CN108807005B - 一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用 - Google Patents

一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用 Download PDF

Info

Publication number
CN108807005B
CN108807005B CN201810888341.5A CN201810888341A CN108807005B CN 108807005 B CN108807005 B CN 108807005B CN 201810888341 A CN201810888341 A CN 201810888341A CN 108807005 B CN108807005 B CN 108807005B
Authority
CN
China
Prior art keywords
carbon nano
nano tube
vanadium
compound material
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810888341.5A
Other languages
English (en)
Other versions
CN108807005A (zh
Inventor
吴幸
王超伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN201810888341.5A priority Critical patent/CN108807005B/zh
Publication of CN108807005A publication Critical patent/CN108807005A/zh
Application granted granted Critical
Publication of CN108807005B publication Critical patent/CN108807005B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用,其特点是采用二氧化硅/硅衬底,以碳纳米管与三氯化钒粉为前驱体,利用化学气相沉积生长二硒化钒纳米片/碳纳米管,制得的复合材料用于组装柔性超级电容器的电极材料。本发明与现有技术相比具有工艺简单,操作安全性好,产品质量高,结构可控,无需分离处理等优点,可用来制作高比电容、高功率能量密度、稳定循环特性和优良机械性能的柔性超级电容器的电极材料,应用于可穿戴器件中,具有优良的电化学性能和疲劳性能。

Description

一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用
技术领域
本发明涉及纳米复合材料技术领域,尤其是一种二硒化钒纳米片/碳纳米管复合材料的制备及其在柔性超级电容器的应用。
背景技术
金属型二维材料如二硒化钒,二硫化钒等具有大比表面积、高电导率、优异的催化及电化学性能,因此这类材料在能源转换和存储方向,如:电解水和超级电容器等具有良好的应用前景。二维材料的层内原子通过作用力较强的化学键相互作用,而层间原子通过非常弱的范德瓦尔斯力相互作用,这种强各向异性作用力导致材料出现明显的各向异性生长,样品在弱相互作用的方向生长速度慢,在强相互作用的方向生长快,形成了具有大比表面积的片状形貌。
金属性二维纳米片已经被用来制备超级电容器的电极材料,并体现出较好的电荷存储性能,由于在制备超电电极过程中,二维纳米片会相互堆叠,部分面积被遮挡而无法存储电荷,不能充分发挥二维材料大比表面积的优势。通过将二维纳米片与碳纳米管材料复合,可以使二维材料的表面完全暴露在电解质溶液中,最大限度的利用二维材料纳米片的表面存储电荷。此外,碳纳米管不仅导电性能好,而且还具有优良的机械性能,二维纳米片和碳纳米管材料的复合,可以同时利用两种材料的优势,实现协同增强效应,满足柔性超级电容器对电极材料的电化学性能和力学性能的要求,推动柔性超级电容器在可穿戴器件中的应用。
目前,二维纳米片与碳纳米管复合材料的制备,都是通过多种前躯体在溶液中的化学反应实现。如 X.Q. Wang, Y.F. Chen, F. Qi, B.J. Zheng, J.R. He, Q. Li, P.J.Li, W.L. Zhang, Y.R. Li, Interwoven WSe2/CNTs hybrid network: A highlyefficient and stable electrocatalyst for hydrogen evolution, Electrochem.Commun., 72 (2016) 74.和C.P. Mu, J.F. Song, B.C. Wang, C. Zhang, J.Y. Xiang,F.S. Wen, Z.Y. Liu, Two-dimensional materials and one-dimensional carbonnanotube composites for microwave absorption, Nanotechnology, 29 (2018) 7,该方法通常需要将含有原料的溶液放在密闭容器中,并在高温高压条件下长时间反应,具有较高的危险性。另外,反应产物溶液中还含有杂质成分,尽管可以通过多次洗涤清除大部分杂质,但难免会有残留杂质污染,最终为了得到纯净的复合材料样品,需要过滤分离和干燥。
发明内容
本发明的目的是针对现有技术的不足而提供的一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用,采用二氧化硅/硅为衬底,以碳纳米管与三氯化钒粉为前驱体,利用化学气相沉积生长制备二硒化钒纳米片/碳纳米管,使二硒化钒纳米片定向且垂直生长在碳纳米管团簇表面,利用二硒化钒纳米片的大比表面积和碳纳米管良好的导电性和机械性,两者产生协同效应,用于制作具有高比电容、高功率能量密度、稳定循环特性和优良机械性能的柔性超级电容器的电极材料,应用于可穿戴器件中该纳米复合材料作为电极材料应用于柔性超级电容器,具有优良的电化学性能和疲劳性能,工艺简单,操作安全性好,产品质量高,结构可控,无需分离处理等优点。
实现本发明目的的具体技术方案是: 一种二硒化钒纳米片/碳纳米管复合材料的化学气相沉积制备,其特点是采用二氧化硅/硅衬底,以碳纳米管和三氯化钒粉混合物为前驱体,利用化学气相沉积生长二硒化钒纳米片/碳纳米管复合材料,其制备包括以下步骤:
a、衬底材料的清洗
将一面抛光的二氧化硅/硅衬底裁剪成矩形,并将衬底抛光面向上,依次放入装有丙酮、乙醇和去离子水的容器中,各超声清洗20min,最后用氮气将衬底吹干,所述丙酮和乙醇为分析纯。
b、管式炉的清洗
将装有纯度为99.99%硒粉的石英舟放置在管式炉的上游炉口处在室温下通入流量为200~500sccm的高纯氩气或氮气进行10~30min空气置换和清洗。
c、前驱体的设置
将粒径为600目的三氯化钒粉末与碳纳米管按1:1~6质量比混合为前驱体放置在清洗后的二氧化硅/硅衬底抛光面上,并将其转移到管式炉的反应室中心,且由进气口向反应室通入流量为200~500sccm的高纯氩气或氮气进行10~30min空气置换和清洗,然后将其流量调至50~200sccm。
d、气相沉积生长
以10~30℃/min升温速率将管式炉加热到450~850℃进行气相沉积生长,其生长保温10~30分钟后自然降至室温,取出衬底得产物为碳纳米管团簇表面定向垂直生长二硒化钒纳米片的复合材料,即二硒化钒纳米片/碳纳米管复合材料。
一种权利要求1所述二硒化钒纳米片/碳纳米管复合材料的应用,其特点是将二硒化钒纳米片/碳纳米管复合材料与分析纯的乙醇按1g:1~10ml质量体积比混合,搅拌形成浆料后涂抹到集电极上形成厚度为1~10μm的薄膜电极,然后在薄膜电极表面覆盖固态电解质组装成柔性超级电容器,所述集电极采用0.1mm厚铂片裁剪成叉指形,且由双面胶粘贴在聚对苯二甲酸乙二醇酯薄膜的柔性衬底上;所述固态电解质为硝酸化钾/聚乙烯醇固态电解质、硫酸钠/聚乙烯醇固态电解质或硝酸钠/聚乙烯醇固态电解质。
本发明与现有技术相比具有工艺简单,操作安全性好,产品质量高,结构可控,无需分离处理等优点,可用来制作高比电容、高功率能量密度、稳定循环特性和优良机械性能的柔性超级电容器的电极材料,应用于可穿戴器件中,具有优良的电化学性能和疲劳性能。
附图说明
图1为实施例1的化学气相沉积生长示意图;
图2为实施例1制备的二硒化钒纳米片/碳纳米管复合材料扫描电镜图;
图3为实施例1制备的二硒化钒纳米片/碳纳米管复合材料X射线衍射图;
图4为实施例1制备的二硒化钒纳米片扫描电镜及能谱图;
图5为实施例1制备的复合材料组装柔性超级电容器的结构示意图;
图6为图5的俯视图;
图7为柔性超级电容器的能量-功率密度图。
具体实施方式
以下通过具体实施例对本发明作进一步的详细说明。
实施例1
步骤一:衬底裁剪
用钻石刻刀将一面抛光的二氧化硅/硅衬底刻成1.5厘米×1厘米的长方形。
步骤二:衬底清洗
将二氧化硅/硅衬底的抛光面向上依次放入装有分析纯的丙酮、分析纯的乙醇和去离子水的烧杯中清洗,清洗溶液的液面要高于二氧化硅/硅衬底1厘米以上,然后将烧杯放入超声清洗器中超声20分钟,去离子水超声清洗后用氮气枪将二氧化硅/硅衬底吹干。
步骤三:衬底上制备三氯化钒/碳纳米管混合物前驱体
参阅附图1,将装有400mg纯度为99.99%的硒粉5放入石英舟4中,并将石英舟4放入位于管式炉1上游的炉口处,在室温下石英管6通入流量为200sccm的高纯氩气并保持30分钟进行空气置换和清洗。
在充有氮气的手套箱中按下述步骤进行前驱体的配置,其具体操作如下:
(a)称取8mg纯度为99%、粒径为600目的三氯化钒粉末与4mg碳纳米管放入研钵中机械混合10分钟为前驱体2,然后称取12mg前驱体2放置在二氧化硅/硅衬底3的抛光面上。
(b)将设置前驱体2的二氧化硅/硅衬底3从手套箱中转移到管式炉1的反应室中心,然后通入流量为200sccm的高纯氩气并保持30分钟,清洗由衬底转移引入的空气,最后将高纯氩气流量调整到100sccm。
步骤五:气相沉积生长
以20℃/min升温速率将管式炉1加热到600℃进行气相沉积生长,其生长保温20分钟后结束加热并随炉冷却至室温,取出衬底得产物为碳纳米管团簇表面定向垂直生长二硒化钒纳米片的材料,即二硒化钒纳米片/碳纳米管复合材料。
参阅附图2,上述产物经电镜扫描,可以看到在碳纳米管团簇表面,垂直定向生长了大量的二硒化钒纳米片,表明所得产物为二硒化钒纳米片/碳纳米管复合材料。
参阅附图3,上述产物经X射线衍射表征,所得产物与二硒化钒以及碳纳米管的标准X射线衍射谱线一致,表明所得产物质量高,其中碳纳米管的X射线峰用箭头标出,其他峰属于二硒化钒。
参阅附图4,上述产物经X射线能谱表征,所得产物的钒与硒的原子比为1:2.1,且与二硒化钒的化学计量比很接近,进一步验证了所得产物具有很高品质。
实施例2
参阅附图5~图6,采用聚对苯二甲酸乙二醇酯薄膜作为超级电容器的柔性衬底7,将厚度为0.1mm的铂片剪成叉指形集电极8,并用双面胶粘在柔性衬底7的中央;将上述实施例1制备的二硒化钒纳米片/碳纳米管复合材料与分析纯的乙醇按1g:2ml质量体积比混合,搅拌形成浆料后涂抹到叉指形的集电极8表面,待酒精挥发后形成薄膜电极9,然后在薄膜电极9表面覆盖硝酸化钾/聚乙烯醇固态电解质10组装成柔性超级电容器,所述硝酸化钾/聚乙烯醇固态电解质10由5克硝酸钾和5克聚乙烯醇溶于50毫升去离子水中搅拌至澄清配置而成。
参阅附图7,上述柔性超级电容器经能量/功率密度测试,表明该二硒化钒纳米片/碳纳米管复合材料组装的柔性超级电容器具有较高的能量和功率密度。
以上各实施例只是对本发明做进一步说明,并非用以限制本发明专利,凡为本发明等效实施,均应包含于本发明专利的权利要求范围之内。

Claims (2)

1.一种二硒化钒纳米片/碳纳米管复合材料的化学气相沉积制备方法,其特征在于采用二氧化硅/硅衬底,以碳纳米管和三氯化钒粉混合物为前驱体,利用化学气相沉积生长二硒化钒纳米片/碳纳米管复合材料,其制备包括以下步骤:
a、衬底材料的清洗
将一面抛光的二氧化硅/硅衬底裁剪成矩形,并将衬底抛光面向上,依次放入装有丙酮、乙醇和去离子水的容器中,各超声清洗20min,最后用氮气将衬底吹干,所述丙酮和乙醇为分析纯;
b、管式炉的清洗
将装有纯度为99.99%硒粉的石英舟放置在管式炉的上游炉口处,室温下通入流量为200~500sccm的高纯氩气或氮气进行10~30min空气置换和清洗;
c、前驱体的设置
将粒径为600目的三氯化钒粉末与碳纳米管按1:1~6质量比混合为前驱体放置在清洗后的二氧化硅/硅衬底抛光面上,并将其转移到管式炉的反应室中心,且由进气口向反应室通入流量为200~500sccm的高纯氩气或氮气进行10~30min空气置换和清洗,然后将其流量调至50~200sccm;
d、气相沉积生长
以10~30℃/min升温速率将管式炉加热到450~850℃进行气相沉积生长,其生长保温10~30分钟后自然降至室温,取出衬底得产物为碳纳米管团簇表面定向垂直生长二硒化钒纳米片的复合材料。
2.一种权利要求1所述二硒化钒纳米片/碳纳米管复合材料的化学气相沉积制备方法的应用,其特征在于将二硒化钒纳米片/碳纳米管复合材料与分析纯的乙醇按1g:1~5ml质量体积比混合,搅拌形成浆料后涂抹到集电极上形成厚度为1~10μm的薄膜电极,然后在薄膜电极表面覆盖固态电解质组装成柔性超级电容器,所述集电极采用0.1mm厚铂片裁剪成叉指形,且由双面胶粘贴在聚对苯二甲酸乙二醇酯薄膜的柔性衬底上;所述固态电解质为硝酸钾/聚乙烯醇固态电解质、硫酸钠/聚乙烯醇固态电解质或硝酸钠/聚乙烯醇固态电解质。
CN201810888341.5A 2018-08-07 2018-08-07 一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用 Active CN108807005B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810888341.5A CN108807005B (zh) 2018-08-07 2018-08-07 一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810888341.5A CN108807005B (zh) 2018-08-07 2018-08-07 一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用

Publications (2)

Publication Number Publication Date
CN108807005A CN108807005A (zh) 2018-11-13
CN108807005B true CN108807005B (zh) 2019-11-01

Family

ID=64079425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810888341.5A Active CN108807005B (zh) 2018-08-07 2018-08-07 一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用

Country Status (1)

Country Link
CN (1) CN108807005B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109678138B (zh) * 2019-01-09 2022-04-26 温州大学 一种单手性单壁碳纳米管的制备方法
CN112952060B (zh) * 2021-02-26 2022-08-19 广东工业大学 一种二硒化钒/碳纤维素复合材料及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347191B2 (ja) * 2008-02-06 2013-11-20 株式会社E・C・O カーボンナノチューブの製造方法
CN103617893B (zh) * 2013-11-16 2016-01-06 信阳师范学院 一种超级电容器电极材料硫化钼-多壁碳纳米管及其制备方法
CN104835964B (zh) * 2015-05-14 2017-03-01 哈尔滨工业大学 一种三维大孔石墨烯‑碳纳米管‑二硫化钼复合材料的制备方法
CN105448535B (zh) * 2015-11-30 2017-10-27 天津大学 金属硫化物/碳纳米管膜超级电容器电极材料的制备方法
CN107557753B (zh) * 2017-07-12 2018-08-10 华东师范大学 一种室温磁性二维VSe2薄膜化学气相沉积生长方法

Also Published As

Publication number Publication date
CN108807005A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
Xue et al. NiPS3 nanosheet–graphene composites as highly efficient electrocatalysts for oxygen evolution reaction
Zhu et al. Synthesis of vertically aligned ultra-long ZnO nanowires on heterogeneous substrates with catalyst at the root
Yang et al. Ribbon-and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties
Jin et al. Synthesis of ZnO nanorods by solid state reaction at room temperature
Funatsu et al. Synthesis of monolayer platinum nanosheets
CN105895882B (zh) 一种氮掺杂石墨烯包覆硫化镍复合电极材料的制备方法
CN104556018B (zh) 一种高质量石墨烯导电膜的制备方法
CN105514403B (zh) 一种三维核壳结构MoO2-MoS2锂离子电池负极材料及其制备方法
CN110853937A (zh) 一种超级电容器用镍钴双金属硒化物/碳复合物的制备方法
CN104617274B (zh) 一种柔性氧化亚锡纳米片/碳纳米管-石墨烯泡沫三维复合材料的制备方法
CN105923623A (zh) 一种三维多级孔结构的石墨烯粉体的制备方法
CN108658122A (zh) 一种二维金属碳氮化物衍生纳米材料及其制备方法
CN108483413B (zh) 一种表面负载超薄氮化硼纳米片的竹节状氮化硼纳米管分级结构的制备方法
CN107221459A (zh) 一种氮磷共掺杂石墨烯及其制备方法与应用
CN108807005B (zh) 一种二硒化钒纳米片/碳纳米管复合材料的制备及其应用
CN106475126B (zh) 一种具有纳米带状结构的石墨相氮化碳光催化剂
CN103346299A (zh) 原位刻蚀制备中空锡基氧化物/碳复合纳米材料的方法
CN105217616A (zh) 多孔石墨烯负载碳纳米洋葱三维复合材料制备方法
Qiao et al. Novel two-dimensional Bi 4 V 2 O 11 nanosheets: controllable synthesis, characterization and insight into the band structure
Zhang et al. Controllable preparation of crystalline red phosphorus and its photocatalytic properties
CN110600688A (zh) 硅烯-铜-硅烯复合材料、制备方法、应用、锂离子电池
CN102807211A (zh) 一种石墨烯球形组装体及其制备方法
CN102070178A (zh) 基于水热技术调控制备氧化钇微纳米材料的方法
Chen et al. Aligned SnS 2 nanotubes fabricated via a template-assisted solvent-relief process
CN105016378B (zh) 硫化亚锡纳米片的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant