CN106044848B - 一种一维硫化镉纳米棒催化剂及其制备和应用 - Google Patents

一种一维硫化镉纳米棒催化剂及其制备和应用 Download PDF

Info

Publication number
CN106044848B
CN106044848B CN201610357058.0A CN201610357058A CN106044848B CN 106044848 B CN106044848 B CN 106044848B CN 201610357058 A CN201610357058 A CN 201610357058A CN 106044848 B CN106044848 B CN 106044848B
Authority
CN
China
Prior art keywords
cadmium sulfide
stick
nano
catalyst
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610357058.0A
Other languages
English (en)
Other versions
CN106044848A (zh
Inventor
刘平
方志斌
付贤智
戴文新
曾金许
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610357058.0A priority Critical patent/CN106044848B/zh
Publication of CN106044848A publication Critical patent/CN106044848A/zh
Application granted granted Critical
Publication of CN106044848B publication Critical patent/CN106044848B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种一维硫化镉纳米棒催化剂及其制备和在声催化裂解水制氢的应用,该催化剂为纤锌矿晶体结构,属于非中心对称晶体,满足压电晶体的结构条件,其取向特殊的纳米棒形状能通过压电效应富集环境中的声波能量,在纳米棒表面产生正负电荷,从而催化纯水裂解产生氢气。其制备方法主要涉及一步溶剂热法,利用晶种与二乙烯三胺溶剂分子的配位或螯合作用调控硫化镉的生长取向,在合适的反应温度和反应时间条件下获得一维纳米棒的形貌。所得硫化镉纳米棒在声驱动下裂解纯水产氢的活性明显高于纳米片状、微米球状以及传统两步法合成的纳米棒状纤锌矿型硫化镉样品。本发明所公开的硫化镉纳米棒催化剂在声能‑氢能转化领域有广阔的应用前景,其制备方法操作简单,适合工业化生产。

Description

一种一维硫化镉纳米棒催化剂及其制备和应用
技术领域
本发明属于制取清洁能源的技术领域,具体涉及一种一维硫化镉纳米棒催化剂及其制备和在声催化裂解水制氢的应用。
背景技术
能源短缺与环境污染日益严峻,成为制约人类社会生存和发展的两大难题。传统的化石能源储量有限,燃烧产物对环境不够友好,不能满足人类社会可持续发展的需要,因此开发和利用清洁能源的需求迫在眉睫。氢能以其高效、清洁的特点被公认为未来最具潜力的能量载体之一。通过裂解水的反应产生氢气是制氢领域极其重要的技术路径。其中,利用自然界中分布丰富的可再生能源在能源转换材料的辅助下直接驱动裂解水反应,即基于材料自身的物理或化学效应将各种环境中低密度的能量转化成高密度的氢能,符合经济社会的可持续发展要求,具有光明的应用前景,也吸引了越来越多的研究兴趣。实现这一技术路径的基础在于各类能源转换材料的开发和制备,比如太阳能驱动裂解水制氢便涉及到光催化剂的设计与合成。除了太阳能,人类生存环境中还存在许多其他形式的丰富易得的非化石能量,比如声能,尤其在人类活动密集的城市空间中,这种形式的能量无时不刻地包围着我们。工厂、机车、建筑工地、娱乐场所等都给城市带来各种噪声,这些噪声一方面影响人们的生活质量,而另一方面,声波是弹性介质中传播的压力振动,其传播过程也是能量的传递过程,本发明开发了一种把各种频率的噪声所传播的声能富集并用于裂解水制氢的新材料,该材料既可以吸收环境噪声,又能富集环境中以声音方式存在的能量。该材料还能大大丰富制氢手段的多样性,降低制氢成本,拓宽氢能的实际应用。
压电材料是一类具有压电效应的晶体材料,形状与取向特殊的压电材料受压力作用形变时两端面会出现异号电荷,反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形,这种固有的机械能-电能相互转换的性质使得压电材料得到了广泛的实际应用,如电声换能器、压力传感器、压电驱动器等。除了机械能到电能的转化,近十几年来,研究者们尝试利用压电材料将机械能进一步转化成化学能也取得一些进展,主要是把压电效应与电化学效应结合起来,将机械振动能收集并产生电荷输送到化学反应池去诱发电化学反应。但对于声振动能到氢能的直接转化方面的研究工作鲜有报道,目前已报道的利用声波振动直接驱动水裂解反应制取氢气的压电材料仅有六方晶系ZnO纤维状微晶、四方晶系BaTiO3树突状微晶(J. Phys. Chem. Lett. 2010, 1, 997–1002),其声驱动的产氢效率尚有待提高,而且材料的可选范围有限,不能满足声能-氢能转换技术的发展需要。
发明内容
为了克服上述的材料局限性,满足声驱动制氢技术的发展需要,本发明提供了一种一维CdS纳米棒催化剂及其制备和在声催化水制氢的应用。所制得的CdS纳米棒催化剂满足压电晶体的结构条件,在声波场作用下催化裂解纯水制取氢气的效率高。
为实现上述发明目的,本发明采用如下技术方案:
一种用于声催化裂解水制氢的硫化镉纳米棒催化剂,平均长度为405 nm,平均直径为30.6 nm,晶体结构为非中心对称的六方纤锌矿型。
制备方法为一步溶剂热法,利用CdS晶种与脂肪胺分子的配位或螯合作用调控CdS的生长取向,在适当的溶剂热反应温度和反应时间条件下最终形成一维纳米棒的形貌。具体包括以下步骤:
(1)溶剂热过程:称取一定质量的Cd盐和S源,Cd : S摩尔比为1:1-1:2,置于聚四氟乙烯反应釜中,加入一定体积的二乙基三胺(DETA),搅拌一定时间使前驱物均匀混合,之后反应釜加盖密封,放入不锈钢套中锁紧,转移到鼓风烘箱中,程序升温至120-160℃,保温24-48 小时后自然降至室温;
(2)产物收集:将上述反应所得沉淀用去离子水和无水乙醇洗涤数次,放入60℃的真空烘箱中干燥12~24小时,即得到一维CdS纳米棒催化剂。
所得一维CdS纳米棒用于声催化水制氢反应中,具体实验流程和检测方法为:
(1)称取一定量的催化剂置于容积一定的玻璃反应管中,加入适量去离子水,超声数十秒使固体分散;加上带阀门的磨口接头,将连接处用封口膜封紧,用真空泵对反应管抽气,直至水中溶解的空气抽干净后充入氩气,密封各出口;
(2)将上述反应管固定在频率可控的声波振动场中,施加声振动数个小时,声波频率为20 Hz-40 kHz,全程避光,期间通过风扇或冷水浴保持反应管温度的稳定;
(3)反应结束后,用气密性良好的气体进样针从密封反应管的顶部出口扎入,抽取一定体积的气体产物,打入气相色谱中通过热导池检测器(TCD)检测H2含量,由已知标准曲线换算出实际H2体积。
本发明的显著优点在于:
(1)本发明采用一步溶剂热法制得CdS纳米棒催化剂,其晶体结构属于非中心对称的六方纤锌矿型,符合压电晶体的结构特征,具有压电性;
(2)所得CdS晶体具有一维的纳米棒形貌,相比纳米片和微米球等其它形貌,更容易响应声振动产生压电效应,因此更有利于其对声能的富集和转化;
(3)本发明采用二乙烯三胺作为反应溶剂,仅通过一步溶剂热反应即可制得一维CdS纳米棒,相比于传统的由铜试剂、乙二胺参与的CdS纳米棒合成方法,其操作简单,步骤更少,更适用于工业化生产;
(4)所得一维CdS纳米棒能在声波作用下直接催化水裂解反应制取H2,其中在40kHz的超声波场中产氢效率可达282.5μL/h/g,明显高于CdS纳米片、纳米颗粒自组装的CdS微米球以及传统两步法合成的其它CdS纳米棒。
附图说明
图1A是实施例1与对比例1~4所合成的催化剂的X射线衍射图;图1B、图1C、图1D、图1E、图1F分别是实施例1、对比例1、对比例2、对比例3和对比例4所合成的催化剂的场发射扫描电子显微镜图像;
图2是实施例1与对比例1~4所合成的催化剂在40 kHz的超声波场作用下催化纯水产氢的效果对比图。
具体实施方式
下面列举一些实施例进一步说明本发明。
实施例1
一步法制备一维CdS纳米棒
称取0.3660 g的CdCl2(2 mmol)和0.064 g的硫粉(2 mmol),置于容积为100 mL的聚四氟乙烯反应釜中,加入60 mL的二乙基三胺(DETA),搅拌30 min使前驱物均匀混合,之后反应釜加盖密封,放入不锈钢套中锁紧,置于程序升温的鼓风烘箱中,经30 min由室温升至160℃,保温24 h后自然降至室温;所得沉淀用去离子水洗涤4次至母液离子浓度降至20ppm以下,再用无水乙醇洗涤1次,转移至60℃的真空烘箱中干燥12 h,得到黄色粉末,标记为CS-DETA样品。
对比例1 纳米颗粒自组装的CdS微米球的制备
称取1.3325 g的二水合乙酸镉(5 mmol)分散在60 mL的无水乙醇中,搅拌5 h使其溶解,再加入0.376 g的硫代乙酰胺(5 mmol),搅拌1 h,得到前驱物,转移至容积为100 mL的聚四氟乙烯反应釜中,加盖密封,放入不锈钢套中锁紧,置于鼓风烘箱中升温至180℃,保温12 h后自然降温至室温;所得沉淀用去离子水洗涤4次至母液离子浓度降至20 ppm以下,放入60℃的真空烘箱中干燥12 h,得到橙红色粉末,标记为CS-EtOH样品。
对比例2 二维CdS纳米片的制备
步骤一:称取0.3660 g的CdCl2(2 mmol)和0.064 g的硫粉(2 mmol),置于容积为100 mL的聚四氟乙烯反应釜中,加入60 mL的二乙基三胺(DETA),搅拌30 min混合均匀,之后反应釜加盖密封,放入不锈钢套中锁紧,置于鼓风烘箱中升温至80℃,保温48 h后自然降至室温;所得沉淀用去离子水洗涤4次至母液离子浓度降至20 ppm以下,再用无水乙醇洗涤1次,转移至60℃的真空烘箱中干燥12 h,得到固体;
步骤二:称取0.1 g上述固体和0.1 g半胱氨酸于烧杯中,加入80 mL去离子水,搅拌10 min后,烧杯放入超声机(200 W,40 kHz)中超声2 h,离心、洗涤,沉淀转入60℃真空烘箱中干燥12 h,得到淡黄色粉末,标记为CS-DETA-NS样品。
对比例3 乙二胺为前驱体的两步法制备CdS纳米棒
步骤一:称取0.5330 g的二水合乙酸镉(2 mmol)和0.1502 g的硫代乙酰胺(2mmol),置于容积为50 mL的聚四氟乙烯反应釜中,加入35 mL的乙二胺(EN),搅拌30 min混合均匀,之后反应釜加盖密封,放入不锈钢套中锁紧,置于鼓风烘箱中升温至160℃,保温6h后自然降至室温;所得沉淀用去离子水洗涤4次至母液离子浓度降至20 ppm以下,再用无水乙醇洗涤1次,转移至60℃的真空烘箱中干燥12 h,得到白色固体;
步骤二:称取0.2 g上述固体于100 mL的聚四氟乙烯反应釜中,加入60 mL去离子水,搅拌30 min混合均匀后反应釜加盖密封,放入不锈钢套中锁紧,置于鼓风烘箱中升温至160℃,保温12 h后自然降至室温;所得沉淀用去离子水洗涤4次至母液离子浓度降至20ppm以下,再用无水乙醇洗涤1次,转移至60℃的真空烘箱中干燥12 h,得到橙黄色粉末,标记为CS-EN样品。
对比例4 铜试剂为前驱体的传统两步法制备CdS纳米棒
步骤一:称取4.5105 g的铜试剂(DDTC)溶于适量的去离子水中,然后按铜试剂与氯化铬的摩尔比为2:1加入1.8331 g的CdCl2,磁力搅拌2小时,即得到CdS前驱体Cd(S2CNEt2)2,所得的产物用去离子水洗涤4次、乙醇洗涤1次,离心收集沉淀,真空烘干,得到白色的Cd(S2CNEt2)2固体。
步骤二:称取1.124 g的Cd(S2CNEt2)2于50 mL的聚四氟乙烯反应釜中,加入40 mL乙二胺,搅拌至完全溶解,反应釜加盖密封,放入不锈钢套中锁紧,置于鼓风烘箱中升温至180℃,保温24 h后自然降至室温;所得沉淀用去离子水洗涤4次至母液离子浓度降至20ppm以下,再用无水乙醇洗涤1次,转移至60℃的真空烘箱中干燥12 h,得到黄色粉末,记为CS-DDTC样品。
性能检测:
1、按实施例1与对比例1~4方法分别合成的催化剂经X射线衍射仪扫描,确定为六方纤锌矿型CdS晶体,见图1A。
、按实施例1、对比例1~4方法分别合成的催化剂经场发射扫描电镜观察,实施例1所得CdS为一维纳米棒的形貌,较为分散,平均长度约为405 nm,横截面平均直径约为30.6nm,见图1B;对比例1所得CdS的微观形貌是由CdS纳米颗粒组装成的微米球状,见图1C;对比例2所得CdS为二维纳米片的形貌,平均厚度约为17 nm,见图1D;对比例3两步法所得CdS主要形貌为一维纳米棒状,少部分为纳米颗粒,见图1E;对比例4两步法所得CdS为一维纳米棒的形貌,平均长度超过1μm,平均直径约为70 nm,局部团聚现象明显,见图1F。
应用实施例1
CdS催化剂声驱动纯水产氢的应用
步骤一:称取10 mg的CdS催化剂置于容积约为10 mL的玻璃反应管中,加入5 mL去离子水,超声1 min使固体分散;加上带阀门的磨口接头,关闭接头阀门,用真空泵从支管口对反应管抽气,30min后再无气泡鼓出,关闭支管阀门打开接头阀门,充入高纯氩气,再关闭接头阀门打开支管阀门,抽真空,如此反复操作5次后充入氩气,关闭各个阀门,磨口接头的顶部加上气密软塞,备用;
步骤二:将上述备好的反应管浸入超声机(50W,40 kHz)的水中,水面高于管中液面一倍,固定位置后超声4 h,全程避光,期间间歇地给超声机换水以保证水温稳定;
步骤三:反应结束后,用气体进样针从气密软塞扎入,抽取0.5 mL管中气体,打入气相色谱中通过热导池检测器(TCD)检测H2含量,由已知标准曲线换算出实际H2体积;
经检测,一维CdS纳米棒、二维CdS纳米片和CdS微米球在超声波场中催化纯水产氢的活性对比结果如图2所示,4小时内一维CdS纳米棒的产氢量明显高于其它两种形貌的样品,表明本发明公开的一维CdS纳米棒催化剂具有更加优越的声能-氢能转化效率。
应用实施例2
CdS纳米棒噪声驱动纯水产氢的应用
称取20 mg实施例1所制得的一维CdS纳米棒至容积约为50 mL的带两支管的反应器中,加入20 mL去离子水,封装反应器,超声1 min使固体分散与水中;按应用实施例1所述方式抽净空气并充入高纯氩气;将反应器直接暴露在功率为1 W音频为11 kHz的声场(人耳可识别的声波频率范围)中,反应4小时,全程避光。反应结束后抽取1 mL瓶中气体检测H2含量。经换算,此条件下CdS纳米棒催化剂声驱动产氢的速率达到48.6 μL/h/g,表明本发明公开的一维CdS纳米棒催化剂在低功率的噪声驱动下同样能催化裂解纯水产生氢气。
以上所述仅为本发明的较佳实施例,仅用于说明本发明,不用于限制本发明的范围。在不付出创造性劳动的情况下,凡依本发明申请专利范围所做的均等变化与修饰,皆应属于本发明的涵盖范围。

Claims (2)

1.一种一维硫化镉纳米棒催化剂的应用,其特征在于:按摩尔比1:1~1:2称取镉盐和硫源,以二乙基三胺为反应溶剂,通过一步溶剂热法制得一维硫化镉纳米棒催化剂;所述镉盐为氯化镉或二水合乙酸镉,所述硫源为硫粉或硫代乙酰胺;一步溶剂热法的反应温度为120~180℃,反应时间为24 h ~ 48 h;所述的一维硫化镉纳米棒为六方晶系纤锌矿型晶体,平均长度为405 nm,平均直径为30 .6 nm;将硫化镉纳米棒在声波驱动下,催化裂解纯水产生氢气。
2.根据权利要求1所述的应用,其特征在于:所述的声波其频率范围包括人耳可识别范围20 Hz~20 kHz和大于20 kHz的超声波范围;催化裂解时,催化剂浓度为0.2~2 mg/mL。
CN201610357058.0A 2016-05-26 2016-05-26 一种一维硫化镉纳米棒催化剂及其制备和应用 Expired - Fee Related CN106044848B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610357058.0A CN106044848B (zh) 2016-05-26 2016-05-26 一种一维硫化镉纳米棒催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610357058.0A CN106044848B (zh) 2016-05-26 2016-05-26 一种一维硫化镉纳米棒催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN106044848A CN106044848A (zh) 2016-10-26
CN106044848B true CN106044848B (zh) 2017-10-20

Family

ID=57174663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610357058.0A Expired - Fee Related CN106044848B (zh) 2016-05-26 2016-05-26 一种一维硫化镉纳米棒催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN106044848B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107098377B (zh) * 2017-06-08 2018-06-19 湘潭大学 一种暴露高能(001)晶面超薄CdS纳米带的制备方法
CN107265496A (zh) * 2017-08-02 2017-10-20 合肥工业大学 一种可调控六方相和立方相含量的硫化镉及其制备方法和应用
CN110143570A (zh) * 2019-05-24 2019-08-20 长沙学院 二维硫化锌在机械催化裂解水制氢中的应用
CN110975890B (zh) * 2019-12-24 2021-11-02 福州大学 一种阳离子置换法制备Mo掺杂CdS光催化剂的方法
CN111847498A (zh) * 2020-07-23 2020-10-30 齐鲁工业大学 一种硫化镉纳米棒及摩擦催化降解有机污染物的方法
CN114870869A (zh) * 2022-06-09 2022-08-09 内蒙古工业大学 一种具有表面缺陷的CdZnS纳米棒光催化材料及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1147424C (zh) * 1999-05-27 2004-04-28 中国科学技术大学 纳米硫属化合物的溶剂热合成方法
CN104195588B (zh) * 2014-09-03 2016-09-14 中国工程物理研究院化工材料研究所 一种光电化学分解纯水制备氧气与氢气的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Controllable synthesis of nanocrystalline CdS with different morphologies and particle sizes by a novel solvothermal process;Shu-Hong Yu et al.;《J. Mater. Chem.》;19991231;第1285页左栏第一段以及图3a *

Also Published As

Publication number Publication date
CN106044848A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN106044848B (zh) 一种一维硫化镉纳米棒催化剂及其制备和应用
CN108671914A (zh) 一种复合型压电催化剂及其制备和应用
CN107537519B (zh) 硫化镉二维纳米棒阵列催化剂及其制备方法和应用
CN111437834B (zh) 一种基于硫铟锌纳米片原位异质结构建的方法及应用
CN107649130A (zh) 一种光催化复合材料及其制备方法
CN107321368B (zh) 一种Au原子修饰的CoSe2纳米带及其制备方法和应用
CN106517341B (zh) 一种制备二氧化锰纳米催化剂的方法及其应用
CN105499596B (zh) 在电沉积CdSe薄膜上自发生长Au纳米微粒的方法
CN107686129A (zh) 一种TiO2花状分级结构亚微米球的溶剂热合成方法
CN109201083A (zh) 一种纳米花状二硫化钒/羟基氧化钒双功能复合电催化剂及其制备方法
CN108455658A (zh) 硫化镉二维纳米片在声波辅助光解水制氢制氧中的应用
CN103101967A (zh) 一种三维多级SnO2纳米花的制备方法
CN109317182A (zh) 一种g-C3N4/Au@Pt异质结光催化材料的制备方法
CN109433185A (zh) 一步水热法制备钒酸铟/同质异相结钒酸铋复合光催化剂
CN102976393A (zh) 一种羟基氧化镓纳米晶体的制备方法
CN115007164A (zh) 棒状铁酸铋压电催化剂的制备及其在催化裂解水制备双氧水和氢气中的应用
Zhong et al. Advances in ultrasound-assisted photocatalyst synthesis and piezo-photocatalysts
CN110841660B (zh) 一种三元仿生复合可见光催化剂及其制备方法
CN106517299B (zh) 一种片状自组装碱式碳酸铜花球及其简易制备方法
CN101670283A (zh) 电子束辐照制备二氧化钛/多壁碳纳米管复合光催化剂的方法
CN104003379B (zh) 一种石墨烯量子点的制备方法
CN107185556B (zh) 一种基于非贵金属过渡元素硫化物的高效光催化剂的制备方法
CN109364949A (zh) 紫外-可见-近红外光响应的PbS/TiO2纳米管团聚微球异质结、其制备方法和用途
CN108807005B (zh) 一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用
CN107697944B (zh) 一种颗粒自组装球状锌镉硫固溶体材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171020

Termination date: 20200526