CN106395740A - 一种贵金属纳米粒子间距可控的sers衬底制备方法 - Google Patents

一种贵金属纳米粒子间距可控的sers衬底制备方法 Download PDF

Info

Publication number
CN106395740A
CN106395740A CN201610929950.1A CN201610929950A CN106395740A CN 106395740 A CN106395740 A CN 106395740A CN 201610929950 A CN201610929950 A CN 201610929950A CN 106395740 A CN106395740 A CN 106395740A
Authority
CN
China
Prior art keywords
noble metal
metal nano
nano particles
aao template
sers substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610929950.1A
Other languages
English (en)
Other versions
CN106395740B (zh
Inventor
梁培
吴燕雄
黄杰
舒海波
徐碧洁
白阳
曹艳亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201610929950.1A priority Critical patent/CN106395740B/zh
Publication of CN106395740A publication Critical patent/CN106395740A/zh
Application granted granted Critical
Publication of CN106395740B publication Critical patent/CN106395740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明公开一种贵金属纳米粒子间距可控的SERS衬底制备方法,主要步骤为:用稀释的盐酸清洗AAO模板,而后通过物理方法或者化学方法获得贵金属纳米粒子团簇,并填满整个AAO模板的孔。进一步将贵金属纳米粒子填满孔的AAO模板倒置于一块PMMA上,并进行热处理,使贵金属纳米粒子团簇侵入PMMA中。最后通过稀释的盐酸洗涤,去除AAO模板后,放入真空干燥箱干燥,得到贵金属纳米粒子规则排布的SERS衬底。该方法操作简单方便,SERS衬底上贵金属纳米粒子排布均匀规则,有利于进行拉曼光谱分析。

Description

一种贵金属纳米粒子间距可控的SERS衬底制备方法
技术领域
本发明涉及一种SERS衬底制备方法,尤其涉及到一种基于金属纳米粒子表面拉曼增强效应的SERS衬底制备方法,属于光谱分析检测技术领域。
背景技术
表面拉曼光谱(SERS)由于超高灵敏度,且能获得物质分子结构信息,被称为物质的“指纹谱”,被广泛应用于食品、医药、生命、农业等领域。经过40年的理论和实验研究表明,SERS效应起源于衬底金属表面局域电场增强和金属基底与吸附分子之间相互作用的化学增强,因此高活性的衬底是SERS效应提高的关键。
在SERS高活性衬底制备中,尤其以制备规则有序的阵列型结构为代表手段,如专利号为:201310628084.9,专利名称为:一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法的发明专利,采用阳极氧化法制备二氧化钛纳米管阵列,然后采用一定浓度氢氧化钾和盐酸溶液浸泡,每个纳米管中获得一个较矮的二氧化钛纳米棒,同时纳米管之间形成小平面;最后再离子溅射Ag,获得单层或多层Ag纳米颗粒组装的纳米环阵列。该发明的Ag纳米颗粒组装的纳米环阵列SERS衬底活性高,信号重复性好,但需要首先制作二氧化钛纳米管阵列,同时需要采用离子溅射,且需要控制溅射时间,制备工艺要求高。相关的研究还报道了采用平板印刷技术、纳米颗粒的有序自组装体等技术实现规则有序的阵列型结构SERS衬底,但这些方法制备步骤繁琐,成本高。
发明内容
为了解决上述现有技术的不足,本发明提供了一种贵金属纳米粒子间距可控的SERS衬底制备方法,该方法采用AAO模板结构优势,能获得纳米粒子分布均匀、间距可控的SERS衬底,操作简单方便。
本发明采用的技术方案为:一种贵金属纳米粒子间距可控的SERS衬底制备方法,主要步骤为:
第一步:用稀释的盐酸清洗AAO模板;
第二步:基于第一步所清洗获得的AAO模板,通过物理方法或化学方法获得贵金属纳米粒子团簇,使其填满整个AAO模板的孔;
第三步:放置一块PMMA,将第二步所获得的AAO模板倒置放于PMMA上,贵金属纳米粒子团簇向下落于PMMA表面,而后放入热环境或者直接对PMMA加热,使PMMA变软,贵金属纳米粒子团簇浸入PMMA中;
第四步:将第三步形成的整体放入稀释的盐酸洗涤,去除AAO模板后,放入真空干燥箱干燥,得到贵金属纳米粒子规则排布的SERS衬底。
所述的贵金属为金或银或铜。
所述的贵金属纳米粒子可以通过控制生长时间来调节纳米颗粒的尺寸。
所述的物理方法为原子蒸镀,磁控溅射或者脉冲激光沉积。
所述的化学方法为金属离子的自组装生长或利用电化学沉积。
所述的AAO模板为单通AAO模板。
所述的PMMA厚度小于1mm。
所述的稀释的盐酸浓度小于5%。
本发明的有益效果为:
1.采用AAO模板孔对金属纳米粒子的限制,实现金属纳米粒子的间距可控制备。
2.采用AAO模板孔的限制和时间控制,可以调节纳米颗粒的尺寸。
3.贵金属纳米粒子间距可控的SERS衬底制备所采用的AAO模板、PMMA等材料成本低,制备过程简单方便。
附图说明
下面结合附图及具体实施方式对本发明作进一步说明。
图1为AAO模板俯视图;
图2为填充了贵金属纳米粒子的AAO模板俯视图;
图3为填充了贵金属纳米粒子的AAO模板倒置于PMMA上的结构图;
图4为贵金属纳米粒子等间距排布的SERS衬底图。
图中,1为AAO模板,2为贵金属纳米粒子,3为PMMA。
具体实施方式
图1中,一种贵金属纳米粒子间距可控的SERS衬底制备方法,第一步,采用稀释的盐酸和去离子水清洗单通AAO模板1,去除表面杂质,盐酸浓度不超过5%。
图2中,一种贵金属纳米粒子间距可控的SERS衬底制备方法,第二步,将图1中采用稀释的盐酸和去离子水清洗干净的单通AAO模板1,通过原子蒸镀,磁控溅射或者脉冲激光沉积Au或Ag或Cu贵金属纳米粒子2团簇或者通过贵金属离子Au+或Ag+或Cu2+的自组装生长或利用电化学沉积的方法获得Au或Ag或Cu贵金属纳米粒子2团簇,使其填满整个AAO模板1的孔。
图3中,一种贵金属纳米粒子间距可控的SERS衬底制备方法,第三步,放置一块厚度小于1mm的PMMA3,将图2中第二步所获得的AAO模板1倒置放于PMMA3上,Au或Ag或Cu贵金属纳米粒子2团簇向下落于PMMA3表面,而后放入热环境或者直接对PMMA3加热,使PMMA3变软,Au或Ag或Cu贵金属纳米粒子2团簇浸入PMMA3中。
图4中,一种贵金属纳米粒子间距可控的SERS衬底制备方法,第四步:将图3中第三步形成的整体放入盐酸浓度不超过5%的稀释的盐酸洗涤,去除AAO模板1后,放入真空干燥箱干燥,得到Au或Ag或Cu贵金属纳米粒子2规则排布的SERS衬底。
实施例1一种AuNPs间距可控的SERS衬底制备方法
第一步,采用稀释的盐酸和去离子水清洗单通AAO模板1,去除表面杂质,盐酸浓度不超过5%。
第二步,将采用稀释的盐酸和去离子水清洗干净的单通AAO模板1,通过原子蒸镀,磁控溅射或者脉冲激光沉积AuNPs2团簇或者通过贵金属离子Au+的自组装生长或利用电化学沉积的方法获得AuNPs2团簇,使其填满整个AAO模板1的孔。
第三步,放置一块厚度小于1mm的PMMA3,将第二步所获得的AAO模板1倒置放于PMMA3上,AuNPs2团簇向下落于PMMA3表面,而后放入热环境或者直接对PMMA3加热,使PMMA3变软,AuNPs2团簇浸入PMMA3中。
第四步:将第三步形成的整体放入盐酸浓度不超过5%的稀释的盐酸洗涤,去除AAO模板1后,放入真空干燥箱干燥,得到AuNPs2规则排布的SERS衬底。
实施例2一种AgNPs间距可控的SERS衬底制备方法
第一步,采用稀释的盐酸和去离子水清洗单通AAO模板1,去除表面杂质,盐酸浓度不超过5%。
第二步,将采用稀释的盐酸和去离子水清洗干净的单通AAO模板1,通过原子蒸镀,磁控溅射或者脉冲激光沉积AgNPs2团簇或者通过贵金属离子Ag+的自组装生长或利用电化学沉积的方法获得AgNPs2团簇,使其填满整个AAO模板1的孔。
第三步,放置一块厚度小于1mm的PMMA3,将第二步所获得的AAO模板1倒置放于PMMA3上,AgNPs2团簇向下落于PMMA3表面,而后放入热环境或者直接对PMMA3加热,使PMMA3变软,AgNPs2团簇浸入PMMA3中。
第四步:将第三步形成的整体放入盐酸浓度不超过5%的稀释的盐酸洗涤,去除AAO模板1后,放入真空干燥箱干燥,得到AgNPs2规则排布的SERS衬底。
实施例3一种CuNPs间距可控的SERS衬底制备方法
第一步,采用稀释的盐酸和去离子水清洗单通AAO模板1,去除表面杂质,盐酸浓度不超过5%。
第二步,将采用稀释的盐酸和去离子水清洗干净的单通AAO模板1,通过原子蒸镀,磁控溅射或者脉冲激光沉积CuNPs2团簇或者通过贵金属离子Cu2+的自组装生长或利用电化学沉积的方法获得CuNPs2团簇,使其填满整个AAO模板1的孔。
第三步,放置一块厚度小于1mm的PMMA3,将第二步所获得的AAO模板1倒置放于PMMA3上,CuNPs2团簇向下落于PMMA3表面,而后放入热环境或者直接对PMMA3加热,使PMMA3变软,CuNPs2团簇浸入PMMA3中。
第四步:将第三步形成的整体放入盐酸浓度不超过5%的稀释的盐酸洗涤,去除AAO模板1后,放入真空干燥箱干燥,得到CuNPs2规则排布的SERS衬底。

Claims (8)

1.一种贵金属纳米粒子间距可控的SERS衬底制备方法,其特征在于,主要步骤为:
第一步:用稀释的盐酸清洗AAO模板;
第二步:基于第一步所清洗获得的AAO模板,通过物理方法或化学方法获得贵金属纳米粒子团簇,使其填满整个AAO模板的孔;
第三步:放置一块PMMA,将第二步所获得的AAO模板倒置放于PMMA上,贵金属纳米粒子团簇向下落于PMMA表面,而后放入热环境或者直接对PMMA加热,使PMMA变软,贵金属纳米粒子团簇浸入PMMA中;
第四步:将第三步形成的整体放入稀释的盐酸洗涤,去除AAO模板后,放入真空干燥箱干燥,得到贵金属纳米粒子规则排布的SERS衬底。
2.根据权利要求1所述的一种贵金属纳米粒子间距可控的SERS衬底制备方法,其特征在于,所述的贵金属为金或银或铜。
3.根据权利要求1或2所述的一种贵金属纳米粒子间距可控的SERS衬底制备方法,其特征在于,所述的贵金属纳米粒子可以通过控制生长时间来调节纳米颗粒的尺寸。
4.根据权利要求1所述的一种贵金属纳米粒子间距可控的SERS衬底制备方法,其特征在于,所述的物理方法为原子蒸镀,磁控溅射或者脉冲激光沉积。
5.根据权利要求1所述的一种贵金属纳米粒子间距可控的SERS衬底制备方法,其特征在于,所述的化学方法为金属离子的自组装生长或利用电化学沉积。
6.根据权利要求1所述的一种贵金属纳米粒子间距可控的SERS衬底制备方法,其特征在于,所述的AAO模板为单通AAO模板。
7.根据权利要求1所述的一种贵金属纳米粒子间距可控的SERS衬底制备方法,其特征在于,所述的PMMA厚度小于1mm。
8.根据权利要求1所述的一种贵金属纳米粒子间距可控的SERS衬底制备方法,其特征在于,所述的稀释的盐酸浓度小于5%。
CN201610929950.1A 2016-10-26 2016-10-26 一种贵金属纳米粒子间距可控的sers衬底制备方法 Active CN106395740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610929950.1A CN106395740B (zh) 2016-10-26 2016-10-26 一种贵金属纳米粒子间距可控的sers衬底制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610929950.1A CN106395740B (zh) 2016-10-26 2016-10-26 一种贵金属纳米粒子间距可控的sers衬底制备方法

Publications (2)

Publication Number Publication Date
CN106395740A true CN106395740A (zh) 2017-02-15
CN106395740B CN106395740B (zh) 2018-10-19

Family

ID=58011763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610929950.1A Active CN106395740B (zh) 2016-10-26 2016-10-26 一种贵金属纳米粒子间距可控的sers衬底制备方法

Country Status (1)

Country Link
CN (1) CN106395740B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892100A (zh) * 2018-06-25 2018-11-27 武汉大学 一种金属纳米针尖阵列的制备方法
CN110308273A (zh) * 2019-07-19 2019-10-08 武汉理工大学 基于磁性贵金属复合纳米颗粒与微流控的黄曲霉毒素检测方法
CN110715916A (zh) * 2019-09-29 2020-01-21 山东大学 金属纳米点阵/单层石墨烯sers衬底及其制备方法和应用
CN111929277A (zh) * 2020-06-03 2020-11-13 中国科学院苏州生物医学工程技术研究所 间距可调的贵金属纳米粒子一维组装体及其在纳米传感器中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077184A1 (en) * 2003-10-09 2005-04-14 Organotek Defense System Corporation Method for preparing surface for obtaining surface-enhanced Raman scattering spectra of organic compounds
CN101566570A (zh) * 2009-05-27 2009-10-28 东南大学 有序可控的表面增强拉曼散射活性基底及其制备方法
WO2010094106A1 (en) * 2009-02-18 2010-08-26 National Research Council Of Canada Substrate for surface-enhanced raman scattering
CN103317141A (zh) * 2013-06-17 2013-09-25 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法
CN104878427A (zh) * 2015-06-16 2015-09-02 华中科技大学 一种纳米压印制备柔性透明表面增强拉曼散射基底的方法
CN105424676A (zh) * 2015-11-24 2016-03-23 郭秋泉 一种柔性表面增强拉曼光谱基底的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077184A1 (en) * 2003-10-09 2005-04-14 Organotek Defense System Corporation Method for preparing surface for obtaining surface-enhanced Raman scattering spectra of organic compounds
WO2010094106A1 (en) * 2009-02-18 2010-08-26 National Research Council Of Canada Substrate for surface-enhanced raman scattering
CN101566570A (zh) * 2009-05-27 2009-10-28 东南大学 有序可控的表面增强拉曼散射活性基底及其制备方法
CN103317141A (zh) * 2013-06-17 2013-09-25 中国科学院宁波材料技术与工程研究所 一种金属纳米颗粒的制备方法
CN104878427A (zh) * 2015-06-16 2015-09-02 华中科技大学 一种纳米压印制备柔性透明表面增强拉曼散射基底的方法
CN105424676A (zh) * 2015-11-24 2016-03-23 郭秋泉 一种柔性表面增强拉曼光谱基底的制备方法及其应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108892100A (zh) * 2018-06-25 2018-11-27 武汉大学 一种金属纳米针尖阵列的制备方法
CN110308273A (zh) * 2019-07-19 2019-10-08 武汉理工大学 基于磁性贵金属复合纳米颗粒与微流控的黄曲霉毒素检测方法
CN110715916A (zh) * 2019-09-29 2020-01-21 山东大学 金属纳米点阵/单层石墨烯sers衬底及其制备方法和应用
CN111929277A (zh) * 2020-06-03 2020-11-13 中国科学院苏州生物医学工程技术研究所 间距可调的贵金属纳米粒子一维组装体及其在纳米传感器中的应用
CN111929277B (zh) * 2020-06-03 2021-06-01 中国科学院苏州生物医学工程技术研究所 间距可调的贵金属纳米粒子一维组装体及其在纳米传感器中的应用

Also Published As

Publication number Publication date
CN106395740B (zh) 2018-10-19

Similar Documents

Publication Publication Date Title
CN106395740A (zh) 一种贵金属纳米粒子间距可控的sers衬底制备方法
CN1312034C (zh) 单一轴向排布的单晶硅纳米线阵列制备方法
JP3204278U (ja) スプレー設備
CN107478639B (zh) 表面增强拉曼散射基底
CN107607516B (zh) 一种拉曼增强的化学传感器及其制备方法
Premchand et al. Fabrication of self-organized TiO2 nanotubes from columnar titanium thin films sputtered on semiconductor surfaces
CN107177874B (zh) 一种超高密度有序银纳米球阵列及其应用
FI126197B (en) A method for extracting metal nanoparticles from solutions
Tao et al. Controlled growth of ZnO nanorods on textured silicon wafer and the application for highly effective and recyclable SERS substrate by decorating Ag nanoparticles
CN102590179A (zh) 银纳米点阵表面增强拉曼活性基底及其制备方法
JP2007533125A (ja) 透明で伝導性の酸化物層を持つ基板を洗浄およびエッチングする方法並びに該方法を実施する装置
CN103641059A (zh) 硅柱支撑的金属膜纳米结构阵列及其制备方法
CN102530845B (zh) 三角形金属纳米孔阵列的制备方法
US20150203984A1 (en) Etching in the presence of alternating voltage profile and resulting porous structure
CN106596505A (zh) 一种检测农药的表面增强拉曼散射基底及其制备方法和应用
CN107447235A (zh) 一种纳米多孔金@有序多孔镍复合材料及其制备方法和应用
CN109972093B (zh) 一种高聚物仿生构型光热转换材料及其制备方法和应用
Chou et al. Fabrication of silver interdigitated electrode by a stamp method
Gulina et al. A brief review on immobilization of Gold nanoparticles on inorganic surfaces and Successive Ionic Layer Deposition
CN107337176A (zh) 表面增强拉曼散射基底及其制备工艺
CN103887367B (zh) 一种银纳米颗粒辅助两次刻蚀硅微纳米洞减反射织构的制备方法
CN108330454A (zh) 一种网状金银复合纳米薄膜的制备方法
CN108031832B (zh) 一种具有多孔结构的铂族合金纳米颗粒及其制备方法
Baykul et al. Effect of seed layer on surface morphological, structural and optical properties of CdO thin films fabricated by an electrochemical deposition technique
CN105839062A (zh) 一种复合型多层膜结构银纳米线及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170215

Assignee: Xinchang China Metrology University Enterprise Innovation Research Institute Co.,Ltd.

Assignor: China Jiliang University

Contract record no.: X2021330000071

Denomination of invention: Preparation method of SERS substrate with controllable spacing of noble metal nanoparticles

Granted publication date: 20181019

License type: Common License

Record date: 20210816

EC01 Cancellation of recordation of patent licensing contract
EC01 Cancellation of recordation of patent licensing contract

Assignee: Xinchang China Metrology University Enterprise Innovation Research Institute Co.,Ltd.

Assignor: China Jiliang University

Contract record no.: X2021330000071

Date of cancellation: 20211231