及其在人血清中白蛋白去除方面的应用
CN106771149B (zh) 传染性法氏囊病毒抗原偶联磁性微粒及其制备方法和应用
Yang et al. Boronic acid-functionalized mesoporous magnetic particles with a hydrophilic surface for the multimodal enrichment of glycopeptides for glycoproteomics
Zhang et al. Design and application of hydrophilic bimetallic metal-organic framework magnetic nanoparticles for rapid capture of exosomes
Jin et al. A novel hydrophilic hydrogel with a 3D network structure for the highly efficient enrichment of N-glycopeptides
CN107991277B (zh) 五羟色胺-磁性微粒复合物及富集唾液酸化糖蛋白的方法
Hussain et al. Magnetite nanoparticles coated with chitosan and polyethylenimine as anion exchanger for sorptive enrichment of phosphopeptides
CN112552395A (zh) 一种快速分离富集乳制品中乳铁蛋白的方法
CN111644163B (zh) 一种用于富集磷酸化多肽的三足离子液体材料及其制备方法及其应用
CN111323473A (zh) 一种基于sp3酶解的外泌体蛋白质分析方法
CN111690006B (zh) 一种基于咪唑基离子液体材料及其制备方法及其用于磷酸化肽富集
CN114381553B (zh) 非洲猪瘟病毒检测用生物材料、试剂盒和非诊断目的的非洲猪瘟病毒的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant