CN106215972A - 一种合成气一步转化制芳烃的催化剂及其制备方法 - Google Patents

一种合成气一步转化制芳烃的催化剂及其制备方法 Download PDF

Info

Publication number
CN106215972A
CN106215972A CN201610609584.1A CN201610609584A CN106215972A CN 106215972 A CN106215972 A CN 106215972A CN 201610609584 A CN201610609584 A CN 201610609584A CN 106215972 A CN106215972 A CN 106215972A
Authority
CN
China
Prior art keywords
catalyst
synthesis gas
preparing arene
molecular sieve
step conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610609584.1A
Other languages
English (en)
Other versions
CN106215972B (zh
Inventor
王野
康金灿
成康
张庆红
周伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201610609584.1A priority Critical patent/CN106215972B/zh
Publication of CN106215972A publication Critical patent/CN106215972A/zh
Application granted granted Critical
Publication of CN106215972B publication Critical patent/CN106215972B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/087X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7088MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/043Catalysts; their physical properties characterised by the composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/0425Catalysts; their physical properties
    • C07C1/0445Preparation; Activation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

一种合成气一步转化制芳烃的催化剂及其制备方法,涉及催化剂。所述催化剂由含锆钙钛矿、多级孔沸石分子筛和氧化物助剂组成,以质量百分比计算,含锆钙钛矿的含量为30%~70%,多级孔沸石分子筛的含量为30%~60%,氧化物助剂的含量为0.1%~10%。制备方法:1)按照所述催化剂的组分,称取IA、IIA、VB、VIB、VIIB、IIB、IVA族元素、稀土元素的至少一种元素的盐类化合物,加入到水或醇中配成溶液A;称取多级孔沸石分子筛加入溶液A中,抽滤、洗涤,滤饼干燥,得固体粉末,再与含锆钙钛矿混合,研磨,焙烧,通入氢气或氢气与惰性气体的混合气,升温还原,将还原后的固体样品压片成型,即得。

Description

一种合成气一步转化制芳烃的催化剂及其制备方法
技术领域
本发明涉及催化剂,具体是涉及一种合成气一步转化制芳烃的催化剂及其制备方法。
背景技术
合成气转化即CO加氢反应,可制得从汽油、石脑油、柴油、航空燃油等燃料有产品,还可以获得低碳烯烃、芳烃等重要化工原料。目前国内外已实现基于煤或天然气制燃料油的工业化生产,如南非Sasol公司、英荷Shell公司、中科合成油、兖矿集团等均拥有基于煤或天然气的煤制油技术。然而针对合成气制芳烃的技术至今尚未工业化,主要技术难点在于芳烃的选择性不高,且催化剂稳定性较差。
合成气一步转化制芳烃的研究热点主要集中在高选择性催化剂的研制。主要报道的体系有:Pd修饰的Fe-HZSM-5催化剂(Energy Fuel,2014,28,2027);Pd-ZnO-Al2O3与HZSM-5的复合物催化剂(Fue Proc.Technol.,2014,123,65);Fe-Mn与Ga-HZSM-5复合催化剂(Catal.Today,1996,30,207)、Fe-Mn与Zn-HZSM-5的复合物(催化学报,2002,23,333)、Co-Cr与HZSM-5的混合物(Can.J.Chem.Eng.,1986,64,141)等。这些催化剂上均可得到芳烃,但往往不超过45%(如Pd修饰的Fe-HZSM-5催化剂),且难以维持较好的寿命。部分研究报道甲醇合成与甲醇制芳烃双段催化剂用于合成气制芳烃,如中国专利CN 200710061506.3、CN200810079957.4、CN 200980149207.2等,这些研究报道可以获得一定的芳烃选择性,但两段反应器工艺复杂,成本高,竞争力不足;且从报道结果看,重质芳烃选择性占芳烃比重的50%以上,重质芳烃还需后续处理才能得到苯、甲苯、二甲苯基础化工原料。因此,提高芳烃特别是轻质芳烃的选择性,降低工艺复杂性和成本,是合成气一步法制芳烃急需解决的技术难点。
发明内容
本发明的目的在于提供一种合成气一步转化制芳烃的催化剂及其制备方法。
所述一种合成气一步转化制芳烃的催化剂,由含锆钙钛矿、多级孔沸石分子筛和氧化物助剂组成,以质量百分比计算,含锆钙钛矿的含量为30%~70%,多级孔沸石分子筛的含量为30%~60%,氧化物助剂的含量为0.1%~10%。
所述含锆钙钛矿可采用MZrO3,其中M为Ca、Sr、Ba中的一种,MZrO3可采用共沉淀法、水热合成法、溶胶凝胶法、络合法、浸渍法等方法中的至少一种制备。
所述多级孔沸石分子筛可选自CHA、MFI、MEL、FAU、BEA、MWW、AEL等结构分子筛中的至少一种。
所述多级孔沸石分子筛具有微孔和介孔的多级孔结构,微孔的孔径为0.3~1.5nm,微孔的孔容为0.05~0.5cm3/g,介孔的孔径为2~35nm,介孔的孔容为0.05~0.6cm3/g。
所述氧化物助剂可选自IA、I IA、VB、VIB、VIIB、IIB、IVA族元素氧化物、稀土氧化物等中的至少一种。
所述IA、IIA、VB、VIB、VIIB、IIB、IVA族元素氧化物可选自Li、Na、K、Rb、Cs、Mg、V、Nb、Ta、Cr、Mo、W、Mn、Zn、Cd、Ge、Sn等的氧化物中的至少一种,稀土氧化物可选自La、Ce、Pr、Nd、Sm等的氧化物中的至少一种。
所述IA、I IA、VB、VIB、VIIB、IIB、IVA族元素、稀土元素的盐类化合物可选自盐酸盐、硝酸盐、醋酸盐、溴化盐、乙酰丙酮盐等中的至少一种,优选盐酸盐、硝酸盐、醋酸盐等中的至少一种。
所述合成气一步转化制芳烃的催化剂的制备方法如下:
1)按照所述催化剂的组分,称取IA、IIA、VB、VIB、VIIB、IIB、IVA族元素、稀土元素的至少一种元素的盐类化合物,加入到去离子水或醇中配成质量浓度为0.1%~15%的溶液,并搅拌0.5~20h,得溶液A;
2)按照所述催化剂的组分,称取计量的多级孔沸石分子筛加入到步骤1)所得溶液A中,抽滤、洗涤,将所得滤饼干燥,得固体粉末;
3)将步骤2)所得的固体粉末与含锆钙钛矿混合,研磨,焙烧,通入氢气或氢气与惰性气体的混合气,升温至300~500℃进行还原,将还原后的固体样品压片成型,即得合成气一步转化制芳烃的催化剂。
在步骤2)中,所述干燥可将所得滤饼移至真空干燥箱内于40~90℃下干燥1~48h。
在步骤3)中,所述研磨的时间可为0.1~10h;所述焙烧可将研磨后的样品移至马弗炉内焙烧,升温速率为0.5~2℃/min,温度为200~550℃,焙烧时间为1~20h;所述进行还原的升温速率可为0.5~2℃/min,所述还原的时间可为1~20h。
本发明所述多级孔沸石分子筛的孔容、孔径采用氩气-物理吸脱附的方法表征。
本发明所提供的催化剂可用于固定床,也可用于浆态床或流化床。一般情况下,本发明所提供的催化剂用于合成气转化的条件为:合成气中H2与CO的体积比为0.5~4,反应压力为0.5~8MPa,合成气空速为500~20000h-1,反应温度为180~600℃,反应时间为50h以上。
与现有技术相比,本发明所提供的合成气一步转化制芳烃催化剂的有益效果主要体现在以下方面:
(1)本发明所提供的催化剂具有优异的催化性能,产物分布呈低甲烷、低重质烃,芳烃选择性高的特点,芳烃(苯及甲基取代苯)的选择性可达80%以上。
(2)催化剂为双功能催化剂,其中含锆钙钛矿负责CO非解离加氢活化,在氧化物助剂存在下该过程得到有效促进;多级孔沸石分子筛则负责催化该中间物种的进一步转化,在分子筛孔道内生成芳烃为主的产物。
(3)多级孔沸石分子筛的孔道连通性及大的介孔有助于反应过程的传质,提高中间物种的转化效率和产物的及时移出,防止在孔道内积碳,因此提高了催化活性的稳定。
(4)催化剂制备过程简单且可控,易于进一步放大化制备。
综上,使用本发明所提供的合成气一步转化催化剂能获得高的芳烃产物选择性,且稳定性良好;所述催化剂的制备方法简单,成本较低,具有较好的工业应用前景。
具体实施方式
下面进一步详细说明本发明所提供的合成气一步转化制芳烃的催化剂及其制备方法。
所述合成气一步转化制芳烃的催化剂的制备方法如下:
1)按照所述催化剂的组分,称取IA、IIA、VB、VIB、VIIB、IIB、IVA族元素、稀土元素的至少一种元素的盐类化合物,加入到去离子水或醇中配成质量浓度为0.1%~15%的溶液,并搅拌0.5~20h,得溶液A;
2)按照所述催化剂的组分,称取计量的多级孔沸石分子筛加入到步骤1)所得溶液A中,抽滤、洗涤,将所得滤饼移至真空干燥箱内于40~90℃下干燥1~48h,得固体粉末;
3)将步骤2)所得的固体粉末与含锆钙钛矿混合,研磨0.1~10h,将研磨后的样品移至马弗炉内焙烧,升温速率为0.5~2℃/min,温度为200~550℃,焙烧时间为1~20h;再通入氢气或氢气与惰性气体的混合气,以速率0.5~2℃/min升温至300~500℃进行还原1~20h,将还原后的固体样品压片成型,即得合成气一步转化制芳烃的催化剂。
以下给出具体实施例:
实施例1
称取1.34g KNO3,加入60ml去离子水搅拌5h配成溶液,后称取5.0g多级孔沸石分子筛H-ZSM-11加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末与6.25g BaZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至400℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,合成气中H2与CO的体积比为2,反应压力为2.0MPa,合成气空速为6000h-1,反应温度为430℃,反应时间50h。反应产物和原料气用气相色谱在线分析。具体反应性能列于表1中。
实施例2
称取2.29g Mg(NO3)2,加入50ml去离子水搅拌5h配成溶液,后称取5.0g多级孔沸石分子筛H-ZSM-5加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末与5.0g BaZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
实施例3
称取0.51g Mn(CH3COO)2,加入50ml无水乙醇中搅拌5h配成溶液,后称取5.0g多级孔沸石分子筛H-X加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末与5.0g CaZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
实施例4
称取1.09g CrCl3·6H2O,加入50ml无水乙醇中搅拌5h配成溶液,后称取5.0g多级孔沸石分子筛H-Beta加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末与7.0g SrZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
实施例5
称取0.88g NbCl5,加入50ml无水乙醇中搅拌5h配成溶液,后称取5.0g多级孔沸石分子筛H-SAPO-34加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末与6.25g CaZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
实施例6
称取0.34g Zn(NO3)2·6H2O,加入50ml无水乙醇中搅拌5h配成溶液,后称取5.0g多级孔沸石分子筛H-SSZ-13加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末与6.25g CaZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
实施例7
称取1.10g Sn(CH3COO)2,加入50ml无水乙醇中搅拌5h配成溶液,后称取5.0g多级孔沸石分子筛H-MCM-22加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末与6.25g CaZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
实施例8
称取1.74g Ce(NO3)3·6H2O,加入50ml无水乙醇中搅拌5h配成溶液,后称取5.0g多级孔沸石分子筛H-ALPO-5加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末与6.25g BaZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
实施例9
催化剂组成及制备过程同实施例4。催化反应在固定床高压微型反应器中进行,除合成气中H2与CO的体积比为4外,反应条件及产物分析同实施例1,反应性能见表1。
实施例10
催化剂组成及制备过程同实施例4。催化反应在固定床高压微型反应器中进行,除合成气中H2与CO的体积比为0.5外,反应条件及产物分析同实施例1,反应性能见表1。
对比例1
称取1.74g Ce(NO3)3·6H2O,加入50ml无水乙醇中搅拌5h配成溶液,后称取5.0g单微孔沸石分子筛H-ALPO-5加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末与6.25g BaZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
对比例2
称取1.74g Ce(NO3)3·6H2O,加入50ml无水乙醇中搅拌5h配成溶液,后称取5.0g多级孔沸石分子筛H-ALPO-5加入到上述溶液中,于室温下搅拌6h。经抽滤、洗涤后,将所得滤饼移至真空干燥箱内于70℃下干燥24h。将干燥后的固体粉末移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
对比例3
称取5.0g多级孔沸石分子筛H-ALPO-5与6.25g BaZrO3钙钛矿混合,经研磨后将该样品移至马弗炉内以2℃/min的速率升温至500℃下焙烧10h。将焙烧后的样品放置于管式炉内,通入氢气以速率为2℃/min升温至450℃进行还原,还原时间为10h。将还原后的固体样品压片成型,即得催化剂。
催化反应在固定床高压微型反应器中进行,反应条件及产物分析同实施例1,反应性能见表1。
表1:实施例和对比例中催化剂性能数据
注:C2-4为C2-C4烃,Aromatics为芳烃(苯及多甲基取代苯),Other C5+为碳数≥5的烷烃和烯烃。

Claims (10)

1.一种合成气一步转化制芳烃的催化剂,其特征在于由含锆钙钛矿、多级孔沸石分子筛和氧化物助剂组成,以质量百分比计算,含锆钙钛矿的含量为30%~70%,多级孔沸石分子筛的含量为30%~60%,氧化物助剂的含量为0.1%~10%。
2.如权利要求1所述一种合成气一步转化制芳烃的催化剂,其特征在于所述含锆钙钛矿采用MZrO3,其中M为Ca、Sr、Ba中的一种,MZrO3可采用共沉淀法、水热合成法、溶胶凝胶法、络合法、浸渍法中的至少一种制备。
3.如权利要求1所述一种合成气一步转化制芳烃的催化剂,其特征在于所述多级孔沸石分子筛选自CHA、MFI、MEL、FAU、BEA、MWW、AEL结构分子筛中的至少一种。
4.如权利要求1所述一种合成气一步转化制芳烃的催化剂,其特征在于所述多级孔沸石分子筛具有微孔和介孔的多级孔结构,微孔的孔径为0.3~1.5nm,微孔的孔容为0.05~0.5cm3/g,介孔的孔径为2~35nm,介孔的孔容为0.05~0.6cm3/g。
5.如权利要求1所述一种合成气一步转化制芳烃的催化剂,其特征在于所述氧化物助剂选自IA、IIA、VB、VIB、VIIB、IIB、IVA族元素氧化物、稀土氧化物中的至少一种。
6.如权利要求1所述一种合成气一步转化制芳烃的催化剂,其特征在于所述IA、IIA、VB、VIB、VIIB、IIB、IVA族元素氧化物选自Li、Na、K、Rb、Cs、Mg、V、Nb、Ta、Cr、Mo、W、Mn、Zn、Cd、Ge、Sn的氧化物中的至少一种,稀土氧化物可选自La、Ce、Pr、Nd、Sm的氧化物中的至少一种。
7.如权利要求1所述一种合成气一步转化制芳烃的催化剂,其特征在于所述IA、IIA、VB、VIB、VIIB、IIB、IVA族元素、稀土元素的盐类化合物选自盐酸盐、硝酸盐、醋酸盐、溴化盐、乙酰丙酮盐中的至少一种,优选盐酸盐、硝酸盐、醋酸盐中的至少一种。
8.一种合成气一步转化制芳烃的催化剂的制备方法,其特征在于包括以下步骤:
1)按照所述催化剂的组分,称取IA、IIA、VB、VIB、VIIB、IIB、IVA族元素、稀土元素的至少一种元素的盐类化合物,加入到去离子水或醇中配成质量浓度为0.1%~15%的溶液,并搅拌0.5~20h,得溶液A;
2)按照所述催化剂的组分,称取计量的多级孔沸石分子筛加入到步骤1)所得溶液A中,抽滤、洗涤,将所得滤饼干燥,得固体粉末;
3)将步骤2)所得的固体粉末与含锆钙钛矿混合,研磨,焙烧,通入氢气或氢气与惰性气体的混合气,升温至300~500℃进行还原,将还原后的固体样品压片成型,即得合成气一步转化制芳烃的催化剂。
9.如权利要求8所述一种合成气一步转化制芳烃的催化剂的制备方法,其特征在于在步骤2)中,所述干燥是将所得滤饼移至真空干燥箱内于40~90℃下干燥1~48h。
10.如权利要求8所述一种合成气一步转化制芳烃的催化剂的制备方法,其特征在于在步骤3)中,所述研磨的时间为0.1~10h;所述焙烧可将研磨后的样品移至马弗炉内焙烧,升温速率为0.5~2℃/min,温度为200~550℃,焙烧时间为1~20h;所述进行还原的升温速率可为0.5~2℃/min,所述还原的时间可为1~20h。
CN201610609584.1A 2016-07-29 2016-07-29 一种合成气一步转化制芳烃的催化剂及其制备方法 Active CN106215972B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610609584.1A CN106215972B (zh) 2016-07-29 2016-07-29 一种合成气一步转化制芳烃的催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610609584.1A CN106215972B (zh) 2016-07-29 2016-07-29 一种合成气一步转化制芳烃的催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106215972A true CN106215972A (zh) 2016-12-14
CN106215972B CN106215972B (zh) 2018-09-04

Family

ID=57534755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610609584.1A Active CN106215972B (zh) 2016-07-29 2016-07-29 一种合成气一步转化制芳烃的催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106215972B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107262142A (zh) * 2017-07-10 2017-10-20 清华大学 一种一步合成芳烃的催化剂及其应用方法和制备方法
CN107486234A (zh) * 2017-07-23 2017-12-19 复旦大学 用于合成气直接转化制备轻质芳烃的催化剂及其制备方法
CN108568311A (zh) * 2017-03-07 2018-09-25 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制乙烯的方法
CN108927214A (zh) * 2018-09-30 2018-12-04 厦门大学 一种多功能复合催化剂及其制备方法和应用
WO2019007008A1 (zh) * 2017-07-05 2019-01-10 江南大学 一种多级纳米反应器催化剂及其制备与应用
CN109304215A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 合成气一步法制低碳烯烃的催化剂
CN109701601A (zh) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 组合催化剂体系及其用途
WO2019095986A1 (zh) 2017-11-15 2019-05-23 中国科学院大连化学物理研究所 一种由合成气直接制取芳烃的方法
CN110270339A (zh) * 2019-07-03 2019-09-24 山东科技大学 一种原位镍掺杂的中空锆酸钡co甲烷化催化剂
CN110368984A (zh) * 2019-07-30 2019-10-25 中科合成油技术有限公司 一种Fe基催化剂及其制备方法及在合成气一步法制芳烃中的应用
CN110743611A (zh) * 2019-10-31 2020-02-04 厦门大学 一种纳米复合催化剂及其制备方法和应用
CN112108179A (zh) * 2019-06-21 2020-12-22 中国科学院大连化学物理研究所 一种合成气直接转化制芳烃的催化剂及其制备和应用
CN112108180A (zh) * 2019-06-21 2020-12-22 中国科学院大连化学物理研究所 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
CN114345401A (zh) * 2022-01-10 2022-04-15 万华化学集团股份有限公司 一种对羟基苯氧乙醇的制备方法
CN114425411A (zh) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 负载型Fe基催化剂及其制备和应用
CN116159591A (zh) * 2022-09-27 2023-05-26 厦门大学 一种氧化物-分子筛复合催化剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198596A (en) * 1991-10-11 1993-03-30 Amoco Corporation Hydrocarbon conversion
CN101422743A (zh) * 2008-11-27 2009-05-06 中国科学院山西煤炭化学研究所 一种由合成气直接合成芳烃的催化剂及制法和应用
CN104148107A (zh) * 2014-08-08 2014-11-19 厦门大学 一种由合成气一步转化制柴油馏分的催化剂及其制备方法
CN104557376A (zh) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 合成气制甲醇与芳烃甲基化串联的反应方法
US20160074844A1 (en) * 2014-09-17 2016-03-17 Silura Technologies, Inc. Catalysts for natural gas processes
CN105622305A (zh) * 2016-02-02 2016-06-01 北京化工大学 一种合成气直接转化制芳烃联产甲烷的方法
US20160207846A1 (en) * 2015-01-15 2016-07-21 Exxonmobil Chemical Patents Inc. Process for Converting Syngas to Aromatics and Catalyst System Suitable Therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198596A (en) * 1991-10-11 1993-03-30 Amoco Corporation Hydrocarbon conversion
CN101422743A (zh) * 2008-11-27 2009-05-06 中国科学院山西煤炭化学研究所 一种由合成气直接合成芳烃的催化剂及制法和应用
CN104557376A (zh) * 2013-10-28 2015-04-29 中国石油化工股份有限公司 合成气制甲醇与芳烃甲基化串联的反应方法
CN104148107A (zh) * 2014-08-08 2014-11-19 厦门大学 一种由合成气一步转化制柴油馏分的催化剂及其制备方法
US20160074844A1 (en) * 2014-09-17 2016-03-17 Silura Technologies, Inc. Catalysts for natural gas processes
US20160207846A1 (en) * 2015-01-15 2016-07-21 Exxonmobil Chemical Patents Inc. Process for Converting Syngas to Aromatics and Catalyst System Suitable Therefor
CN105622305A (zh) * 2016-02-02 2016-06-01 北京化工大学 一种合成气直接转化制芳烃联产甲烷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. BCRURLE ET AL.: "CONVERSION OF SYNGAS TO AROMATIC HYDROCARBONS ON COBALT MANGANESE ZEOLITE CATALYSTS", 《STUDIES IN SURFACE SCIENCE AND CATALYSIS》 *
TOMOYUKI INUI ET AL.: "Selective Conversion of Syngas to Alkenes and Aromatic-rich Gasoline on Iron-Manganese-Ruthenium containing Composite Catalysts", 《APPLIED CATALYSIS》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108568311A (zh) * 2017-03-07 2018-09-25 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制乙烯的方法
CN108568311B (zh) * 2017-03-07 2021-03-23 中国科学院大连化学物理研究所 一种催化剂及合成气直接转化制乙烯的方法
US10875817B2 (en) 2017-07-05 2020-12-29 Jiangnan University Multistage nanoreactor catalyst and preparation and application thereof
WO2019007008A1 (zh) * 2017-07-05 2019-01-10 江南大学 一种多级纳米反应器催化剂及其制备与应用
CN107262142A (zh) * 2017-07-10 2017-10-20 清华大学 一种一步合成芳烃的催化剂及其应用方法和制备方法
CN107486234A (zh) * 2017-07-23 2017-12-19 复旦大学 用于合成气直接转化制备轻质芳烃的催化剂及其制备方法
CN109304215B (zh) * 2017-07-28 2021-06-22 中国石油化工股份有限公司 合成气一步法制低碳烯烃的催化剂
CN109304215A (zh) * 2017-07-28 2019-02-05 中国石油化工股份有限公司 合成气一步法制低碳烯烃的催化剂
CN109701601A (zh) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 组合催化剂体系及其用途
CN109701601B (zh) * 2017-10-26 2022-12-09 中国石油化工股份有限公司 组合催化剂体系及其用途
US10815162B2 (en) 2017-11-15 2020-10-27 Dalian Institute Of Chemical Physics, Chinese Academy Of Sciences Method for directly preparing aromatics from syngas
WO2019095986A1 (zh) 2017-11-15 2019-05-23 中国科学院大连化学物理研究所 一种由合成气直接制取芳烃的方法
CN108927214A (zh) * 2018-09-30 2018-12-04 厦门大学 一种多功能复合催化剂及其制备方法和应用
CN108927214B (zh) * 2018-09-30 2020-08-25 厦门大学 一种多功能复合催化剂及其制备方法和应用
CN112108179A (zh) * 2019-06-21 2020-12-22 中国科学院大连化学物理研究所 一种合成气直接转化制芳烃的催化剂及其制备和应用
CN112108180A (zh) * 2019-06-21 2020-12-22 中国科学院大连化学物理研究所 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
WO2020253712A1 (zh) * 2019-06-21 2020-12-24 中国科学院大连化学物理研究所 一种合成气直接转化制低碳烯烃的催化剂及其制备方法
CN110270339A (zh) * 2019-07-03 2019-09-24 山东科技大学 一种原位镍掺杂的中空锆酸钡co甲烷化催化剂
CN110368984A (zh) * 2019-07-30 2019-10-25 中科合成油技术有限公司 一种Fe基催化剂及其制备方法及在合成气一步法制芳烃中的应用
CN110743611B (zh) * 2019-10-31 2021-01-01 厦门大学 一种纳米复合催化剂及其制备方法和应用
CN110743611A (zh) * 2019-10-31 2020-02-04 厦门大学 一种纳米复合催化剂及其制备方法和应用
CN114425411A (zh) * 2020-10-14 2022-05-03 中国石油化工股份有限公司 负载型Fe基催化剂及其制备和应用
CN114425411B (zh) * 2020-10-14 2023-08-29 中国石油化工股份有限公司 负载型Fe基催化剂及其制备和应用
CN114345401A (zh) * 2022-01-10 2022-04-15 万华化学集团股份有限公司 一种对羟基苯氧乙醇的制备方法
CN114345401B (zh) * 2022-01-10 2023-06-02 万华化学集团股份有限公司 一种对羟基苯氧乙醇的制备方法
CN116159591A (zh) * 2022-09-27 2023-05-26 厦门大学 一种氧化物-分子筛复合催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106215972B (zh) 2018-09-04

Similar Documents

Publication Publication Date Title
CN106215972B (zh) 一种合成气一步转化制芳烃的催化剂及其制备方法
Liu et al. Low-temperature catalytic steam reforming of toluene over activated carbon supported nickel catalysts
CN106540740A (zh) 由合成气高选择性制轻质芳烃的催化剂及其制备方法
CN104368344B (zh) 钴基费托合成催化剂及其制备方法和应用
CN106140266B (zh) 一种金属改性zsm-5分子筛催化剂及其制备方法和应用
Qiu et al. High-efficient preparation of gasoline-ranged C5–C6 alkanes from biomass-derived sugar polyols of sorbitol over Ru-MoO3− x/C catalyst
CN104148107B (zh) 一种由合成气一步转化制柴油馏分的催化剂及其制备方法
CN105728020A (zh) 一种核壳型碳化铁催化剂制备方法
CN102247851A (zh) 一种去除工业co气体中少量h2的甲烷化工艺及催化剂制备方法
CN103920528A (zh) 用于油脂一步加氢脱氧裂化异构化制航空煤油组分的催化剂及其制备方法
Yuan et al. Highly efficient dehydrogenation of 2, 3-butanediol induced by metal–support interface over Cu-SiO2 catalysts
Ahmad et al. Synthesis of oxymethylene dimethyl ethers (OMEn) via methanol mediated COx hydrogenation over Ru/BEA catalysts
Hu et al. Bimetallic Au-Li/SAC catalysts for acetylene hydrochlorination
Ding et al. Engineering a Nickel–Oxygen Vacancy Interface for Enhanced Dry Reforming of Methane: A Promoted Effect of CeO2 Introduction into Ni/MgO
CN108579794A (zh) 负载金的分子筛催化剂用于转化甲醇为乙酸甲酯的方法
CN114887625A (zh) 一种Fe基金属有机骨架材料衍生催化剂及其制备方法和应用
Tanimu et al. Sono-assisted synthesis and kinetic modeling of nanocrystallite silicalite-1-NiMo catalysts for hydrodesulfurization of dibenzothiophene: role of sonication time on support mesoporosity and catalytic activity
WO2017208497A1 (ja) 炭化水素液体燃料の製造方法
Lu et al. The design of a CZ@ H-β-P catalyst with core shell structure and its application in LPG synthesis from syngas
CN105709727A (zh) 一种铂晶粒度分布集中的低碳烷烃脱氢催化剂的制备方法
CN104591960B (zh) 用于烯烃氢甲酰化合成醛和醇的多相催化方法及装置
CN108863716A (zh) 一种高选择性催化乙醇转化制备正丁醇及高级醇的方法
CN108126701B (zh) 一种合成气催化转化催化剂及其制备方法
CN103566933A (zh) 一种醋酸酯加氢制乙醇用催化剂及其制备方法
CN109806904A (zh) 一种Ni-Ag/SBA-15负载型双金属催化剂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant