CN106165446B - 用于控制扬声器的设备 - Google Patents

用于控制扬声器的设备 Download PDF

Info

Publication number
CN106165446B
CN106165446B CN201580018388.0A CN201580018388A CN106165446B CN 106165446 B CN106165446 B CN 106165446B CN 201580018388 A CN201580018388 A CN 201580018388A CN 106165446 B CN106165446 B CN 106165446B
Authority
CN
China
Prior art keywords
shell
loudspeaker
ref
diaphragm
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580018388.0A
Other languages
English (en)
Other versions
CN106165446A (zh
Inventor
埃杜拉多·曼德斯
皮埃尔-埃马纽埃尔·卡莫
安托万·佩罗夫
让-鲁普·阿弗雷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Devialet SA
Original Assignee
Devialet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Devialet SA filed Critical Devialet SA
Publication of CN106165446A publication Critical patent/CN106165446A/zh
Application granted granted Critical
Publication of CN106165446B publication Critical patent/CN106165446B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/002Damping circuit arrangements for transducers, e.g. motional feedback circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/001Monitoring arrangements; Testing arrangements for loudspeakers
    • H04R29/003Monitoring arrangements; Testing arrangements for loudspeakers of the moving-coil type

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

本发明涉及一种用于控制扬声器壳体中的扬声器(14)的设备,包括:用于待重现的音频信号(Saudio_ref)的输入端;用于提供来自扬声器的激励信号的输出端;用于基于音频信号(Saudio_ref)在每一时刻计算扬声器(14)的激励信号的装置(26,36,38,70,80,90)。在用于计算激励信号的装置(26,36,38,70,80,90),该设备包括用于基于待重现的所述音频信号(Saudio_ref)和壳体的结构计算扬声器膜片的期望动态值(Aref)的装置(24,25),该用于计算期望动态值(Aref)的装置(25)适于应用相同体的不同的修正,并将与仅采用的与扬声器膜片有关的动态值不同的壳体的结构动态值(xo,vo)考虑在内,以及,用于计算激励信号的装置(26,36,38,70,80,90)适于基于扬声器膜片的期望动态值(Aref)计算激励信号。

Description

用于控制扬声器的设备
技术领域
本发明涉及一种用于控制壳体中的扬声器的设备,该设备包括:
-用于待重现的音频信号的输入端;
-用于提供来自扬声器的激励信号的输出端;
-用于基于音频信号在每一时刻计算扬声器的激励信号的装置。
背景技术
扬声器是将电信号转换成声信号的电磁设备。扬声器引进了非线性失真,该非线性失真可以大大影响所获得的声信号。
已经提出了许多方案来对扬声器进行控制,以便于能够通过适当的命令消除扬声器的行为中的失真。
为了实现能够使扬声器的操作线性化的束缚(enslavement),第一类型的方案使用了机械传感器、通常为麦克风,从而实现使得扬声器的操作能够线性化的约束。这种技术的主要缺陷在于:设备的机械体积大且并未标准化,以及成本高。
例如在文献EP1351543、US6684204、US2010/0172516和US5694476中描述了这种方案的示例。
为了避免使用不需要的机械传感器,已经考虑了开环类型的控制。开环类型的控制不需要高成本的传感器。开环类型的控制可选择地仅使用了对施加在扬声器的端子之间的电压和/或电流的测量。
例如在文献US6058195和US8023668中描述了这种方案。
然而这些方案存在以下缺陷:没有将在扬声器的一组非线性考虑在内,并且这些系统的安装比较复杂且不提供对于从等效的扬声器中获得的修正后的行为的选择的完全的自由。
文献US6058195使用了所谓的电流控制的“镜像滤波器”技术。该技术能够消除非线性,从而获得预定模型。所实现的估算器E产生测量电压和通过模型预测的电压之间的误差信号。通过具有参数U的更新电路来使用该误差信号。考虑到所估算的参数的数量,在正常工作条件下,参数向真值收敛是非常不可能的。
US8023668提出了一种开环控制模型,该开环控制模型抵消与期望行为有关的不希望的扬声器的行为。为此,施加到扬声器上的电压由额外电压修正,该额外电压取消与期望行为有关的不希望的扬声器的行为。通过将扬声器的模型进行离散时间离散化来完成控制算法。这使得能够预测膜片在随后的时间中的位置,并将该位置与期望位置进行比较。该算法因此在扬声器的期望模型和扬声器的模型之间执行了一种无限增益约束,以使扬声器遵循期望行为。
正如在之前的文献中,命令实现了在每一时刻所计算的并被添加到输入信号中的修正,尽管在文献US8023668中该修正并没有实现封闭反馈环。
当壳体不是封闭的壳体时,用于计算添加到输入信号中的修正的机制没有将壳体的结构考虑在内。
发明内容
本发明旨在提出在非封闭的壳体中布置的扬声器的符合要求的操纵装置,该操纵装置将壳体的结构考虑在内。
为此,本发明涉及一种用于控制上述类型的扬声器的设备,其特征在于:包括在用于计算激励信号的装置上游,该设备包括用于基于待重现的音频信号和壳体的结构计算扬声器膜片的期望动态值的装置、用于计算扬声器的膜片的期望动态值的装置适于应用与恒等不同的修正,并将与仅采用的与扬声器的膜片有关的动态值不同的壳体的结构动态值考虑在内,并且,用于计算扬声器的激励信号的装置能够基于扬声器的膜片的期望动态值对计算激励信号的扬声器的激励信号。
根据具体的实施例,控制设备包括一个或多个以下特征:
-壳体包括通风孔,并且壳体的结构动态值包括被壳体移位的空气的位置的预定阶数的至少一个导数;
-壳体的结构动态值包括被壳体移位的空气的位置;
-壳体的结构动态值包括被壳体移位的空气的速度;
-壳体是通风壳体,并且壳体的结构动态值取决于以下参数中的至少一个:
-壳体的声学漏泄系数;
-与通风孔中的全部空气等效的电感;
-壳体中的空气的顺度;
-壳体是无源辐射器壳体,并且壳体的结构动态值取决于以下参数中的至少一个:
-壳体的声学漏泄系数;
-与无源辐射器的整个膜片等效的电感;
-壳体中的空气的顺度;
-无源辐射器的机械损耗;
-膜片的机械顺度。
附图说明
阅读以下仅作为示例提供并参照附图进行的描述将更好地理解本发明,在附图中:
-图1为声音重建设备的方框图;
-图2为示出用于该设备的期望的声音重建模型的曲线图;
-图3为扬声器控制单元的方框图;
-图4为结构适配单元的方框图;
-图5为用于计算动态参考值的单元的详细方框图;
-图6为表示对扬声器进行机械建模以使得可以在设置有通风孔的壳体中对扬声器进行控制的电路的图示;
-图7为表示对扬声器进行电气建模以使可以对扬声器进行控制的电路的图示;
-图8为用于扬声器的电阻的开环估算单元的第一实施例的方框图;
-图9为扬声器的热模型的电路的图示;
-图10为与图8等同的用于扬声器的电阻的闭环估算单元的可替换的实施例的方框图;
-图11为与图6等同的用于设置有无源辐射器的壳体的另一实施例的方框图。
具体实施方式
正如其本身所已知的,图1中所示的声音重建设备10包括:诸如数字光盘读取器之类的用于产生的音频信号的模块12,模块12经过电压放大器16连接到通风壳体的扬声器14上。在音频源12和放大器16之间,依次串联设置有与壳体的期望行为模型对应的期望模型20以及控制设备22。期望模型是线性的或者非线性的。
根据一个具体的实施例,在扬声器14和控制设备22之间提供用于测量诸如扬声器的磁路的温度和扬声器的线圈中环流的强度之类物理值的环23。
期望模型20独立于在设备及其模型中使用的扬声器。
如图2所示,期望模型20基于频率的期望信号的幅度(记为Saudio_ref)与来自模型12的输入信号的幅度Saudio(S音频)之比率的函数。
有利地,对于在频率fmin之下的频率,当频率趋向于0时,该比率为收敛于0的函数,从而限制连续低频的重现,并借此避免扬声器的膜片移动至制造商推荐的范围之外。
这同样适用于高频,在高频中,当信号的频率趋向于无穷大时,超过频率fmax的比率趋向于0。
根据另一实施例,期望模型没有被规定,并且期望模型被认为是独立的。
控制设备22被布置在放大器16的输入端,图3中示出了控制设备22的详细结构。控制设备22能够接收在期望模型20的输出端定义的待重现的音频信号Saudio_ref(S音频_ref)作为输入,并且提供信号Uref作为输出,输出信号Uref形成可供放大器16进行放大的扬声器的激励信号。该信号Uref适用于将扬声器14的非线性考虑在内。
控制设备22包括用于基于在同一时刻定义的其它量的导数值或积分值计算不同的量的装置。
出于计算需要,认为在时刻n的未知的量的值等于在时刻n-1的对应值。优选地通过这些量的值的1阶或2阶预测使用更高阶导数来修正时刻n-1的值。
根据本发明,控制设备22在一定程度上使用微分平滑原理实现控制,微分平滑原理使得能够根据足够光滑的参考轨迹来定义微分平坦系统的参考控制信号。
如图3所示,控制设备22从期望模型20中接收待重现的音频信号作为输入。用于根据放大器16的峰值电压并根据用户控制的在0和1之间的衰减变量以应用单位转换增益的单元24确保了参考音频信号Saudio_ref转换到待重现的物理值的图像的信号γ0。信号γ0例如为与扬声器相对的空气的加速度或者被扬声器移动的空气的速度。在下文中,可以假定信号γ0为由壳体导致运动的空气的加速度。
在放大单元24的输出端处,控制设备包括用于基于使用扬声器的壳体的结构对待重现的信号的进行结构适配的单元25。该单元能够在每一时刻根据对应的值(在此为信号γ0)为扬声器的膜片提供期望参考值Aref,信号γ0为由扬声器的壳体导致运动的空气的移位。
因此,在考虑的示例中,根据待重现的空气的加速度γ0计算的参考值Aref是扬声器的膜片的待重现的加速度,以使得扬声器的操作对空气施加加速度γ0
图4示出了结构适配单元25的细节。将输入γ0连接到有界积分单元27,将有界积分单元27的输出转而连接到另一有界积分单元28。
因此,在单元27和28的输出端获得加速度γ0的第一积分v0和第二积分x0
有界积分单元由一阶低通滤波器形成并且由截止频率FOBF表征。
有界积分单元的使用使得,除了在有用带宽中,在控制设备中使用的值能够不是另一带宽(即,超过截止频率FOBF的频率)中的导数或者积分。这使得能够控制问题值的低频偏移。
在正常操作时,选择截止频率FOBF,以便于不影响处于有用带宽的低频下的信号。
将截止频率FOBF取为低于期望模型20的频率fmin的十分之一。
在扬声器安装在由通风孔打开的外壳中的通风壳体的情况下,单元25经由以下关系式产生用于膜片的期望参考加速度Aref
其中:
Rm2:壳体的声学漏泄系数;
Mm2:与通风孔中的全部空气等效的电感;
Km2:在壳体中的空气的顺度;
x0:被膜片和通风孔移位的全部空气的位置;
被膜片和通风孔移位的全部空气的速度;
移位的全部空气的加速度。
在这种情况下,针对壳体的结构动态值x0、v0来修正用于膜片Aref的参考加速度,该结构动态值与有关于扬声器膜片的动态值不同。
将该参考值Aref引入动态参考值计算单元26动态参考值,该计算单元能够在每一时刻提供与参考值的时间有关的导数(记为dAref/dt)的值,以及与参考值的时间有关的的第一积分和第二积分(分别记为Vref和Xref)。
在下文中将系列动态参考值的记为Gref
图5示出了计算单元26的细节。一方面将输入Aref连接到求导单元30,另一方面将输入Aref连接到有界积分单元32,有界积分单元32的输出转而连接到另一有界积分单元34。
因此,在单元30、32和34的输出端处分别获得加速度的导数dAref/dt、加速度的第一积分Vref和第二积分Xref
有界积分单元由一阶低通滤波器形成并且由截止频率FOBF表征。
对于在控制设备中使用的值,有界积分单元的使用使得,除了在游泳带宽中,在控制设备中使用的值能够不是另一带宽(即,超过截止频率FOBF的频率)中的导数或者积分。这使得能够控制问题值的低频偏移。
在正常操作时,选择截止频率FOBF,以便于不影响处于有用带宽的低频中的信号。
将截止频率FOBF取为低于期望模型20的频率fmin的十分之一。
控制设备22在存储器中包括:机电参数的表和/或多项式集合26以及电参数的表和/或多项式集合38。
这些表36和38能够基于所接收的作为输入的动态参考值Gref来分别定义机电气参数Pméca和电参数Pélect。根据如图6所示对扬声器进行机械建模和如图7所示的扬声器的电气建模分别获得这些参数Pméca和Pélect,在机械建模中,假定扬声器安装在通风的壳体中。
机电参数Pméca包括:通过线圈捕获的由扬声器的磁路产生的磁通量(记为BI)、扬声器的刚度(记为Kmt(xD))、扬声器的粘性机械摩擦(记为Rmt)、整个扬声器的移动质量(记为Mmt)、壳体中的空气的刚度(Km2)、壳体的声学漏泄(记为Rm2)及在通风孔中的空气的质量(记为Mm2)。
在图6所示的通风的壳体中放置的扬声器的机械-声学部分的模型在单个闭环回路中包括电压为BI(xD,i)×i的生成器40,,电压BI(xD,i)×i对应于在扬声器的线圈中环流的电流i产生的驱动力。磁通量BI(xD,i)取决于膜片的位置xD以及在线圈中环流的强度i。
该模型将对应于电阻器42的膜片的粘性机械摩擦Rmt考虑在内,该电阻器42与对应于膜片的整体移动质量Mmt的线圈42串联,膜片的刚度对应于具有电容Cmt(xD)等于1/Kmt(xD)的电容器46。因此,刚度取决于膜片的位置xD
为了解释通风孔,使用了以下参数Rm2、Cm2和Mm2
Rm2:壳体的声学漏泄系数;
Mm2:与通风孔中的全部空气等效的电感;
壳体中的空气的顺度。
在图6的模型中,Rm2、Cm2和Mm2分别对应于并联安装的电阻47、线圈48和电容49。
在上述模型中,忽略了磁路的磁阻产生的力。
所使用的变量为:
扬声器的膜片的速度
扬声器的膜片的加速度
vL:空气泄漏的空气速度
vp:离开通风孔(端口)的空气的速度
被膜片和通风孔移位的全部空气的速度;
移位的全部空气的加速度。
在1米处的总的声学压强由以下关系式给出:
其中,SD:扬声器的横截面,nstr=2:发射立体角。
对应于图10的机械-声学方程式如下:
以下关系式将不同的量相关联:
图7示出了对扬声器的电气部分的建模。
电气参数Pélec包括线圈的电感Le、线圈的寄生电感L2和铁损等效电阻R2
图7中示出的对扬声器的电气部分的建模由闭环电路形成。该建模包括:用于生成串联连接到电阻器52上的电动势的生成器50,电阻器52表示扬声器的线圈的电阻Re。电阻器52与电感Le(xD,i)串联连接,该电感表示扬声器线圈的电感Le。该电感Le(xD,i)取决于在线圈中环流的强度i和膜片的位置xD
为了通过傅科(Foucault)电流效应解释磁损耗和电感变化,将并联电感RL串连安装在线圈54的输出端。电阻器56表示铁损等效,该电阻器的值该R2(xD,i)取决于膜片xD的位置和在线圈中环流的强度i。同样地,线圈58表示扬声器的寄生电感,该线圈的值L2(xD,i)也取决于膜片xD的位置和在线圈中环流的强度i。
模型中还串联安装有产生电压BI(xD,i)×v的电压生成器60和产生电压g(xD,i)×v的第二生成器62,其中,电压BI(xD,i)×v表示在由磁体产生的磁场中移动的线圈的反电动势,电压g(xD,i)×v表示具电感随位置的动态变化的效应。
通常,值得注意的是,在该模型中,由线圈捕获的通量BI、刚度Kmt和线圈的电感Le取决于膜片的位置xD,电感Le和通量BI还取决于在线圈中环流的电流i。
优选地,线圈的电感Le、电感L2和项g取决于强度i,此外还取决于膜片的移动xD
根据图6和图7所解释的模型,限定了以下方程式:
控制模块22进一步包括用于对参考电流iref及其导数diref/dt进行计算的单元70。该单元接收动态参考值Gref、机械参数Pméca和值x0和v0作为输入。参考电流Iref及其导数diref/dt的计算满足以下两个方程式:
G1(xref,iref)iref=Rmtvref+MmtAref+Kmt(xref)xref+Km2x0
其中,
因此,根据根据复杂度G1(x,i)通过精确的分析计算或必要时通过数字解析输入的矢量的值进行代数计算以获得电流iref及其导数diref/dt。
因此优选地通过代数计算、或者通过数值推导(dérivation numérique)获得电流的导数diref/dt。
为了避免扬声器的膜片的过度行程,在控制模块上施加移动Xmax。这通过使用用于计算动态参考值的分离单元26和结构适配单元25而成为可能。
通过避免扬声器的膜片超过与Xmax关联的特定界限的“虚拟墙”设备来实现对移动的限制。为此,当位置xref接近该位置的界限阈值时,该位置接近虚拟墙所需的能量不断增大(非线性行为),在墙上所需的能量是无穷大,并且有可能施加非对称行为。为此,粘性机械摩擦Rmt 42基于膜片的位置xref非线性地增加。
根据又一实施例,为了限制行程,使加速度Aref动态保持在最小界限和最大界限之内,这保证膜片的位置xref不会超过Xmax
在根据实施例将膜片的行程Xref限制为Xref_sat并且将膜片的加速度ARef限制为Aref_sat的情况下,在时刻n使用以下算法重新计算值x0和v0
v0sat(n)=γ0sat(n)的有界积分器(与32相同)
x0Sat(n)=v0Sat(n)的有界积分器(与34相同)
vrefsat(n)=Arefsat(n)的有界积分器(与32相同)
参考电流Iref及其导数dIref/dt的计算则满足以下两个方程式:
G1(xref_sat,iref)iref=Rmtvref_sat+MmtAref_sat+Kmt(xref_sat)xref_sat+Km2x0_sat
其中,
此外,控制设备22包括用于估算扬声器的电阻Re的单元80。该单元80作为输入接收动态参考值Gref、参考电流的强度iref及其导数diref/dt、以及根据所考虑到的实施例测量的在扬声器的磁路中温度(记为Tm_mesurée)或测量的通过线圈强度(记为I_mesurée(I_测量))作为输入。
在没有测量环路电流的情况中,估算单元80具有图8中所示的形式。估算单元80包括用于计算功率和参数的模块802和热模型84作为输入。
热模型84根据所计算的参数、所确定的功率和所测量的温度Tm_mesurée(Tm_测量)来计算电阻Re
图9提供了用于热模型的一般框图。
在该模型中,参考温度为壳体内部的空气的温度Te
所考虑的温度为:
Tb[℃]:绕组的温度;
Tm[℃]:磁路的温度;以及
Te[℃]:壳体的内部温度,假定该温度为常数、或在理想情况下测量。
所考虑的热功率为:
PJb[W]:焦耳效应对绕组造成的热功率;
如图9中所示,热模型包括以下参数:
Ctbb[J/K]:绕组的热容;
Rthbm[K/W]:在绕组和磁路之间的等效热电阻;以及
Rthba[K/W]:在绕组和壳体的内部温度之间的等效热电阻。
等效热电阻考虑了通过传导和对流的热耗散。
由在绕组中环流的电流造成的热功率PJB由下式给出:
PJb(t)=Re(Tb)i2(t)
其中,Re(Tb)为电阻在温度Tb下的值:
Re(Tb)=Re(20℃)×(1+4.10-3(Tb-20℃))
其中,Re(20℃)为电阻在20℃处的值。
由图9给出的热模型如下:
热模型的解决使得能够在每一时刻获得电阻Re的值。
可替换地,如图10中所示,当测量在线圈中环流的电流i时,通过闭环估算器(例如比例积分类型)提供对电阻Re的估算。由于比例积分修正器的使用,使得能够具有快速的收敛时间。
最后,控制设备22包括用于根据动态参考值Gref、参考电流iref及其导数diref/dt、电气参数Pélec和由单元80计算的电阻Re计算参考输出电压Uref的模块90。该计算参考输出电压的单元实施以下两个方程式:
如果放大器16是电流放大器而不是之前所述的电压放大器,则消除控制设备的单元38、80和90,并且在单元70的输出端处得到对放大器进行控制的参考输出强度iref
在客体包括由膜片形成的无源辐射器的情况下,图6的机械模型被图11的机械模型代替,在图11的机械模型中,与图6的那些元件相同的元件具有相同的附图标记。与无源辐射器的膜片对应地,该模块包括与线圈Mm2 48串联连接的电阻202和电容204,电阻202和电容204分别对应于无源辐射器的机械损耗Rm2和无源辐射器的膜片的机械刚度Km3。膜片的参考加速度Aref由下式给出:
其中,x0R由高通滤波器对x0进行滤波给出:
因此,结构适配结构25包括串联连接的两个有界积分器以根据γ0获得v0和x0,然后使用附加参数Rm3和Km3对x0进行高通滤波来计算x0R,该附加参数Rm3和Km3分别是无源辐射器的机械损耗电阻和无源辐射器的膜片的机械刚度常数。

Claims (6)

1.一种用于控制壳体中的扬声器(14)的设备,包括:
-用于待重现的音频信号的输入端;
-用于提供来自所述扬声器的激励信号的输出端;
-用于基于所述音频信号在每一时刻计算所述扬声器(14)的激励信号的装置(26,36,38,70,80,90);
其特征在于,在所述用于计算所述激励信号的装置(26,36,38,70,80,90)上游,所述设备包括用于基于所述待重现的音频信号和所述壳体的结构计算所述扬声器的膜片的期望动态值的装置(24,25),所述用于计算所述扬声器的所述膜片的所述期望动态值的装置(25)适于应用与恒等不同的修正,并将与仅采用的与所述扬声器的所述膜片有关的动态值不同的所述壳体的结构动态值考虑在内,并且在于,所述用于计算所述扬声器的所述激励信号的装置(26,36,38,70,80,90)能够基于所述扬声器的所述膜片的所述期望动态值计算所述激励信号。
2.根据权利要求1所述的设备,其特征在于,所述壳体包括通风孔,并且所述壳体的所述结构动态值包括被所述壳体移位的空气的位置的预定阶数的至少一个导数。
3.根据权利要求1或2所述的设备,其特征在于,所述壳体的所述结构动态值包括被所述壳体移位的所述空气的位置。
4.根据权利要求1或2所述的设备,其特征在于,所述壳体的所述结构动态值包括被所述壳体移位的空气的速度。
5.根据权利要求1或2所述的设备,其特征在于,所述壳体是通风壳体,并且所述壳体的所述结构动态值取决于以下参数中的至少一个:
-所述壳体的声学漏泄系数;
-与所述通风孔中的全部空气等效的电感;
-在所述壳体中的所述空气的顺度。
6.根据权利要求1或2所述的设备,其特征在于,所述壳体是无源辐射器壳体,并且所述壳体的所述结构动态值取决于以下参数中的至少一个:
-所述壳体的声学漏泄系数;
-与无源辐射器的整个所述膜片等效的电感;
-在所述壳体中的空气的顺度;
-所述无源辐射器的机械损耗;
-所述膜片的机械顺度。
CN201580018388.0A 2014-02-26 2015-02-18 用于控制扬声器的设备 Active CN106165446B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1451563A FR3018024B1 (fr) 2014-02-26 2014-02-26 Dispositif de commande d'un haut-parleur
FR1451563 2014-02-26
PCT/EP2015/053429 WO2015128237A1 (fr) 2014-02-26 2015-02-18 Dispositif de commande d'un haut-parleur

Publications (2)

Publication Number Publication Date
CN106165446A CN106165446A (zh) 2016-11-23
CN106165446B true CN106165446B (zh) 2019-07-09

Family

ID=51014421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580018388.0A Active CN106165446B (zh) 2014-02-26 2015-02-18 用于控制扬声器的设备

Country Status (9)

Country Link
US (1) US9924267B2 (zh)
EP (1) EP3111669B1 (zh)
JP (1) JP6628228B2 (zh)
KR (1) KR102267808B1 (zh)
CN (1) CN106165446B (zh)
BR (1) BR112016019790A2 (zh)
CA (1) CA2940980C (zh)
FR (1) FR3018024B1 (zh)
WO (1) WO2015128237A1 (zh)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2997902A1 (en) 2015-09-14 2017-03-23 Wing Acoustics Limited Improvements in or relating to audio transducers
US9965247B2 (en) 2016-02-22 2018-05-08 Sonos, Inc. Voice controlled media playback system based on user profile
US10264030B2 (en) 2016-02-22 2019-04-16 Sonos, Inc. Networked microphone device control
US10142754B2 (en) * 2016-02-22 2018-11-27 Sonos, Inc. Sensor on moving component of transducer
US10509626B2 (en) 2016-02-22 2019-12-17 Sonos, Inc Handling of loss of pairing between networked devices
US10095470B2 (en) 2016-02-22 2018-10-09 Sonos, Inc. Audio response playback
US9820039B2 (en) 2016-02-22 2017-11-14 Sonos, Inc. Default playback devices
US9947316B2 (en) 2016-02-22 2018-04-17 Sonos, Inc. Voice control of a media playback system
US9978390B2 (en) 2016-06-09 2018-05-22 Sonos, Inc. Dynamic player selection for audio signal processing
US10134399B2 (en) 2016-07-15 2018-11-20 Sonos, Inc. Contextualization of voice inputs
US10152969B2 (en) 2016-07-15 2018-12-11 Sonos, Inc. Voice detection by multiple devices
US10115400B2 (en) 2016-08-05 2018-10-30 Sonos, Inc. Multiple voice services
US9942678B1 (en) 2016-09-27 2018-04-10 Sonos, Inc. Audio playback settings for voice interaction
US9743204B1 (en) 2016-09-30 2017-08-22 Sonos, Inc. Multi-orientation playback device microphones
US10181323B2 (en) 2016-10-19 2019-01-15 Sonos, Inc. Arbitration-based voice recognition
WO2018167538A1 (en) 2017-03-15 2018-09-20 Wing Acoustics Limited Improvements in or relating to audio systems
US11183181B2 (en) 2017-03-27 2021-11-23 Sonos, Inc. Systems and methods of multiple voice services
US10475449B2 (en) 2017-08-07 2019-11-12 Sonos, Inc. Wake-word detection suppression
US10048930B1 (en) 2017-09-08 2018-08-14 Sonos, Inc. Dynamic computation of system response volume
US10446165B2 (en) 2017-09-27 2019-10-15 Sonos, Inc. Robust short-time fourier transform acoustic echo cancellation during audio playback
US10051366B1 (en) 2017-09-28 2018-08-14 Sonos, Inc. Three-dimensional beam forming with a microphone array
US10482868B2 (en) 2017-09-28 2019-11-19 Sonos, Inc. Multi-channel acoustic echo cancellation
US10621981B2 (en) 2017-09-28 2020-04-14 Sonos, Inc. Tone interference cancellation
US10466962B2 (en) 2017-09-29 2019-11-05 Sonos, Inc. Media playback system with voice assistance
US10880650B2 (en) 2017-12-10 2020-12-29 Sonos, Inc. Network microphone devices with automatic do not disturb actuation capabilities
US10818290B2 (en) 2017-12-11 2020-10-27 Sonos, Inc. Home graph
CN108235186B (zh) * 2017-12-29 2021-08-06 广州时艺音响科技有限公司 反馈输出扬声器及反馈输出调节方法
WO2019152722A1 (en) 2018-01-31 2019-08-08 Sonos, Inc. Device designation of playback and network microphone device arrangements
US10701485B2 (en) 2018-03-08 2020-06-30 Samsung Electronics Co., Ltd. Energy limiter for loudspeaker protection
US11175880B2 (en) 2018-05-10 2021-11-16 Sonos, Inc. Systems and methods for voice-assisted media content selection
US10847178B2 (en) 2018-05-18 2020-11-24 Sonos, Inc. Linear filtering for noise-suppressed speech detection
US10959029B2 (en) 2018-05-25 2021-03-23 Sonos, Inc. Determining and adapting to changes in microphone performance of playback devices
US10681460B2 (en) 2018-06-28 2020-06-09 Sonos, Inc. Systems and methods for associating playback devices with voice assistant services
US10461710B1 (en) 2018-08-28 2019-10-29 Sonos, Inc. Media playback system with maximum volume setting
US11076035B2 (en) 2018-08-28 2021-07-27 Sonos, Inc. Do not disturb feature for audio notifications
US11012773B2 (en) 2018-09-04 2021-05-18 Samsung Electronics Co., Ltd. Waveguide for smooth off-axis frequency response
US10797666B2 (en) * 2018-09-06 2020-10-06 Samsung Electronics Co., Ltd. Port velocity limiter for vented box loudspeakers
US10878811B2 (en) 2018-09-14 2020-12-29 Sonos, Inc. Networked devices, systems, and methods for intelligently deactivating wake-word engines
US10587430B1 (en) 2018-09-14 2020-03-10 Sonos, Inc. Networked devices, systems, and methods for associating playback devices based on sound codes
US11024331B2 (en) 2018-09-21 2021-06-01 Sonos, Inc. Voice detection optimization using sound metadata
US10811015B2 (en) 2018-09-25 2020-10-20 Sonos, Inc. Voice detection optimization based on selected voice assistant service
US11100923B2 (en) 2018-09-28 2021-08-24 Sonos, Inc. Systems and methods for selective wake word detection using neural network models
US10692518B2 (en) 2018-09-29 2020-06-23 Sonos, Inc. Linear filtering for noise-suppressed speech detection via multiple network microphone devices
US11899519B2 (en) 2018-10-23 2024-02-13 Sonos, Inc. Multiple stage network microphone device with reduced power consumption and processing load
EP3654249A1 (en) 2018-11-15 2020-05-20 Snips Dilated convolutions and gating for efficient keyword spotting
US11183183B2 (en) 2018-12-07 2021-11-23 Sonos, Inc. Systems and methods of operating media playback systems having multiple voice assistant services
US11132989B2 (en) 2018-12-13 2021-09-28 Sonos, Inc. Networked microphone devices, systems, and methods of localized arbitration
US10602268B1 (en) 2018-12-20 2020-03-24 Sonos, Inc. Optimization of network microphone devices using noise classification
US11315556B2 (en) 2019-02-08 2022-04-26 Sonos, Inc. Devices, systems, and methods for distributed voice processing by transmitting sound data associated with a wake word to an appropriate device for identification
US10867604B2 (en) 2019-02-08 2020-12-15 Sonos, Inc. Devices, systems, and methods for distributed voice processing
US11120794B2 (en) 2019-05-03 2021-09-14 Sonos, Inc. Voice assistant persistence across multiple network microphone devices
US11361756B2 (en) 2019-06-12 2022-06-14 Sonos, Inc. Conditional wake word eventing based on environment
US11200894B2 (en) 2019-06-12 2021-12-14 Sonos, Inc. Network microphone device with command keyword eventing
US10586540B1 (en) 2019-06-12 2020-03-10 Sonos, Inc. Network microphone device with command keyword conditioning
US11138969B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US11138975B2 (en) 2019-07-31 2021-10-05 Sonos, Inc. Locally distributed keyword detection
US10871943B1 (en) 2019-07-31 2020-12-22 Sonos, Inc. Noise classification for event detection
US11189286B2 (en) 2019-10-22 2021-11-30 Sonos, Inc. VAS toggle based on device orientation
US11200900B2 (en) 2019-12-20 2021-12-14 Sonos, Inc. Offline voice control
US11562740B2 (en) 2020-01-07 2023-01-24 Sonos, Inc. Voice verification for media playback
US11556307B2 (en) 2020-01-31 2023-01-17 Sonos, Inc. Local voice data processing
US11308958B2 (en) 2020-02-07 2022-04-19 Sonos, Inc. Localized wakeword verification
US11727919B2 (en) 2020-05-20 2023-08-15 Sonos, Inc. Memory allocation for keyword spotting engines
US11482224B2 (en) 2020-05-20 2022-10-25 Sonos, Inc. Command keywords with input detection windowing
US11308962B2 (en) 2020-05-20 2022-04-19 Sonos, Inc. Input detection windowing
US11698771B2 (en) 2020-08-25 2023-07-11 Sonos, Inc. Vocal guidance engines for playback devices
US11356773B2 (en) 2020-10-30 2022-06-07 Samsung Electronics, Co., Ltd. Nonlinear control of a loudspeaker with a neural network
US11984123B2 (en) 2020-11-12 2024-05-14 Sonos, Inc. Network device interaction by range
US11551700B2 (en) 2021-01-25 2023-01-10 Sonos, Inc. Systems and methods for power-efficient keyword detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1799013A1 (en) * 2005-12-14 2007-06-20 Harman/Becker Automotive Systems GmbH Method and system for predicting the behavior of a transducer
WO2013182901A1 (en) * 2012-06-07 2013-12-12 Actiwave Ab Non-linear control of loudspeakers
CN103561377A (zh) * 2013-11-07 2014-02-05 美特科技(苏州)有限公司 电声产品的最佳化设定方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517598Y2 (zh) * 1975-06-17 1980-04-23
JPS5854193U (ja) * 1981-10-05 1983-04-13 三洋電機株式会社 Mfbスピ−カのブリツジ検出回路
JP2605321B2 (ja) * 1987-12-28 1997-04-30 ヤマハ株式会社 音響装置
JPH04309098A (ja) * 1991-04-05 1992-10-30 Sony Corp スピーカシステム
JP2558981B2 (ja) * 1991-12-25 1996-11-27 松下電器産業株式会社 低音再生装置
JPH0686381A (ja) * 1992-09-03 1994-03-25 Matsushita Electric Ind Co Ltd スピーカ駆動装置
JP3106718B2 (ja) * 1992-09-03 2000-11-06 松下電器産業株式会社 スピーカ駆動装置
DE4332804C2 (de) 1993-09-27 1997-06-05 Klippel Wolfgang Adaptive Korrekturschaltung für elektroakustische Schallsender
JP3785629B2 (ja) * 1996-08-26 2006-06-14 オンキヨー株式会社 信号補正装置、信号補正方法、信号補正装置の係数調整装置および係数調整方法
US6058195A (en) 1998-03-30 2000-05-02 Klippel; Wolfgang J. Adaptive controller for actuator systems
US6684204B1 (en) 2000-06-19 2004-01-27 International Business Machines Corporation Method for conducting a search on a network which includes documents having a plurality of tags
JP2003078985A (ja) * 2001-09-05 2003-03-14 Sony Corp スピーカ駆動方法およびスピーカ駆動装置
JP2003264888A (ja) 2002-03-07 2003-09-19 Pioneer Electronic Corp スピーカ制御装置及びスピーカシステム
US20060104451A1 (en) * 2003-08-07 2006-05-18 Tymphany Corporation Audio reproduction system
GB2413233B (en) * 2004-04-13 2007-08-15 B & W Loudspeakers Loudspeaker systems
EP1806029A1 (en) * 2004-10-19 2007-07-11 Koninklijke Philips Electronics N.V. Vented loudspeaker box system and its control method
US7826625B2 (en) * 2004-12-21 2010-11-02 Ntt Docomo, Inc. Method and apparatus for frame-based loudspeaker equalization
WO2008018099A1 (en) 2006-08-10 2008-02-14 Claudio Lastrucci Improvements to systems for acoustic diffusion
EP2355542B1 (en) 2010-02-04 2012-09-12 Nxp B.V. Control of a loudspeaker output
CN104170404B (zh) 2012-03-05 2018-01-26 奥音科技(北京)有限公司 音频系统、具有电‑声换能器的设备、测量装置及方法
FR2995167B1 (fr) * 2012-08-30 2014-11-14 Parrot Procede de traitement d'un signal audio avec modelisation de la reponse globale du haut-parleur electrodynamique

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1799013A1 (en) * 2005-12-14 2007-06-20 Harman/Becker Automotive Systems GmbH Method and system for predicting the behavior of a transducer
WO2013182901A1 (en) * 2012-06-07 2013-12-12 Actiwave Ab Non-linear control of loudspeakers
CN103561377A (zh) * 2013-11-07 2014-02-05 美特科技(苏州)有限公司 电声产品的最佳化设定方法

Also Published As

Publication number Publication date
FR3018024A1 (fr) 2015-08-28
CA2940980A1 (fr) 2015-09-03
JP2017511090A (ja) 2017-04-13
JP6628228B2 (ja) 2020-01-08
WO2015128237A1 (fr) 2015-09-03
CA2940980C (fr) 2023-08-22
US20160366515A1 (en) 2016-12-15
KR102267808B1 (ko) 2021-06-21
US9924267B2 (en) 2018-03-20
BR112016019790A2 (pt) 2021-06-01
KR20160126033A (ko) 2016-11-01
CN106165446A (zh) 2016-11-23
EP3111669A1 (fr) 2017-01-04
FR3018024B1 (fr) 2016-03-18
EP3111669B1 (fr) 2019-09-18

Similar Documents

Publication Publication Date Title
CN106165446B (zh) 用于控制扬声器的设备
KR102283363B1 (ko) 라우드스피커 제어 디바이스
KR101864478B1 (ko) 전기-음향 변환기를 제어하는 방법 및 장치
CN103327437B (zh) 用于确定扬声器特性和/或诊断信息的扬声器驱动电路
JP7199499B2 (ja) 電流制限によりラウドスピーカを制御するためのデバイス
JP2010246115A (ja) モーショナルフィードバックシステム
JP2020184756A (ja) 磁束に基づく音響トランスデューサの非線形の挙動を補償するシステム及び方法
WO2014085899A1 (en) Acoustic transducer
JP2020184755A (ja) 音響トランスデューサの非線形の挙動を補償するためのシステム及び方法
Klippel Active compensation of transducer nonlinearities
US10863262B2 (en) Device for controlling a loudspeaker and associated sound reproduction facility
Jakobsson et al. Modelling and compensation of nonlinear loudspeaker
CN117241171A (zh) 音频播放设备的电信号调整方法和系统、音频播放设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant