CN106415742A - 复合磁性材料、使用其的线圈部件以及复合磁性材料的制造方法 - Google Patents

复合磁性材料、使用其的线圈部件以及复合磁性材料的制造方法 Download PDF

Info

Publication number
CN106415742A
CN106415742A CN201580029972.6A CN201580029972A CN106415742A CN 106415742 A CN106415742 A CN 106415742A CN 201580029972 A CN201580029972 A CN 201580029972A CN 106415742 A CN106415742 A CN 106415742A
Authority
CN
China
Prior art keywords
particle
composite magnetic
particles
composite
solid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580029972.6A
Other languages
English (en)
Other versions
CN106415742B (zh
Inventor
小谷淳
小谷淳一
松谷伸哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of CN106415742A publication Critical patent/CN106415742A/zh
Application granted granted Critical
Publication of CN106415742B publication Critical patent/CN106415742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/33Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances

Abstract

本发明提供一种复合磁性材料,其具备由软磁性金属形成的多个第1粒子和介于多个第1粒子间的多个第2粒子。多个第2粒子分别具有第1固相和第2固相。该复合磁性材料具有高磁特性。

Description

复合磁性材料、使用其的线圈部件以及复合磁性材料的制造 方法
技术领域
本发明涉及磁特性优异的复合磁性材料、使用其的线圈部件以及复合磁性材料的制造方法。
背景技术
专利文献1公开将第1粒子、第2粒子和绝缘粒子混合而成的以往的复合磁性材料。
在专利文献1所公开的复合磁性材料中,并未得到充分高的磁特性。
现有技术文献
专利文献
专利文献1:美国专利申请公开第2010/0289609号说明书
发明内容
复合磁性材料具备由软磁性金属形成的多个第1粒子和介于多个第1粒子间的多个第2粒子。多个第2粒子分别具有第1固相和第2固相。
通过采用上述的构成,从而可以实现高磁特性。
附图说明
图1是本发明的实施方式的复合磁性材料的剖视图。
图2A是实施方式中的复合磁性材料的第2粒子的剖视图。
图2B是实施方式中的复合磁性材料的其他第2粒子的剖视图。
图2C是实施方式中的复合磁性材料的另一其他第2粒子的剖视图。
图3是实施方式的复合磁性材料的剖视图。
图4是实施方式中的其他复合磁性材料的剖视图。
图5是本发明的实施方式中的另一其他复合磁性材料的剖视图。
图6是本发明的实施方式的线圈部件的分解立体图。
具体实施方式
图1是实施方式的复合磁性材料5的剖视图。本实施方式的复合磁性材料5具备由软磁性金属形成的多个第1粒子1和介于多个第1粒子1间的多个第2粒子2。多个第2粒子2分别具有第1固相3和第2固相4。
第1固相3和第2固相4由不同的粒子构成,与仅混合有2个粒子的复合磁性材料相比,在复合磁性材料5中形成在粒子间的空隙减小。通过减小空隙,从而可以提高由软磁性金属形成的多个第1粒子的填充率。
对多个第2粒子2进行详细地说明。多个第2粒子2的第1固相3由绝缘物形成,第2固相4由磁性材料形成。通过形成这样的构成,从而不仅提高由软磁性金属形成的多个第1粒子1的填充率,而且还可以提高由磁性材料形成的第2固相4的填充率。
进而,利用由绝缘物形成的第1固相3会妨碍由软磁性金属形成的多个第1粒子1彼此的接触、由磁性材料形成的第2固相4彼此的接触及由软磁性金属形成的多个第1粒子1与由磁性材料形成的第2固相4的接触,因此可以抑制涡电流的产生。
作为由磁性材料形成的第2固相4可列举金属。作为金属的具体例,由Fe、Co及Ni中的1种单质金属形成。Fe、Co及Ni具有磁性,因此有助于复合磁性材料5的高磁特性。
另外,作为金属的其他具体例,可列举Fe-Si系合金、Fe-Si-Al系合金、Fe-Si-Cr系合金或Fe-Ni系合金。这些合金也具有磁性,有助于复合磁性材料5的高磁特性。
另外,如图1所示,多个第2粒子2可以使各个粒子之间的一部分物理性键合。此时,多个第2粒子2的第1固相3彼此或第2固相4彼此键合。通过使多个第2粒子2彼此物理性地键合,从而可以提高复合磁性材料5的机械强度。另外,也可以使第1固相3与第2固相4物理性地键合来提高复合磁性材料5的机械强度。
予以说明,本实施方式的多个第2粒子2并不是指一个固相被覆于另一个固相的表面而成的2层结构,而是指在观察其剖面时就连内部也形成有固相的结构。图2A是实施方式中的复合磁性材料5的第2粒子的剖视图。图2B是实施方式中的复合磁性材料5的其他第2粒子的剖视图。图2C是实施方式中的复合磁性材料5的又一其他第2粒子的剖视图。如图2A~图2C所示,就多个第2粒子2而言,在其切断剖面中,第1固相3及第2固相4不仅形成在多个第2粒子2的表面,而就连内部也形成各相。
作为由绝缘物形成的第1固相3,可列举氧化物。作为氧化物的具体例,可列举包含Al、Cr、Ti、Mg、Si及Ca中的至少1种元素的氧化物。更详细而言,可列举Al2O3、Cr2O3、TiO、MgO或SiO2;或者包含多种上述元素而成的复合氧化物。
以上的本实施方式中的复合磁性材料5利用后述的惰性气氛的热处理来形成。
对多个第1粒子1进行详细地说明。图3为复合磁性材料5的剖视图,尤其表示多个第1粒子1。在由软磁性金属形成的多个第1粒子1的表面也可以设置包含Al、Cr、Ti、Mg、Si或Ca的氧化被膜6。作为氧化被膜6的具体例,可列举Al2O3、Cr2O3、TiO2、MgO或SiO2;或者包含上述元素的复合氧化物。通过在由软磁性金属形成的多个第1粒子1的表面设置氧化被膜6,从而妨碍由软磁性金属形成的多个第1粒子1彼此的接触、或者由软磁性金属形成的多个第1粒子1与由磁性材料形成的第2固相4的接触,因此可以抑制涡电流的产生。作为氧化被膜6的厚度,优选为10nm以上且500nm以下。
予以说明,就本实施方式中的氧化被膜6而言,通过将由软磁性金属形成的多个第1粒子1中所含的金属的一部分进行热处理使其氧化,从而在多个第1粒子1的表面形成,也可以将包含由软磁性金属形成的多个第1粒子1中所不含有的金属的氧化物作为氧化被膜6。
图4是实施方式的其他复合磁性材料5的剖视图。复合磁性材料5可以如图4所示那样在多个第2粒子2间进一步具备由绝缘物形成的多个第3粒子8。
多个第3粒子8具有与多个第2粒子2的第1固相3及第2固相4两者不同的晶体结构,作为具体例,可列举各种铁氧体材料。更详细而言,可列举Mn-Zn系铁氧体、Ni-Zn系铁氧体、Mg-Zn系铁氧体以及铁尖晶石等尖晶石型铁氧体。另外,也可以制成在铁尖晶石中添加各种元素而成的具有磁性的尖晶石型铁氧体。
另外,多个第3粒子8可以被多个第2粒子2包围。
在此,例如,在使用FeAl2O4作为在形成多个第2粒子2的工序中的起始原料的情况下,若采用后述的热处理工艺,则形成包含Al的氧化物作为第1固相3,并且形成Fe作为第2固相4。
具体而言,在FeAl2O4处于不活泼气氛中且其温度为1000℃时,原料的FeAl2O4的一部分被还原,形成包含Al的氧化物作为第1固相3,并且形成Fe作为第2固相4。另外,通过不使所有的FeAl2O4反应而直接残留FeAl2O4的一部分,从而可以得到多个第3粒子8作为绝缘材料。通过残留多个第3粒子8作为绝缘材料,从而使由软磁性金属形成的多个第1粒子1间绝缘的绝缘成分变多,可以抑制涡电流的产生。进而,可以使多个第3粒子8的每单位体积的数量随着远离由软磁性金属形成的多个第1粒子1而增多。
如图3所示,复合磁性材料5可以在多个第1粒子1与多个第2粒子2之间设置多个空隙7。多个空隙7可以彼此连通。
图5为实施方式中的另一其他复合磁性材料5的剖视图。图5中,图5所示的复合磁性材料5在多个空隙7设置有机树脂9。通过使有机树脂9渗透到多个空隙7并固化,从而使由软磁性金属形成的多个第1粒子1及多个第2粒子2间的粘结力提高,可以提高复合磁性材料5的机械强度。另外,通过使多个空隙7连通,从而使有机树脂9容易渗透到复合磁性材料5中,有助于缩短制造工艺中的加工时间(lead time)。
对本实施方式的由软磁性金属形成的多个第1粒子1进行说明。
作为该软磁性金属的具体例,可列举至少包含磁性材料的Fe、Co及Ni的单质金属。另外,作为其他具体例,可列举Fe-Si系合金、Fe-Si-Al系合金、Fe-Si-Cr系合金或Fe-Ni系合金。另外,作为由软磁性金属形成的多个第1粒子1的平均粒径,优选为1μm以上且100μm以下的范围。通过将由软磁性金属形成的多个第1粒子1的平均粒径设为1μm以上,从而在制造工艺中多个第1粒子1不会凝聚而与其他材料混合、分散时,多个第1粒子1彼此相互分离,可以形成独立的1个粒子。另外,复合磁性材料5的涡电流损失与涡电流流过的部分的尺寸的平方成比例地增大。基于以上情况,为了在涡电流发生时极力地降低其影响,因此优选将多个第1粒子1的平均粒径设为100μm以下左右。更优选的是:通过将多个第1粒子1的平均粒径设为3μm以上且50μm以下左右的范围,从而可以抑制多个第1粒子1的凝聚,并且可以抑制涡电流的发生。
予以说明,平均粒径的值有时因其测定方法等而产生误差,因此上述的优选的平均粒径的范围也有可能偏离误差的范围。
另外,作为多个第2粒子2的平均粒径,并无特别限定,优选小于多个第1粒子1的平均粒径。通过这样的构成,从而由氧化物形成的第1固相3在由软磁性金属形成的第1粒子1间发挥高绝缘效果,可以抑制涡电流的产生。
予以说明,本实施方式的多个第1粒子1及多个第2粒子2的平均粒径是指从复合磁性材料5的切断剖面测定时的值。该平均粒径是指:使用图像解析装置将任意的切断剖面的200个以上的第1粒子1或多个第2粒子2换算为圆等量直径而积分达到整体的50%时的值。
予以说明,多个第2粒子2的第1固相3与第2固相4及氧化被膜6的材料组成可以利用基于XMA(X-ray Micro Analyzer)的元素分析观察复合磁性材料5的切断剖面。
图6为使用了复合磁性材料5的线圈部件11的立体图。线圈部件11具备包围复合磁性材料5的至少一部分而卷绕成的线圈10。在实施方式中,包围复合磁性材料5的一部分5P而卷绕成线圈10。对于实施方式的复合磁性材料5而言,磁性材料的填充率高,可以抑制涡电流的产生,因此有助于线圈部件11的小型化或低背化。
以下对本实施方式的复合磁性材料5的制造方法进行说明。
首先,作为由软磁性金属形成的多个第1粒子1,准备平均粒径为30μm、Si为10.0重量份、Al为5.0重量份、Bal.Fe为的组成的Fe-Si-Al合金粉末。该Fe-Si-Al合金粉末是利用气雾化法制作的合金粉末。多个第2粒子2为FeAl2O4粒子,平均粒径为0.2μm。作为多个第2粒子的FeAl2O4粉末的添加于作为多个第1粒子1的Fe-Si-Al合金粉末时的第1添加量按照相对于100重量份多个第1粒子1为15重量份的量来准备。将该Fe-Si-Al合金粉末与FeAl2O4粉末混合并使其相互分散,再将丙烯酸类树脂和有机溶剂混合后,利用旋转球磨机进行分散,得到混合材料。
予以说明,将由多个第1粒子1形成的Fe-Si-Al合金粉末、由多个第2粒子形成的FeAl2O4粉末、丙烯酸类树脂和有机溶剂混合进行分散的顺序并无特别限定。
予以说明,作为上述的起始原料的Fe-Si-Al合金粉末和FeAl2O4粉末的平均粒径是利用激光衍射散射法测定的D50的值,其与上述复合磁性材料5的由切断剖面换算得到的平均粒径不同。
接着,将该混合材料在8ton/cm2的压力下加压成形为规定的形状,得到成形体。
接着,将该成形体在惰性气氛即氮气气氛中且温度为1200℃实施5小时的热处理,由此将由加压成形引入到Fe-Si-Al合金粉末中的加工应变释放。再利用该热处理使氧从FeAl2O4粉末脱离,形成具备包含作为第1固相3的Fe和作为第2固相4的Al的氧化物形式的2个固相的多个第2粒子2。
予以说明,优选将上述的热处理的温度设为1000℃以上且1300℃以下的范围、并且将热处理的时间设为0.5小时以上且6小时以下。
另外,通过在比上述的热处理的温度低1000℃左右的温度下进行热处理,从而可以不使全部的FeAl2O4粉末反应而使FeAl2O4粉末的一部分以多个第3粒子8的形式残留。多个第3粒子8作为妨碍多个第1粒子1彼此接触的绝缘物发挥功能。使FeAl2O4粉末以多个第3粒子8的形式残留时的热处理优选将温度设为600℃以上且1200℃以下、并且将热处理的时间设为0.5小时以上~6小时以下。
另外,通过在将Fe-Si-Al合金粉末与其他材料混合之前预先在氧气气氛在高温下实施热处理,从而可以在多个第1粒子1的表面设置图3所示的氧化被膜6。在多个第1粒子1的表面设置氧化被膜6的热处理优选将温度设为500℃以上且1200℃以下、并且将热处理的时间设为0.5小时以上~6小时以下。
如以上那样,本实施方式的复合磁性材料5通过使多个第2粒子2分别为由绝缘物形成的第1固相3和由磁性材料形成的第2固相4,从而降低形成在各粒子间的多个空隙7,并可以使复合磁性材料5中包含大量作为磁性材料的第1粒子及第2固相4。
此外,由于第1固相3的绝缘物妨碍多个第1粒子1的软磁性金属彼此的接触、第2固相4彼此的接触或多个第1粒子1与第2固相4的接触,因此可以抑制涡电流的产生。
产业上的可利用性
本实施方式的复合磁性材料可以实现高磁特性,在可以有效用于具备各种磁性材料的线圈部件。
符号说明
1 多个第1粒子
2 多个第2粒子
3 第1固相
4 第2固相
5 复合磁性材料
6 氧化被膜
7 多个空隙
8 多个第3粒子
9 有机树脂
10 线圈
11 线圈部件

Claims (19)

1.一种复合磁性材料,其具备由软磁性金属形成的多个第1粒子和介于所述多个第1粒子间的多个第2粒子,
所述多个第2粒子分别具有第1固相和第2固相。
2.根据权利要求1所述的复合磁性材料,其中,所述第1固相由氧化物形成。
3.根据权利要求2所述的复合磁性材料,其中,所述氧化物包含Al、Cr、Ti、Mg、Si及Ca中的至少1种元素。
4.根据权利要求1所述的复合磁性材料,其中,所述第2固相由金属形成。
5.根据权利要求4所述的复合磁性材料,其中,所述金属为Fe、Co、Ni、Fe-Si系合金、Fe-Si-Al系合金、Fe-Si-Cr系合金和Fe-Ni系合金中的任意。
6.根据权利要求1所述的复合磁性材料,其还具备设置于所述多个第2粒子间的由绝缘材料形成的多个第3粒子。
7.根据权利要求6所述的复合磁性材料,其中,所述绝缘材料为尖晶石型铁氧体。
8.根据权利要求6所述的复合磁性材料,其中,所述多个第3粒子的每单位体积的个数随着远离所述多个第1粒子而增多。
9.根据权利要求1所述的复合磁性材料,其中,在所述多个第1粒子与所述多个第2粒子之间设有多个空隙。
10.根据权利要求9所述的复合磁性材料,其中,所述多个空隙彼此连通。
11.根据权利要求1所述的复合磁性材料,其还具备设置于所示多个第1粒子与所述多个第2粒子之间的有机树脂。
12.根据权利要求1所述的复合磁性材料,其中,所述多个第1粒子的平均粒径大于所述第2粒子的平均粒径。
13.根据权利要求1所述的复合磁性材料,其中,所述多个第1粒子的平均粒径为1μm以上且100μm以下。
14.根据权利要求1所述的复合磁性材料,其还具备设置于所述多个第1粒子的各自表面的氧化被膜。
15.一种线圈部件,其具备权利要求1所述的复合磁性材料和包围所述复合磁性材料的至少一部分而卷绕成的线圈。
16.一种复合磁性材料的制造方法,其包含如下步骤:
将由多个第1粒子形成的第1粉末、由多个第2粒子形成的第2粉末和树脂混合而得到混合材料的步骤;
将所述混合材料加压成形而得到成形体的步骤;和
通过对上述成形体实施热处理而在所述多个第2粒子的各个粒子中形成第1固相和第2固相的步骤。
17.根据权利要求16所述的复合磁性材料的制造方法,其中,所述热处理在不活泼气氛下进行,
所述第1固相由氧化物形成,所述第2固相由金属形成。
18.根据权利要求17所述的复合磁性材料的制造方法,其中,所述氧化物包含Al、Cr、Ti、Mg、Si及Ca中的至少1种元素,
所述金属为Fe、Co、Ni、Fe-Si系合金、Fe-Si-Al系合金、Fe-Si-Cr系合金和Fe-Ni系合金中的任意。
19.根据权利要求16所述的复合磁性材料的制造方法,其中,所述多个第1粒子含有金属,
并且在所述得到混合材料的步骤之前还具备在所述多个第1粒子的各自表面上形成将所述多个第1粒子的所述金属氧化得到的氧化被膜的步骤。
CN201580029972.6A 2014-07-22 2015-07-16 复合磁性材料、使用其的线圈部件以及复合磁性材料的制造方法 Active CN106415742B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014-148437 2014-07-22
JP2014148437 2014-07-22
PCT/JP2015/003593 WO2016013183A1 (ja) 2014-07-22 2015-07-16 複合磁性材料とこれを用いたコイル部品ならびに複合磁性材料の製造方法

Publications (2)

Publication Number Publication Date
CN106415742A true CN106415742A (zh) 2017-02-15
CN106415742B CN106415742B (zh) 2019-07-26

Family

ID=55162728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580029972.6A Active CN106415742B (zh) 2014-07-22 2015-07-16 复合磁性材料、使用其的线圈部件以及复合磁性材料的制造方法

Country Status (5)

Country Link
US (1) US10210987B2 (zh)
JP (1) JP6653420B2 (zh)
CN (1) CN106415742B (zh)
DE (1) DE112015003386T5 (zh)
WO (1) WO2016013183A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710520A (zh) * 2020-07-14 2020-09-25 香磁磁业(深圳)有限公司 径向极异方性磁铁材料的制备方法

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US9163284B2 (en) 2013-08-09 2015-10-20 President And Fellows Of Harvard College Methods for identifying a target site of a Cas9 nuclease
US9359599B2 (en) 2013-08-22 2016-06-07 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US9340799B2 (en) 2013-09-06 2016-05-17 President And Fellows Of Harvard College MRNA-sensing switchable gRNAs
US9737604B2 (en) 2013-09-06 2017-08-22 President And Fellows Of Harvard College Use of cationic lipids to deliver CAS9
US9322037B2 (en) 2013-09-06 2016-04-26 President And Fellows Of Harvard College Cas9-FokI fusion proteins and uses thereof
US9068179B1 (en) 2013-12-12 2015-06-30 President And Fellows Of Harvard College Methods for correcting presenilin point mutations
AU2015298571B2 (en) 2014-07-30 2020-09-03 President And Fellows Of Harvard College Cas9 proteins including ligand-dependent inteins
JP6550731B2 (ja) * 2014-11-28 2019-07-31 Tdk株式会社 コイル部品
IL258821B (en) 2015-10-23 2022-07-01 Harvard College Nucleobase editors and their uses
JP6563348B2 (ja) * 2016-01-29 2019-08-21 アイシン精機株式会社 軟磁性粉末及び当該軟磁性粉末によって成形された軟磁性体、並びに当該軟磁性粉末及び当該軟磁性体の製造方法
EP3435386B1 (en) * 2016-03-25 2021-06-02 National Institute of Advanced Industrial Science and Technology Magnetic material and manufacturing method therefor
CN105993053B (zh) * 2016-05-13 2018-02-02 深圳顺络电子股份有限公司 复合软磁材料及其制备方法
IL264565B1 (en) 2016-08-03 2024-03-01 Harvard College Adenosine nuclear base editors and their uses
CA3033327A1 (en) 2016-08-09 2018-02-15 President And Fellows Of Harvard College Programmable cas9-recombinase fusion proteins and uses thereof
WO2018039438A1 (en) 2016-08-24 2018-03-01 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
JP2019530464A (ja) 2016-10-14 2019-10-24 プレジデント アンド フェローズ オブ ハーバード カレッジ 核酸塩基エディターのaav送達
JP6830347B2 (ja) * 2016-12-09 2021-02-17 太陽誘電株式会社 コイル部品
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
CN110914310A (zh) 2017-03-10 2020-03-24 哈佛大学的校长及成员们 胞嘧啶至鸟嘌呤碱基编辑器
WO2018176009A1 (en) 2017-03-23 2018-09-27 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable dna binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
WO2019023680A1 (en) 2017-07-28 2019-01-31 President And Fellows Of Harvard College METHODS AND COMPOSITIONS FOR EVOLUTION OF BASIC EDITORS USING PHAGE-ASSISTED CONTINUOUS EVOLUTION (PACE)
WO2019139645A2 (en) 2017-08-30 2019-07-18 President And Fellows Of Harvard College High efficiency base editors comprising gam
WO2019079347A1 (en) 2017-10-16 2019-04-25 The Broad Institute, Inc. USES OF BASIC EDITORS ADENOSINE
JP7102882B2 (ja) * 2018-04-05 2022-07-20 住友ベークライト株式会社 成形材料および成形体
US10931157B2 (en) * 2018-05-07 2021-02-23 General Electric Company Unitary structure having magnetic and non-magnetic phases
WO2020191239A1 (en) 2019-03-19 2020-09-24 The Broad Institute, Inc. Methods and compositions for editing nucleotide sequences
KR20210010175A (ko) * 2019-07-19 2021-01-27 현대자동차주식회사 자기유변 탄성체
JP7465069B2 (ja) 2019-08-30 2024-04-10 太陽誘電株式会社 コイル部品及びその製造方法
DE112021002672T5 (de) 2020-05-08 2023-04-13 President And Fellows Of Harvard College Vefahren und zusammensetzungen zum gleichzeitigen editieren beider stränge einer doppelsträngigen nukleotid-zielsequenz

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060539A1 (en) * 2008-09-08 2010-03-11 Tomohiro Suetsuna Core-shell magnetic material, method of manufacturing core-shell magnetic material, device, and antenna device
CN102067251A (zh) * 2008-01-31 2011-05-18 本田技研工业株式会社 软磁性材料及其制造方法
CN102969109A (zh) * 2011-08-31 2013-03-13 株式会社东芝 磁性材料及其制造方法及使用了磁性材料的感应器元件
CN102969105A (zh) * 2011-08-31 2013-03-13 株式会社东芝 磁性材料、磁性材料的制造方法及感应器元件
WO2014068928A1 (ja) * 2012-10-31 2014-05-08 パナソニック株式会社 複合磁性体およびその製造方法
CN103846426A (zh) * 2012-11-20 2014-06-11 精工爱普生株式会社 复合粒子、压粉磁芯、磁性元件以及便携式电子设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0376319B1 (en) * 1988-12-28 1995-03-29 Matsushita Electric Industrial Co., Ltd. A composite ferrite material
JP4684461B2 (ja) * 2000-04-28 2011-05-18 パナソニック株式会社 磁性素子の製造方法
US7485366B2 (en) * 2000-10-26 2009-02-03 Inframat Corporation Thick film magnetic nanoparticulate composites and method of manufacture thereof
KR100535943B1 (ko) * 2001-05-15 2005-12-12 가부시키가이샤 네오맥스 철 기재의 희토류합금 자석 및 그 제조방법
JP2003183702A (ja) * 2001-12-18 2003-07-03 Aisin Seiki Co Ltd 軟磁性粉末材料、軟磁性成形体及び軟磁性成形体の製造方法
JP2004253787A (ja) * 2003-01-30 2004-09-09 Mitsubishi Materials Corp 高強度、高磁束密度および高抵抗を有する複合軟磁性焼結材およびその製造方法
US8377576B2 (en) * 2005-05-11 2013-02-19 Inframat Corporation Magnetic composites and methods of making and using
JPWO2010103709A1 (ja) * 2009-03-09 2012-09-13 パナソニック株式会社 圧粉磁芯およびそれを用いた磁性素子
JP2010238930A (ja) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp 複合軟磁性材料、複合軟磁性材料の製造方法及び電磁気回路部品
TWI407462B (zh) 2009-05-15 2013-09-01 Cyntec Co Ltd 電感器及其製作方法
JP5247754B2 (ja) * 2010-03-30 2013-07-24 株式会社日立製作所 磁性材料及びその磁性材料を用いたモータ
JP6071211B2 (ja) * 2011-02-22 2017-02-01 三菱マテリアル株式会社 低磁歪高磁束密度複合軟磁性材とその製造方法
JP2012238841A (ja) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd 磁性材料及びコイル部品
JP4906972B1 (ja) * 2011-04-27 2012-03-28 太陽誘電株式会社 磁性材料およびそれを用いたコイル部品
US20140132376A1 (en) * 2011-05-18 2014-05-15 The Regents Of The University Of California Nanostructured high-strength permanent magnets
KR20140003056A (ko) * 2012-06-29 2014-01-09 삼성전기주식회사 파워 인덕터 및 그 제조방법
KR20140112882A (ko) * 2013-03-14 2014-09-24 삼성전기주식회사 연자성 코어 및 이를 구비한 모터
US10186374B2 (en) * 2013-03-15 2019-01-22 GM Global Technology Operations LLC Manufacturing Nd—Fe—B magnets using hot pressing with reduced dysprosium or terbium
JP2014216495A (ja) * 2013-04-25 2014-11-17 Tdk株式会社 軟磁性体組成物、磁芯、コイル型電子部品および成形体の製造方法
WO2015019576A1 (ja) * 2013-08-07 2015-02-12 パナソニックIpマネジメント株式会社 複合磁性材料とこれを用いたコイル部品ならびに電源装置
JP6352731B2 (ja) * 2013-09-20 2018-07-04 株式会社東芝 磁性金属粒子集合体及び電波吸収体
US10453599B2 (en) * 2014-07-16 2019-10-22 Hitachi Metals, Ltd. Magnetic core, method for producing magnetic core, and coil component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102067251A (zh) * 2008-01-31 2011-05-18 本田技研工业株式会社 软磁性材料及其制造方法
US20100060539A1 (en) * 2008-09-08 2010-03-11 Tomohiro Suetsuna Core-shell magnetic material, method of manufacturing core-shell magnetic material, device, and antenna device
CN102969109A (zh) * 2011-08-31 2013-03-13 株式会社东芝 磁性材料及其制造方法及使用了磁性材料的感应器元件
CN102969105A (zh) * 2011-08-31 2013-03-13 株式会社东芝 磁性材料、磁性材料的制造方法及感应器元件
WO2014068928A1 (ja) * 2012-10-31 2014-05-08 パナソニック株式会社 複合磁性体およびその製造方法
CN103846426A (zh) * 2012-11-20 2014-06-11 精工爱普生株式会社 复合粒子、压粉磁芯、磁性元件以及便携式电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710520A (zh) * 2020-07-14 2020-09-25 香磁磁业(深圳)有限公司 径向极异方性磁铁材料的制备方法
CN111710520B (zh) * 2020-07-14 2022-01-21 香磁磁业(深圳)有限公司 一种磁铁材料的制备方法

Also Published As

Publication number Publication date
JP6653420B2 (ja) 2020-02-26
CN106415742B (zh) 2019-07-26
WO2016013183A1 (ja) 2016-01-28
DE112015003386T5 (de) 2017-03-30
JPWO2016013183A1 (ja) 2017-04-27
US10210987B2 (en) 2019-02-19
US20170053729A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
CN106415742B (zh) 复合磁性材料、使用其的线圈部件以及复合磁性材料的制造方法
JP5032711B1 (ja) 磁性材料およびそれを用いたコイル部品
CN105408968B (zh) 复合磁性材料和使用了它的线圈部件以及电源装置
KR101910139B1 (ko) 자심, 자심의 제조 방법 및 코일 부품
EP2482291B1 (en) Magnetic powder material and low-loss composite magnetic material containing same
EP3171368B1 (en) Method for producing magnetic core, magnetic core, and coil component using same
JP5145923B2 (ja) 複合磁性材料
WO2010082486A1 (ja) 複合磁性材料の製造方法とそれを用いた圧粉磁芯及びその製造方法
KR20160110372A (ko) 자심 및 이를 이용한 코일 부품
JP6476989B2 (ja) 圧粉磁心の製造方法
JP6667727B2 (ja) 圧粉磁心の製造方法、電磁部品の製造方法
CN109716455B (zh) 磁芯及线圈部件
US9691529B2 (en) Composite magnetic material and method for manufacturing same
CN109716454B (zh) 磁芯及线圈部件
CN105873697B (zh) 软磁粉末混合料
JP2016213306A (ja) 圧粉磁心、及び圧粉磁心の製造方法
JP6967418B2 (ja) 磁性材料、および積層チップ部品

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant