CN106414798A - 室清洁和半导体蚀刻气体 - Google Patents

室清洁和半导体蚀刻气体 Download PDF

Info

Publication number
CN106414798A
CN106414798A CN201480076636.2A CN201480076636A CN106414798A CN 106414798 A CN106414798 A CN 106414798A CN 201480076636 A CN201480076636 A CN 201480076636A CN 106414798 A CN106414798 A CN 106414798A
Authority
CN
China
Prior art keywords
gas
chf
chf2
etching
fluoroolefins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480076636.2A
Other languages
English (en)
Other versions
CN106414798B (zh
Inventor
彭晟
G.罗
大﨑善政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to CN202110175233.5A priority Critical patent/CN112981369B/zh
Publication of CN106414798A publication Critical patent/CN106414798A/zh
Application granted granted Critical
Publication of CN106414798B publication Critical patent/CN106414798B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G5/00Cleaning or de-greasing metallic material by other methods; Apparatus for cleaning or de-greasing metallic material with organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)

Abstract

本发明涉及可用作气体的氟烯烃组合物,所述气体用于CVD半导体制造,具体地讲用于蚀刻应用,包括通过使用活化的气体混合物从化学气相沉积室的内部清除表面沉积物的方法,以及蚀刻半导体的表面的方法。

Description

室清洁和半导体蚀刻气体
技术领域
本发明涉及可用于半导体制造应用(诸如蚀刻半导体)中并且用作用于清除CVD室和PECVD室中的表面沉积物的清洁气体的全氟炔烃组合物。本发明进一步涉及通过使用活化的气体混合物从化学气相沉积室的内部清除表面沉积物的方法,该活化的气体混合物通过活化该室中或远距室中的气体混合物来产生,其中气体混合物包括氟烯烃,诸如全氟炔烃和氧气。
背景技术
蚀刻气体和清洁气体用于制造半导体。例如,化学气相沉积(CVD)室和等离子体增强化学气相沉积(PECVD)室需要定期清洁,以清除室壁和台板的沉积物。由于在清洁循环中室停止活性服务,所以这一清洁过程降低了室的生产能力。清洁过程可包括,例如反应物气体的排空及使用清洁气体替换反应物气体、该气体的活化以及接下来使用惰性载气去除室中清洁气体的冲洗步骤。清洁气体通常通过蚀刻内表面积聚的污染物来工作,因此在气体的实用性和商业用途中清洁气体的蚀刻速率是一项重要参数,并且一些清洁气体还可用作蚀刻气体。另外,现有清洁气体含有大量具有较高全球变暖潜能值的组分。例如,美国专利6,449,521公开了54%氧气、40%全氟乙烷和6%NF3的混合物作为CVD室的清洁气体。然而,全氟乙烷具有相对较高的GWP,估计其量值在20年的时间范围内为大约6200,在500年的时间范围内为大约14000。其他清洁气体包括C3F8,其也具有显著的全球变暖潜能值。其他气体包括例如美国专利6,242,359中描述的那些,该专利公开了含有不饱和氟的氧化物,例如六氟环氧丙烷(CF3CFOCF2)、全氟丙烷-二醇(CFOCF2CFO)、三氟甲醇(CF3OH)、二氟甲醇(CHF2OH)、二氟氧基氟甲烷(CHF2OF)、全氟二乙基醚(C2F5OC2F5)、1,1,3,3-四氟二甲基醚(CHF2OCHF2)等。此外,即使对工艺进行优化,清洁气体也具有释放的可能。最后,鉴于这些气体的化学稳定性,其活化可为高耗能的。各种反应器可用于使用蚀刻和清洁气体产生半导体。
蚀刻气体用于将结构蚀刻到半导体中。气体被引入到室中,转换成等离子体,然后等离子体与掩蔽半导体的暴露表面反应以从沉积在衬底上的膜清除暴露的材料。对于特定衬底上的给定膜而言,气体可为可选择的。例如,CF4/O2、SF6和CHF3可用于蚀刻多晶硅、CF4、CF4/O2和CH2F2可用于蚀刻Si3N4膜。
然而,应当理解,这些气体可生成相对较高含量的有毒废气,除清洁或蚀刻气体本身的GWP之外,这可带来另外的GWP或环境、健康和安全(EHS)问题。因此,在本领域中有必要使用比现有气体具有更高蚀刻速率及更低GWP和ESH影响的有效且价廉的清洁/蚀刻气体,以减少清洁和操作CVD反应器造成的全球变暖的危害。
发明内容
本发明提供了一种具有低EHS和GWP的清洁或蚀刻气体混合物,使得即使未反应的气体释放,其也具有降低的环境影响。在本发明的一个方面,本发明包括含有至少一种氟烯烃和氧气的蚀刻气体混合物,其中氟烯烃基本上选自CHF=CF2、Z-CF3-CF=CHF、Z-CF3-CF=CHF、CF3-CH=CF2、CF3-CF=CH2、CF3-CH=CHF、CF2=CH-CHF、CF2=CF-CF3、Z-CF3-CH=CH-CF3、E-CF3-CH=CHCF3、CF3-CF2-CH=CHF、CF3-CF2-CH=CHF、CH2=CF-CF2-CF3、CHF2-CF=CF-CHF2、Z-CF3-CF=CF-CF3、E-CF3-CF=CF-CF3、CF3-CF=CH-CF3、CF3-CF=CH-CF3、CHF=CF-CF2-CF3、CHF=CF-CF2-CF3、CF2=CF-CHF-CF3、CF2=CF-CF=CF2、CHF=C(CF3)2、CF2=C(CF3)(CHF2)、CF2=CH-CH2-CF3、CH2=CF-CF2-CHF2、CF2=CF-CHF-CH2F、CF2=CFCH2CHF2、CHF=CF-CHF-CHF2、CHF2-CF=CH-CHF2、CHF2-CF=CF-CH2F、CHF2-CF=CF-CH2F、CHF2-CH=CF-CHF2、CHF2-CH=CF-CHF2,以及CF3C≡CCF3、CHC1=CH-CF3。本发明还提供了将这些气体用作蚀刻气体的方法,其中气体用于蚀刻半导体上的膜。在替代形式中,利用另外的气体和氧气,本发明提供了使用气体从处理室清除沉积物的方法。本发明还包括用于清洁材料的沉积物的处理室的方法,包括活化处于远距室中或原位处于处理室中的气体,其中气体混合物包括氧源和氢氟烯烃;以及使活化的气体与表面沉积物接触足以清除所述沉积物的时间。可通过RF源使用足够功率、足够时间活化气体混合物,使得所述气体混合物达到约800-3,000K的中性温度以形成活化气体混合物,或另选地使用辉光放电活化气体,然后使所述活化气体混合物与表面沉积物接触从而清除至少一些所述表面沉积物。气体混合物包含具有至多4个碳原子(C4)、且氟的百分比等于或大于65%的氢氟烯烃。气体混合物还可具有等于或小于60%的H比F比率。
具体实施方式
使用本发明清除的表面沉积物包括通常通过化学气相沉积(CVD)或等离子体增强化学气相沉积(PECVD)或类似工艺沉积的那些材料。此类材料包括含氮沉积物,例如但不限于氮化硅、氮氧化硅、碳氮化硅(SiCN)、硼氮化硅(SiBN),以及金属氮化物如氮化钨、氮化钛或氮化钽。在本发明的一个实施例中,优选的表面沉积物是氮化硅。
在本发明的一个实施例中,表面沉积物是从用于制造电子器件的处理室内部清除的。这一处理室可为CVD室或PECVD室。本发明的其他实施例包括但不限于清除金属的表面沉积物、清洁等离子体蚀刻室和从晶片清除含氮薄膜。在一个实施例中,气体用于蚀刻应用。例如,美国专利8,187,415(以引用方式并入本文)描述了具有带有用于蚀刻和清洁气体组分的多个人口的处理室的反应器,作为用于工件(诸如半导体晶片)的等离子体增强蚀刻的“等离子体蚀刻反应器包括限定处理室的外壳、被配置成在处理期间将工件支撑在室内并且包括等离子体偏置功率电极的工件支撑件。反应器还包括耦合以主要接收纯氧气的第一处理气体人口,以及耦合以接收聚合蚀刻处理气体的第二处理气体入口。反应器具有顶板等离子体源功率电极,该电极包括被配置成从第一处理气体入口接收处理气体并且将处理气体分布到工件上的室中的中央圆形气体分散器,以及以中央气体分散器为中心的被配置成从第二处理气体入口接收处理气体并且将处理气体通过内部多个注射端口分布到工件上的室中的内部环形气体分散器”。
在一个实施例中,本发明的方法涉及活化步骤,其中在远距室中活化清洁气体混合物。活化可通过实现大部分原料气离解的任何方式来完成,诸如:射频(RF)能量、直流(DC)能量、激光照射和微波能量。本发明的一个实施例使用变压器耦合的电感耦合低频RF功率源,其中等离子体具有环形构造,并起到次级变压器的作用。使用较低频率RF功率,便允许使用相对于电容耦合增强电感耦合的磁芯;从而允许更有效地将能量转化为等离子体而不会产生过多的限制远程等离子体源室内部寿命的离子轰击。本发明使用的典型RF功率具有低于1000kHz的频率。在本发明的另一个实施例中,功率源为远程微波、电感或电容耦合等离子体源。在本发明的又一个实施例中,气体使用辉光放电活化。
清洁气体混合物的活化使用足够功率进行足够时间,以形成活化气体混合物。在本发明的一个实施例中,活化气体混合物具有至少约1000-3,000K量级的中性温度。所得等离子体的中性温度取决于功率和气体混合物在远距室中的停留时间。在某些功率输入和条件下,中性温度将随停留时间的增长而升高。在本发明的一个实施例中,活化气体混合物的优选的中性温度高于约3,000K。在适当条件下(考虑到功率、气体组成、气体压力和气体停留时间),可实现至少约1000-5,000K的中性温度。
表1示出了蚀刻气体应用中使用的氟烯烃,包括氢氟烯烃(HFO)。优选的HFO具有至多四个碳原子(C4),氟的百分比等于或大于65%(F%>65%)。优选地,HFO具有等于或小于60%的H比F比率。优选地,HFO可以0.1-3∶1.0-0.1的HFO/O2比率与氧气共混,或与现有蚀刻/清洁气体或两者共混。优选地,共混物进一步与载气混合,所述载气如氩气、氦气或氮气。
表1
氢氯氟烯烃,如HFO-1233zd、1-氯-3,3,3-三氟丙烯也可用作氢氟烯烃。
活化气体可在处理室外的单独的远距室中形成,但应紧邻处理室。在本发明中,远距室是指除清洁或处理室之外的室,其中可生成活化气体等离子体,而处理室是指表面沉积物所在的室。远距室通过导管或其他允许活化气体从远距室传输至处理室的装置连接至处理室。例如,传输通道可包括一根短的连接管和CVD/PECVD处理室的喷头。远距室以及用于将远距室与处理室连接的装置由本领域中已知的能够容纳活化的气体混合物的材料构成。例如,陶瓷、铝和阳极氧化铝都常常用于室部件。有时将Al2O3涂覆在内表面以减少表面复合。在本发明的其他实施例中,活化气体混合物可直接在处理室内形成。
被活化以形成活化气体的蚀刻气体或蚀刻气体混合物包含至少一种氟烯烃。如本文所用,蚀刻气体或蚀刻气体混合物被定义为用于半导体制造中被活化以形成等离子体的气体或气体的混合物,其中等离子体可用于蚀刻半导体的表面,将聚合物层沉积在半导体的表面上,或者清洁用于半导体制造中的装置的处理室。当用于蚀刻表面或清洁室时,蚀刻气体还可包含氧源、氮源或无机氟源。典型的无机氟源包括NF3和SF6。本发明的氟烯烃被定义为包含C和F并且包含至少一个不饱和位点(即,碳碳双键或三键)的化合物。类似地,本发明的氢氟烯烃在本文中是指包含C、H和F并具有至少不饱和位点即碳碳双键或三键的化合物。在本发明的一个实施例中,该气体混合物还包含全氟化碳或氢氟烃。本发明中所指的全氟化碳化合物是包含C、F及任选地O的化合物。本发明中所指的氢氟烃化合物是包含C、F、H及任选地O的化合物。全氟化碳化合物包括但不限于四氟甲烷、六氟乙烷、八氟丙烷、六氟环丙烷、十氟丁烷、八氟环丁烷、六氟丙烯、六氟环氧丙烷、氢氟丙酮(hydrofluoroacetone)、2,3,3-三氟-3-(三氟甲基)环氧乙烷、1,1,1,3,3,3-六氟-2-丙酮、八氟-2-丁烯、六氟-1,3-二丁烯、C5F8、C4F10以及八氟四氢呋喃,氢氟烃包括CHF3、CH2F2、HFC-134a、HFC-125和HFC-152a。氢氯氟烯烃,如HFO-1233zd、1-氯-3,3,3-三氟丙烯也可用作氢氟烯烃。任何上述物质的共混物也可与氢氟烯烃混合。
不希望受限于任何特定理论,申请人认为,气体混合物的氢氟烯烃以更优选的氢与氟比率以及更优选的氟与碳比率在活化气体混合物中用作原子源。在某些包含氮的共混物中,典型氮源包括分子态氮(N2)和NF3。NF3作为无机氟源时,其还可同时作为氮源。典型氧源包括分子态氧(O2)。当氟烃为八氟四氢呋喃或其他含氧氟烃时,其还可同时作为氧源。在本发明的一个实施例中,氧气∶氢氟烯烃摩尔比为至少0.3∶1。在本发明的另一个实施例中,氧气∶氢氟烯烃的摩尔比为至少0.5∶1。在另一个实施例中,氧气与氢氟烯烃比率为至少1-3∶1。取决于选择的氢氟烯烃,在本发明的其他实施例中,氧气∶氢氟烯烃的摩尔比可为1-4∶1。
本发明的被活化以形成活化气体混合物的气体混合物还可包含载气。合适载气的例子包括稀有气体如氩气和氦气。
在本发明的实施例中,在蚀刻半导体表面或沉积聚合物层的过程中,处理室中的温度可从约-50℃至约150℃。
在本发明的一个实施例中,清除表面沉积物过程中处理室内的温度可为从约50℃至约150℃。
在活化步骤过程中,使用Astron源,远距室内的总压力可在约0.5托和约20托之间。处理室内的总压力可在约0.5托和约15托之间。使用其他类型的远程等离子体源或原位等离子体,压力也会变化。
在本发明中发现,氧气和氟烯烃的组合会得到较高的氮化物膜(诸如氮化硅)的蚀刻速率。这些增长还提供对于源气体压力、室压和温度的变化而言较低的蚀刻速率灵敏度。
以下实例意在示出本发明,而并非意在限制。
实例1至实例7
在实例1至7中,远程等离子体源是一种商用超环类型MKS反应性气体发生器单元,由美国马萨诸塞州安多佛的万机仪器(MKS Instruments,Andover,MA,USA)制造。将原料气(例如氧气、氢氟烯烃和载气)进料到远程等离子体源并穿过环形放电室,使其在此接受400kHz射频功率的放电以形成活化气体混合物。氧气由艾加斯公司(Airgas)制造,纯度为99.999%。氢氟烯烃选自表1。氩气由艾加斯公司(Airgas)制造,等级为5.0。通常,Ar气用于激发等离子体,然后,在Ar流动停止后启动原料气的定时流动。然后使活化气体混合物穿过铝水冷却的换热器以降低铝处理室的热负荷。表面沉积物包覆的晶片位于处理室中的温控装置上。通过光发射光谱(OES)测量中性温度,通过理论拟合双原子物质如C2和N2的振转跃迁谱带,得到中性温度。通过干涉仪在处理室内测量活化气体对表面沉积物的蚀刻速率。在真空泵人口添加任意N2气体,既可将产品稀释至适当浓度以进行FTIR测量,还可减少泵中的产品悬布。使用FTIR测量泵排气中物质的浓度。
实例1
该实例示出了加入氢氟烯烃HFO-1234yf与氧气对氮化硅蚀刻速率的影响。在该实验中,原料气由氧气和HFO-1234yf构成,O2与HFO的摩尔比为0.4比1、0.6比1、1比1和1.2比1。处理室压力为5托。总气体流速为1500-2000sccm,根据每个实验需要按比例为各气体设置流速。使用400kHz 5.9-8.7kW RF功率活化原料气达到有效中性温度。然后活化气体进入处理室并蚀刻装置上的氮化硅表面沉积物,温度控制在50℃。蚀刻速率超过1900A/min。在所有晶片测试温度:50℃、100℃和150℃下都观察到相同的现象。
实例2
该实例示出了加入氢氟烯烃HFO-1336mzz与氧气对氮化硅蚀刻速率的影响。在该实验中,原料气由氧气和HFO-1336mzz构成,O2与HFO的摩尔比为0.4比1、0.6比1、1比1和1.2比1。处理室压力为5托。总气体流速为1500-2000sccm,根据每个实验需要按比例为各气体设置流速。使用400kHz 5.9-8.7kW RF功率活化原料气达到有效中性温度。然后活化气体进入处理室并蚀刻装置上的氮化硅表面沉积物,温度控制在50℃。蚀刻速率超过2050A/min。在所有晶片测试温度:50℃、100℃和150℃下都观察到相同的现象。
实例3
该实例示出了加入包含氢氟烯烃HFO-1336mzz和CF4的高氟共混物与氧气对氮化硅蚀刻速率的影响。在该实验中,原料气由氧气和1∶1HFO-1336mzz:CF4构成,O2与高氟共混物的摩尔比为0.4比1、0.6比1、1比1和1.2比1。处理室压力为5托。总气体流速为1500-2000sccm,根据每个实验需要按比例为各气体设置流速。使用400kHz 5.9-8.7kW RF功率活化原料气达到有效中性温度。然后活化气体进入处理室并蚀刻装置上的氮化硅表面沉积物,温度控制在50℃。蚀刻速率超过2100A/min。在所有晶片测试温度:50℃、100℃和150℃下都观察到相同的现象。
实例4
该实例示出了加入高氟共混物、氢氟烯烃HFO-1234yf和NF3与氧气对氮化硅蚀刻速率的影响。在该实验中,原料气由氧气和1∶1HFO-1234yf:NF3构成,O2与高氟共混物的摩尔比为0.4比1、0.6比1、1比1和1.2比1。处理室压力为5托。总气体流速为1500-2000sccm,根据每个实验需要按比例为各气体设置流速。使用400kHz 5.9-8.7kW RF功率活化原料气达到有效中性温度。然后活化气体进入处理室并蚀刻装置上的氮化硅表面沉积物,温度控制在50℃。蚀刻速率超过2000A/min。在所有晶片测试温度:50℃、100℃和150℃下都观察到相同的现象。
实例5
该实例示出了加入高氟共混物、氢氟烯烃HFO-1234yf和C2F6与氧气对氮化硅蚀刻速率的影响。在该实验中,原料气由氧气和1∶1HFO-1234yf:C2F6构成,O2与高氟共混物的摩尔比为0.4比1、0.6比1、1比1和1.2比1。处理室压力为5托。总气体流速为1500-2000sccm,根据每个实验需要按比例为各气体设置流速。使用400kHz 5.9-8.7kW RF功率活化原料气达到有效中性温度。然后活化气体进入处理室并蚀刻装置上的氮化硅表面沉积物,温度控制在50℃。蚀刻速率超过2000A/min。在所有晶片测试温度:50℃、100℃和150℃下都观察到相同的现象。
实例6
该实例示出了加入高氟共混物、氢氟烯烃HFO-1234yf和SF6与氧气对氮化硅蚀刻速率的影响。在该实验中,原料气由氧气和1∶1HFO-1234yf:SF6构成,O2与高氟共混物的摩尔比为0.4比1、0.6比1、1比1和1.2比1。处理室压力为5托。总气体流速为1500-2000sccm,根据每个实验需要按比例为各气体设置流速。使用400kHz 5.9-8.7kW RF功率活化原料气达到有效中性温度。然后活化气体进入处理室并蚀刻装置上的氮化硅表面沉积物,温度控制在50℃。蚀刻速率超过2000A/min。在所有晶片测试温度:50℃、100℃和150℃下都观察到相同的现象。
实例7
该实例示出了加入氢氟烯烃HFO-1234yf和NF3与氧气对氮化硅蚀刻速率的影响。在该实验中,原料气由氧气和1∶1HFO-1234yf:NF3构成,O2与高氟共混物的摩尔比为0.4比1、0.6比1、1比1和1.2比1。处理室压力为5托。总气体流速为1500-2000sccm,根据每个实验需要按比例为各气体设置流速。使用400kHz 5.9-8.7kW RF功率活化原料气达到有效中性温度。然后活化气体进入处理室并蚀刻装置上的氮化硅表面沉积物,温度控制在50℃。蚀刻速率超过2000A/min。在所有晶片测试温度:50℃、100℃和150℃下都观察到相同的现象。
实例8至实例12
在实例8至12中,RF等离子体源为由ASTECH公司(ASTECH)制造的商用环型发电机单元。将原料气(例如氧气、氩气、1,1,1,4,4,4-六氟-2-丁炔)进料到RF等离子体源并穿过环形放电室,使其在此接受80MHz射频功率的放电以形成活化气体混合物。所使用的氧气和氩气由三福气体产品有限公司(Air Products San FU Co.Ltd.)以99.999%纯度制造。然后使活化气体混合物穿过水冷却的铝换热器以降低铝处理室的热负荷。表面沉积物包覆的晶片位于处理室中的温控装置上。
实例8
该实例示出了加入1,1,1,4,4,4-六氟-2-丁炔与氧气在CVD室清洁应用时对氮化硅蚀刻速率的影响。在该实验中,原料气由氧气和1,1,1,4,4,4-六氟-2-丁炔构成,O2与HFO的摩尔比为1比1、1.5比1、2.3比1、4比1和9比1。处理室压力为1托。总气体流速固定为200sccm,根据每个实验需要为各气体设置流速。原料气由400W RF功率活化。然后活化气体进入处理室并蚀刻装置上的氮化硅表面沉积物,温度控制在200℃。在90%氧气混合物下,最佳蚀刻速率为3,000A/min。
实例9
该实例示出氢氟烯烃HFO-1234yf和1,1,1,4,4,4-六氟-2-丁炔的混合物在蚀刻应用时对氧化硅蚀刻速率的影响。在该实验中,原料气由20sccm HFO-1234yf、20sccm 1,1,1,4,4,4-六氟-2-丁炔、20sccm O2和200sccm Ar构成。处理室压力为15毫托。原料气由1800WRF功率活化。然后活化气体进入处理室并且在硅层上的氧化硅层上蚀刻具有孔直径为0.2微米的酚醛清漆型光致抗蚀剂图案的衬底。衬底的温度被控制在20℃。利用上述制法的蚀刻速率为5,300A/min,并且SiO2/光致抗蚀剂的选择性为10。
实例10
该实例示出氢氟烯烃HFO-1234yf和六氟-1,3-丁二烯的混合物在蚀刻应用时对氧化硅蚀刻速率的影响。在该实验中,原料气由20sccm HFO-1234yf、20sccm六氟-1,3-丁二烯、20sccm O2和200sccm Ar构成。处理室压力为15毫托。原料气由1800W RF功率活化。然后活化气体进入处理室并且在硅层上的氧化硅层上蚀刻具有孔直径为0.2微米的酚醛清漆型光致抗蚀剂图案的衬底。衬底的温度被控制在20℃。利用上述制法的蚀刻速率为5,300A/min,并且SiO2/光致抗蚀剂的选择性为8。
实例11
该实例示出1,1,1,4,4,4-六氟-2-丁炔和六氟-1,3-丁二烯的混合物在蚀刻应用时对氧化硅蚀刻速率的影响。在该实验中,原料气由20sccm1,1,1,4,4,4-六氟-2-丁炔、20sccm六氟-1,3-丁二烯、20sccm O2和200sccm Ar构成。处理室压力为15毫托。原料气由1800W RF功率活化。然后活化气体进入处理室并且在硅层上的氧化硅层上蚀刻具有孔直径为0.2微米的酚醛清漆型光致抗蚀剂图案的衬底。衬底的温度被控制在20℃。利用上述制法的蚀刻速率为5,500A/min,并且SiO2/光致抗蚀剂的选择性为5。
实例12
该实例示出1,1,1,4,4,4-六氟-2-丁炔和反式-1,1,1,4,4,4-六氟-2-丁烯的混合物在蚀刻应用时对氧化硅蚀刻速率的影响。在该实验中,原料气由20sccm 1,1,1,4,4,4-六氟-2-丁炔、20sccm反式-1,1,1,4,4,4-六氟-2-丁烯、20sccm O2和200sccm Ar构成。处理室压力为15毫托。原料气由1800W RF功率活化。然后活化气体进入处理室并且在硅层上的氧化硅层上蚀刻具有孔直径为0.2微米的酚醛清漆型光致抗蚀剂图案的衬底。衬底的温度被控制在20℃。利用上述制法的蚀刻速率为5,300A/min,并且SiO2/光致抗蚀剂的选择性为10。代替反式-1,1,1,4,4,4-六氟-2-丁烯,六氟-2-丁炔和顺式-1,1,1,4,4,4-六氟-2-丁烯的混合物指示了上述混合物的类似结果。
虽然已示出和描述了本发明的具体实施例,但本领域技术人员仍可进行另外的修改和改进。因此期望的是,应当理解,本发明不限于所示的特定形式,并意在通过以下附加权利要求涵盖不脱离本发明精神和范围的所有修改。

Claims (17)

1.一种蚀刻气体混合物,包含至少一种氟烯烃和氧气,
其中所述氢氟烯烃选自CHF=CF2、Z-CF3-CF=CHF、Z-CF3-CF=CHF、CF3-CH=CF2、CF3-CF=CH2、CF3-CH=CHF、CF2=CH-CHF、CF2=CF-CF3、Z-CF3-CH=CH-CF3、E-CF3-CH=CHCF3、CF3-CF2-CH=CHF、CF3-CF2-CH=CHF、CH2=CF-CF2-CF3、CHF2-CF=CF-CHF2、Z-CF3-CF=CF-CF3、E-CF3-CF=CF-CF3、CF3-CF=CH-CF3、CF3-CF=CH-CF3、CHF=CF-CF2-CF3、CHF=CF-CF2-CF3、CF2=CF-CHF-CF3、CF2=CF-CF=CF2、CHF=C(CF3)2、CF2=C(CF3)(CHF2)、CF2=CH-CH2-CF3、CH2=CF-CF2-CHF2、CF2=CF-CHF-CH2F、CF2=CFCH2CHF2、CHF=CF-CHF-CHF2、CHF2-CF=CH-CHF2、CHF2-CF=CF-CH2F、CHF2-CF=CF-CH2F、CHF2-CH=CF-CHF2、CHF2-CH=CF-CHF2,以及CF3C≡CCF3、CHC1=CH-CF3。
2.根据权利要求1所述的蚀刻气体混合物,还包含载气。
3.根据权利要求1所述的蚀刻气体混合物,其中所述载气为He、Ar或N2
4.根据权利要求1所述的蚀刻气体混合物,其中所述蚀刻气体混合物还包含第二蚀刻气体,其中所述第二蚀刻气体为第二氟烯烃、全氟化碳、SF6或NF3
5.根据权利要求4所述的蚀刻气体混合物,其中所述第二蚀刻气体为全氟化碳,所述全氟化碳选自四氟甲烷、六氟乙烷、八氟丙烷、全氟四氢呋喃、六氟丁二烯和八氟环丁烷。
6.一种半导体制造处理室的操作方法,包括使用包含第一氟烯烃和第二氟烯烃的蚀刻气体蚀刻半导体上的膜。
7.根据权利要求6所述的方法,其中蚀刻膜的步骤还包括,
将光掩模转移到半导体以形成掩蔽表面和暴露表面,
形成所述蚀刻气体的等离子体,以及
将所述半导体的暴露表面暴露于所述等离子体以清除所述半导体的暴露表面的部分来形成所述半导体的蚀刻表面。
8.根据权利要求7所述的方法,其中所述方法还包括形成第二蚀刻气体、活化所述第二蚀刻气体以形成第二等离子体、将所述第二等离子体沉积在所述蚀刻表面上以在所述半导体的蚀刻表面上形成聚合物层的步骤。
9.根据权利要求7所述的方法,其中所述至少两种氟烯烃中的至少一种为六氟-2-丁炔、HFO-1336mzz、HFO-1234yf或HFO-1234ze。
10.根据权利要求7所述的方法,其中所述至少两种氟烯烃包括HFO-1336mzz和第二氟烯烃,所述第二氟烯烃选自六氟-2-丁炔、六氟-1,2-丁二烯、HFO-1234yf或HFO-1234ze。
11.根据权利要求7所述的方法,其中所述表面沉积物选自氧化硅、氮化镓、氮化硅、氮氧化硅、碳氮化硅、氮化钨、氮化钛和氮化钽。
12.根据权利要求6所述的方法,其中由所述蚀刻气体形成等离子体的步骤在远距室中或在所述处理室中执行。
13.根据权利要求6所述的方法,其中所述气体混合物还包含以至少约1∶1的氧气∶氟烯烃的摩尔比的氧气。
14.根据权利要求11所述的方法,其中所述处理室中的压力不超过30托。
15.根据权利要求11所述的方法,其中所述远距室中的压力从0.5托至50托。
16.一种用于从处理室中的表面清除表面沉积物的方法,包括:活化包含氧气和氟烯烃的气体混合物,其中所述气体混合物中氟烯烃的摩尔百分比从约5%至约99%,以及使所述活化的气体混合物与所述表面沉积物接触,从而清除至少一些所述沉积物;其中所述氢氟烯烃选自,并且其中任选地,所述气体混合物的活化步骤发生在远距室中。
17.根据权利要求16所述的方法,其中所述处理室为用于制造电子器件的沉积室的内部。
CN201480076636.2A 2013-12-30 2014-12-22 室清洁和半导体蚀刻气体 Active CN106414798B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110175233.5A CN112981369B (zh) 2013-12-30 2014-12-22 室清洁和半导体蚀刻气体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361921594P 2013-12-30 2013-12-30
US61/921594 2013-12-30
PCT/US2014/071927 WO2015103003A1 (en) 2013-12-30 2014-12-22 Chamber cleaning and semiconductor etching gases

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202110175233.5A Division CN112981369B (zh) 2013-12-30 2014-12-22 室清洁和半导体蚀刻气体

Publications (2)

Publication Number Publication Date
CN106414798A true CN106414798A (zh) 2017-02-15
CN106414798B CN106414798B (zh) 2021-04-06

Family

ID=52283000

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480076636.2A Active CN106414798B (zh) 2013-12-30 2014-12-22 室清洁和半导体蚀刻气体
CN202110175233.5A Active CN112981369B (zh) 2013-12-30 2014-12-22 室清洁和半导体蚀刻气体

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202110175233.5A Active CN112981369B (zh) 2013-12-30 2014-12-22 室清洁和半导体蚀刻气体

Country Status (8)

Country Link
US (3) US10109496B2 (zh)
EP (1) EP3090073B1 (zh)
JP (2) JP6462699B2 (zh)
KR (2) KR102476934B1 (zh)
CN (2) CN106414798B (zh)
SG (2) SG10201906117XA (zh)
TW (2) TWI703206B (zh)
WO (1) WO2015103003A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418046A (zh) * 2017-11-30 2020-07-14 朗姆研究公司 氧化硅氮化硅堆叠件楼梯踏步式蚀刻

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3090073B1 (en) * 2013-12-30 2020-02-05 The Chemours Company FC, LLC Method of etching a film on a semiconductor in a semiconductor manufacturing process chamber
JP2016207788A (ja) * 2015-04-20 2016-12-08 東京エレクトロン株式会社 上部電極の表面処理方法、プラズマ処理装置及び上部電極
KR20190038945A (ko) 2016-08-29 2019-04-09 도쿄엘렉트론가부시키가이샤 실리콘 질화물의 준원자 층 에칭 방법
WO2018156985A1 (en) 2017-02-23 2018-08-30 Tokyo Electron Limited Method of anisotropic extraction of silicon nitride mandrel for fabrication of self-aligned block structures
TWI756367B (zh) 2017-02-23 2022-03-01 日商東京威力科創股份有限公司 矽氮化物之準原子層蝕刻方法
CN112823148B (zh) * 2018-10-09 2024-10-15 大金工业株式会社 全氟炔烃化合物的制造方法
JP7391297B2 (ja) * 2019-06-28 2023-12-05 株式会社Flosfia エッチング処理方法およびエッチング処理装置
US11854773B2 (en) * 2020-03-31 2023-12-26 Applied Materials, Inc. Remote plasma cleaning of chambers for electronics manufacturing systems
CN116325090A (zh) * 2020-10-15 2023-06-23 株式会社力森诺科 蚀刻气体及其制造方法、蚀刻方法以及半导体元件的制造方法
US20230374381A1 (en) 2020-10-15 2023-11-23 Resonac Corporation Etching gas, method for producing same, etching method, and method for producing semiconductor device
TWI748741B (zh) * 2020-11-11 2021-12-01 暉盛科技股份有限公司 電漿晶圓清潔機及使用其清潔晶圓的方法
KR102244885B1 (ko) * 2021-02-03 2021-04-27 (주)원익머트리얼즈 높은 선택비를 갖는 식각 가스 조성물과 이를 이용한 반도체 메모리 소자의 제조 공정
KR102582730B1 (ko) * 2021-04-07 2023-09-25 (주)후성 플루오르화 시클로프로판 가스의 제조방법 및 이를 포함하는 에칭용 가스 조성물

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039494A1 (fr) * 2000-11-08 2002-05-16 Daikin Industries, Ltd. Gaz de gravure seche et procede de gravure seche
US20020197761A1 (en) * 2001-05-22 2002-12-26 Reflectivity, Inc. Method for making a micromechanical device by removing a sacrificial layer with multiple sequential etchants
CN1614092A (zh) * 2003-11-04 2005-05-11 日本酸素株式会社 清洗气体以及清洗方法
CN101163816A (zh) * 2004-03-24 2008-04-16 麻省理工学院 用于去除表面沉积物的远距腔室法
CN102341444A (zh) * 2009-03-06 2012-02-01 苏威氟有限公司 不饱和氢氟烃的用途
WO2013015033A1 (ja) * 2011-07-27 2013-01-31 セントラル硝子株式会社 ドライエッチング剤
CN103003925A (zh) * 2010-07-12 2013-03-27 中央硝子株式会社 干蚀刻剂以及干蚀刻方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191002A (ja) * 1996-01-10 1997-07-22 Sony Corp プラズマエッチング方法
US5824375A (en) 1996-10-24 1998-10-20 Applied Materials, Inc. Decontamination of a plasma reactor using a plasma after a chamber clean
WO1999008805A1 (en) 1997-08-20 1999-02-25 Air Liquide Electronics Chemicals & Services, Inc. Plasma cleaning and etching methods using non-global-warming compounds
US6849193B2 (en) * 1999-03-25 2005-02-01 Hoiman Hung Highly selective process for etching oxide over nitride using hexafluorobutadiene
JP2003234299A (ja) * 2002-02-12 2003-08-22 Research Institute Of Innovative Technology For The Earth クリーニングガス及びエッチングガス
JP3527915B2 (ja) 2002-03-27 2004-05-17 株式会社ルネサステクノロジ Cvd装置およびそれを用いたcvd装置のクリーニング方法
WO2005098086A2 (en) 2004-03-24 2005-10-20 Massachusetts Institute Of Technology Remote chamber methods for removing surface deposits
CN1790613A (zh) * 2004-11-05 2006-06-21 东京毅力科创株式会社 等离子体加工方法
US8187415B2 (en) 2006-04-21 2012-05-29 Applied Materials, Inc. Plasma etch reactor with distribution of etch gases across a wafer surface and a polymer oxidizing gas in an independently fed center gas zone
JP2008244144A (ja) 2007-03-27 2008-10-09 Toshiba Corp 半導体装置の製造方法
US8614151B2 (en) * 2008-01-04 2013-12-24 Micron Technology, Inc. Method of etching a high aspect ratio contact
JP2011124239A (ja) 2008-03-31 2011-06-23 Daikin Industries Ltd ドライエッチングガス及びそれを用いたドライエッチング方法
JP5266902B2 (ja) * 2008-06-20 2013-08-21 日本ゼオン株式会社 含フッ素オレフィン化合物の製造方法
EP3090073B1 (en) * 2013-12-30 2020-02-05 The Chemours Company FC, LLC Method of etching a film on a semiconductor in a semiconductor manufacturing process chamber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002039494A1 (fr) * 2000-11-08 2002-05-16 Daikin Industries, Ltd. Gaz de gravure seche et procede de gravure seche
US20020197761A1 (en) * 2001-05-22 2002-12-26 Reflectivity, Inc. Method for making a micromechanical device by removing a sacrificial layer with multiple sequential etchants
CN1614092A (zh) * 2003-11-04 2005-05-11 日本酸素株式会社 清洗气体以及清洗方法
CN101163816A (zh) * 2004-03-24 2008-04-16 麻省理工学院 用于去除表面沉积物的远距腔室法
CN102341444A (zh) * 2009-03-06 2012-02-01 苏威氟有限公司 不饱和氢氟烃的用途
CN103003925A (zh) * 2010-07-12 2013-03-27 中央硝子株式会社 干蚀刻剂以及干蚀刻方法
WO2013015033A1 (ja) * 2011-07-27 2013-01-31 セントラル硝子株式会社 ドライエッチング剤

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111418046A (zh) * 2017-11-30 2020-07-14 朗姆研究公司 氧化硅氮化硅堆叠件楼梯踏步式蚀刻

Also Published As

Publication number Publication date
US20160343579A1 (en) 2016-11-24
TWI650405B (zh) 2019-02-11
CN112981369A (zh) 2021-06-18
US10109496B2 (en) 2018-10-23
TW201920614A (zh) 2019-06-01
US20190027375A1 (en) 2019-01-24
CN106414798B (zh) 2021-04-06
SG11201605356PA (en) 2016-07-28
EP3090073A1 (en) 2016-11-09
SG10201906117XA (en) 2019-08-27
JP6775569B2 (ja) 2020-10-28
TWI703206B (zh) 2020-09-01
JP2017503350A (ja) 2017-01-26
KR102476934B1 (ko) 2022-12-14
WO2015103003A1 (en) 2015-07-09
EP3090073B1 (en) 2020-02-05
JP6462699B2 (ja) 2019-01-30
US20180366339A1 (en) 2018-12-20
JP2019057737A (ja) 2019-04-11
KR102400322B1 (ko) 2022-05-20
CN112981369B (zh) 2023-11-10
TW201534689A (zh) 2015-09-16
KR20160105407A (ko) 2016-09-06
KR20220070062A (ko) 2022-05-27

Similar Documents

Publication Publication Date Title
CN106414798A (zh) 室清洁和半导体蚀刻气体
JP7000575B2 (ja) 多積層をエッチングするための化学的性質
JP6811284B2 (ja) 3d nandフラッシュメモリの製造方法
JP6871233B2 (ja) シリコン含有膜をエッチングするための方法
JP5265100B2 (ja) 炭素系ハードマスクを開く方法
TWI281715B (en) Remote chamber methods for removing surface deposits
US20090047447A1 (en) Method for removing surface deposits and passivating interior surfaces of the interior of a chemical vapor deposition reactor
JP2016157940A (ja) 窒化シリコンのエッチング時における超高選択比を達成するための方法
KR20010080467A (ko) 헥사 플루오르화 부타디엔 또는 관련 플루오르화 탄화수소를 사용하여 산화물을 에칭하고 넓은 프로세스윈도우를 명시하기 위한 프로세스
KR20080050403A (ko) 표면 침착물을 제거하고 화학 증착 챔버 내부의 내면을부동태화하는 방법
US20050258137A1 (en) Remote chamber methods for removing surface deposits
CN105917025A (zh) 氢氟烯烃蚀刻气体混合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant