CN106026645B - 一种双向谐振变换器及其控制方法 - Google Patents

一种双向谐振变换器及其控制方法 Download PDF

Info

Publication number
CN106026645B
CN106026645B CN201610578503.6A CN201610578503A CN106026645B CN 106026645 B CN106026645 B CN 106026645B CN 201610578503 A CN201610578503 A CN 201610578503A CN 106026645 B CN106026645 B CN 106026645B
Authority
CN
China
Prior art keywords
switching tube
voltage source
switch pipe
moment
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610578503.6A
Other languages
English (en)
Other versions
CN106026645A (zh
Inventor
吴红飞
李玥玮
邢岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610578503.6A priority Critical patent/CN106026645B/zh
Publication of CN106026645A publication Critical patent/CN106026645A/zh
Application granted granted Critical
Publication of CN106026645B publication Critical patent/CN106026645B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only

Abstract

本发明公开了一种双向谐振变换器及其控制方法,属于电力电子变换器技术领域。所述双向谐振变换器由原边全桥电路、辅助电感、谐振电路、变压器和副边全桥电路构成,其中谐振电路由谐振电感、谐振电容构成。本发明通过构建完全对称的电路结构,利用原副边全桥电路使变换器具备双向功率传输的能力,采用占空比控制和移相角控制不仅使得两侧的电压和双向的电流能够在宽范围内调节,而且功率传输方向切换过程可以快速、平滑。本发明不仅使变换器具有双向功率传输的能力,控制策略简单,而且实现了所有开关管的软开关,可有效减小开关损耗、提高效率,特别适合在储能系统、电动汽车等双向隔离直流功率变换场合应用。

Description

一种双向谐振变换器及其控制方法
技术领域
本发明涉及一种双向谐振变换器及其控制方法,属于电力电子变换器技术领域,尤其属于隔离双向-直流电能变换技术领域。
背景技术
在航空航天电源系统、新能源发电系统、电动汽车系统、不停电电源系统等技术领域的应用中,出于降低系统的体积重量及成本的需求,需要采用双向直流变换器。而处于安全性的考虑,通常采用变压器对变换器原副边进行电气隔离。如何提升双向变换器的功率传输效率、寻找性能优越的的控制方法并实现功率传输方向的平滑切换一直是该技术领域所关注的重点问题。
传统的隔离型双向直流变换器,包括正激双向直流变换器、反激双向直流变换器、推挽双向直流变换器、半桥双向直流变换器和全桥双向直流变换器。正激双向直流变换器和反激双向直流变换器的电路结构简单且成本低,但开关管电压应力较高,适合于小功率场合。推挽双向直流变换器的变压器磁芯为双向磁化,传输的功率比正激双向直流变换器要大,但是开关管电压应力也较高,适合于中低压大功率场合。桥式双向直流变换器,特别是全桥双向直流变换器的开关管电压电流应力都相对较小,适合于大功率场合。
双有源桥式双向直流变换器是隔离双向直流变换器的典型解决方案之一,如附图1,这类变换器由两个全桥变换单元、能量传输电感以及隔离变压器构成。传统的双有源桥式双向直流变换器通常采用移相控制,控制方式简单,通过调节移相角实现功率的双向流动,且可以实现开关管的软开关;原副边的全桥结构可以降低开关管的电压电流应力,在中大功率场合得到了广泛应用。但是,采用移相控制时,变换器中存在循环能量,环流损耗较大,影响变换器的传输效率;在较宽输入或输出电压范围内,轻载时不能实现软开关,效率较低。
文献“B.Zhao,Q.Yu,and W.Sun.Extended-phase-shift control of isolatedbidirectional dc-dc converter for power distribution in microgrid[J].IEEETransactions on Power Electronics,2012,27(11):4667-4680.”在原副边桥臂移相的基础上,增加了原边桥臂内移相,利用双移相控制来降低环流。该方案的主要问题在于变换器环流依然较大,关断损耗较高导致效率较低。且控制方法相对复杂,最优工作区域较窄。
文献“X.Li and A.K.Bhat.Analysis and design of high-frequency isolateddual-bridge series resonant dc/dc converter[J].IEEE Transactions on PowerElectronics,2010,25(4):850-862.”利用串联谐振网络代替能量传输电感,减小关断电流从而降低变换器的关断损耗,利用移相控制来实现输出电压调节及开关管的软开关。该方案的问题在于串联谐振变换器移相控制时无法工作在谐振频率点,降低了传输效率;且变换器输出侧采用同步整流,增加了电路的复杂性。
发明内容
本发明的目的是针对现有技术的不足,为双向直流功率变换场合提供一种隔离双向谐振变换器及其控制方法。
本发明的目的是通过以下技术方案来实现的:
所述双向谐振变换器由原边全桥电路(10)、辅助电感(La)、谐振电路(20)、变压器(T)和副边全桥电路(30)构成,其中原边全桥电路(10)由第一开关管(S1)、第二开关管(S2)、第三开关管(S3)、第四开关管(S4)和第一电压源(V1)构成,谐振电路(20)由谐振电感(Lr)、谐振电容(Cr)构成,变压器(T)包含一个副边绕组(NS)和一个原边绕组(NP),副边全桥电路(30)由第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)和第二电压源(V2)构成;
所述第一电压源(V1)的正极分别与第一开关管(S1)的漏极和第三开关管(S3)的漏极相连,第一开关管(S1)的源极分别连于第二开关管(S2)的漏极、谐振电感(Lr)的一端和辅助电感(La)的一端,谐振电感(Lr)的另一端连于谐振电容(Cr)的一端,谐振电容(Cr)的另一端连于变压器(T)原边绕组(NP)的同名端,变压器(T)原边绕组(NP)的非同名端连于第三开关管(S3)的源极、第四开关管(S4)的漏极以及辅助电感(La)的另一端,第四开关管(S4)的源极连于第二开关管(S2)的源极和第一电压源(V1)的负极;
所述变压器(T)副边绕组(NS)的同名端分别与第五开关管(S5)的源极和第六开关管(S6)的漏极相连,第五开关管(S5)的漏极分别连于第七开关管(S7)的漏极和第二电压源(V2)的正极,第二电压源(V2)的负极连接到第六开关管(S6)的源极和第八开关管(S8)的源极,第八开关管(S8)的漏极连接到变压器副边绕组(NS)的非同名端。
所述所有开关管开关频率固定,第一开关管(S1)与第二开关管(S2)互补导通,第三开关管(S3)与第四开关管(S4)互补导通,第五开关管(S5)与第六开关管(S6)互补导通,第七开关管(S7)与第八开关管(S8)互补导通;
当第一电压源(V1)的电压高于第二电压源(V2)的电压时,副边全桥电路(30)中的第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)的占空比都等于0.5,第五开关管(S5)与第八开关管(S8)同时开通、同时关断,第六开关管(S6)与第七开关管(S7)同时开通、同时关断,原边全桥电路(10)中的开关管的控制方法采用以下三种控制方法中的任意一种:
第一控制方法:第一开关管(S1)、第二开关管(S2)、第三开关管(S3)、第四开关管(S4)的占空比都等于0.5,第一开关管(S1)和第二开关管(S2)的开通时刻分别超前于第四开关管(S4)和第三开关管(S3)的开通时刻相同的移相角,通过调节第一开关管(S1)与第四开关管(S4)开通时刻之间的移相角来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过减小第一开关管(S1)与第四开关管(S4)开通时刻之间的移相角来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过增加第一开关管(S1)与第四开关管(S4)开通时刻之间的移相角来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第一开关管(S1)的开通时刻和第四开关管(S4)的开通时刻之间的中心线与第五开关管(S5)及第八开关管(S8)的开通时刻重合,第二开关管(S2)的开通时刻与第三开关管(S3)的开通时刻之间的中心线与第六开关管(S6)和第七开关(S7)管的开通时刻重合;
第二控制方法:第一开关管(S1)的占空比小于等于0.5,第一开关管(S1)与第三开关管(S3)的占空比相等,第二开关管(S2)与第四开关管(S4)的占空比相等,通过调节第一开关管(S1)与第三开关管(S3)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过增加第一开关管(S1)与第三开关管(S3)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过减小第一开关管(S1)与第三开关管(S3)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第一开关管(S1)与第四开关管(S4)的驱动信号的中心线重合,第二开关管(S2)与第三开关管(S3)的驱动信号的中心线重合,第一开关管(S1)的开通时刻和第四开关管(S4)的开通时刻之间的中心线与第五开关管(S5)及第八开关管(S8)的开通时刻重合,第二开关管(S2)的开通时刻与第三开关管(S3)的开通时刻之间的中心线与第六开关管(S6)和第七开关管(S7)开通时刻重合;
第三控制方法:第一开关管(S1)的占空比大于等于0.5,第一开关管(S1)与第三开关管(S3)的占空比相等,第二开关管(S2)与第四开关管(S4)的占空比相等,通过调节第二开关管(S2)与第四开关管(S4)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过增加第二开关管(S2)与第四开关管(S4)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过减小第二开关管(S2)与第四开关管(S4)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第一开关管(S1)与第四开关管(S4)的驱动信号的中心线重合,第二开关管(S2)与第三开关管(S3)的驱动信号的中心线重合,第一开关管(S1)的开通时刻和第四开关管(S4)的开通时刻之间的中心线与第五开关管(S5)及第八开关管(S8)的开通时刻重合,第二开关管(S2)的开通时刻与第三开关管(S3)的开通时刻之间的中心线与第六开关管(S6)和第七开关管(S7)开通时刻重合;
当第二电压源(V2)的电压高于第一电压源(V1)的电压时,原边全桥电路(10)中的第一开关管(S1)、第二开关管(S2)、第三开关管(S3)、第四开关管(S4)的占空比都等于0.5,第一开关管(S1)与第四开关管(S4)同时开通、同时关断,第二开关管(S2)与第三开关管(S3)同时开通、同时关断,副边全桥电路(30)中的开关管的控制方法采用以下三种控制方法中的任意一种:
第一控制方法:第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)的占空比都等于0.5,第五开关管(S5)和第六开关管(S6)的开通时刻分别超前于第八开关管(S8)和第七开关管(S7)的开通时刻相同的移相角,通过调节第五开关管(S5)和第八开关管(S8)开通时刻之间的移相角来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过增加第五开关管(S5)与第八开关管(S8)开通时刻之间的移相角来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过减小第五开关管(S5)与第八开关管(S8)开通时刻之间的移相角来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第五开关管(S5)的开通时刻和第八开关管(S8)的开通时刻之间的中心线与第一开关管(S1)及第四开关管(S4)的开通时刻重合,第六开关管(S6)的开通时刻和第七开关管(S7)的开通时刻之间的中心线与第二开关管(S2)及第三开关管(S3)的开通时刻重合;
第二控制方法:第五开关管(S5)的占空比小于等于0.5,第五开关管(S5)与第七开关管(S7)的占空比相等,第六开关管(S6)与第八开关管(S8)的占空比相等,通过调节第五开关管(S5)与第七开关管(S7)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过减小第五开关管(S5)与第七开关管(S7)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过增加第五开关管(S5)与第七开关管(S7)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第五开关管(S5)与第八开关管(S8)的驱动信号的中心线重合,第六开关管(S6)与第七开关管(S7)的驱动信号的中心线重合,第五开关管(S5)的开通时刻和第八开关管(S8)的开通时刻之间的中心线与第一开关管(S1)及第四开关管(S4)的开通时刻重合,第六开关管(S6)的开通时刻与第七开关管(S7)的开通时刻之间的中心线与第二开关管(S2)及第三开关管(S3)开通时刻重合;
第三控制方法:第五开关管(S5)的占空比大于等于0.5,第五开关管(S5)与第七开关管(S7)的占空比相等,第六开关管(S6)与第八开关管(S8)的占空比相等,通过调节第六开关管(S6)与第八开关管(S8)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过减小第六开关管(S6)与第八开关管(S8)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过增加第六开关管(S6)与第八开关管(S8)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第五开关管(S5)与第八开关管(S8)的驱动信号的中心线重合,第六开关管(S6)与第七开关管(S7)的驱动信号的中心线重合,第五开关管(S5)的开通时刻和第八开关管(S8)的开通时刻之间的中心线与第一开关管(S1)及第四开关管(S4)的开通时刻重合,第六开关管(S6)的开通时刻与第七开关管(S7)的开通时刻之间的中心线与第二开关管(S2)及第三开关管(S3)开通时刻重合。
本发明技术方案与既有技术方案的本质区别在于,采用定频控制,利用原边全桥电路(10)或副边全桥电路(30)的移相角调节或占空比调节来控制桥臂中点方波电压的脉宽,从而实现输出电压的调节。两全桥电路桥臂中点方波电压始终关于中心线对称,使谐振电路可以工作在谐振频率点,有利于效率的提升。正反向控制策略一致,方向切换可以平滑进行。利用辅助电感(La)和变压器(T)提供额外的电流,实现所有开关管在全范围内的软开关。
本发明具有如下有益效果:
(1)变换器结构在正反向工作时完全对称,两个方向的控制方式也一致,易于实现传输方向的平滑切换;
(2)采用定频控制,利用移相角调节或占空比调节来控制输出电压,使谐振电路可以工作在谐振频率点,有利于磁性元件的设计、输出电压的调节以及效率的提升;
(3)输出侧的控制信号给定,不采用同步整流方式,简化了硬件电路;
(4)借助辅助电感(La)和变压器(T),开关管实现全范围软开关,提升了传输效率;
(5)变换器既可以工作在升压区域也可以工作在降压区域,具有较宽的电压调节范围。
附图说明
附图1是传统双有源桥式双向直流变换器原理图;
附图2是本发明提出的一种双向谐振变换器原理图;
附图3是本发明提出的一种双向谐振变换器采用移相控制,第一电压源(V1)的电压大于第二电压源(V2)的电压,且第一电压源(V1)向第二电压源(V2)传输功率时的主要工作波形图;
附图4~9是本发明提出的一种双向谐振变换器采用移相控制,第一电压源(V1)的电压大于第二电压源(V2)的电压,且第一电压源(V1)向第二电压源(V2)传输功率时,各开关模态的等效电路图;
以上附图中的符号名称:10为原边全桥电路;20为谐振电路;30为副边全桥电路;T为变压器;NP和NS分别为变压器(T)的原边绕组和副边绕组;Lr为谐振电感;Cr为谐振电容;Lm为激磁电感;La为辅助电感;S1和S2分别为第一、第二开关管;S3和S4分别为第三、第四开关管;S5和S6分别为第五、第六开关管;S7和S8分别为第七、第八开关管;V1、V2为电压源;vab为原边全桥电路(10)的桥臂中点电压;vcd为副边全桥电路(30)的桥臂中点电压;iLr为谐振电感(Lr)电流;iLa为辅助电感(La)电流;iLm为激磁电感(Lm)电流;vCr为谐振电容(Cr)电压;vGS1、vGS2、vGS3和vGS4分别为第一开关管(S1)、第二开关管(S2)、第三开关管(S3)和第四开关管(S4)的驱动电压;vGS5、vGS6、vGS7和vGS8分别为第五开关管(S5)、第六开关管(S6)、第七开关管(S7)和第八开关管(S8)的驱动电压;
具体实施方式
下面结合附图对本发明的技术方案进行详细说明。
如附图2所示,所述双向谐振变换器由原边全桥电路(10)、辅助电感(La)、谐振电路(20)、变压器(T)和副边全桥电路(30)构成,其中原边全桥电路(10)由第一开关管(S1)、第二开关管(S2)、第三开关管(S3)、第四开关管(S4)和第一电压源(V1)构成,谐振电路(20)由谐振电感(Lr)、谐振电容(Cr)构成,变压器(T)包含一个副边绕组(NS)和一个原边绕组(NP),副边全桥电路(30)由第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)和第二电压源(V2)构成;所述第一电压源(V1)的正极分别与第一开关管(S1)的漏极和第三开关管(S3)的漏极相连,第一开关管(S1)的源极分别连于第二开关管(S2)的漏极、谐振电感(Lr)的一端和辅助电感(La)的一端,谐振电感(Lr)的另一端连于谐振电容(Cr)的一端,谐振电容(Cr)的另一端连于变压器(T)原边绕组(NP)的同名端,变压器(T)原边绕组(NP)的非同名端连于第三开关管(S3)的源极、第四开关管(S4)的漏极以及辅助电感(La)的另一端,第四开关管(S4)的源极连于第二开关管(S2)的源极和第一电压源(V1)的负极;所述变压器(T)副边绕组(NS)的同名端分别与第五开关管(S5)的源极和第六开关管(S6)的漏极相连,第五开关管(S5)的漏极分别连于第七开关管(S7)的漏极和第二电压源(V2)的正极,第二电压源(V2)的负极连接到第六开关管(S6)的源极和第八开关管(S8)的源极,第八开关管(S8)的漏极连接到变压器副边绕组(NS)的非同名端。
所述所有开关管开关频率固定,第一开关管(S1)与第二开关管(S2)互补导通,第三开关管(S3)与第四开关管(S4)互补导通,第五开关管(S5)与第六开关管(S6)互补导通,第七开关管(S7)与第八开关管(S8)互补导通;
当第一电压源(V1)的电压高于第二电压源(V2)的电压时,副边全桥电路(30)中的第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)的占空比都等于0.5,第五开关管(S5)与第八开关管(S8)同时开通、同时关断,第六开关管(S6)与第七开关管(S7)同时开通、同时关断,原边全桥电路(10)中的开关管的控制方法采用以下三种控制方法中的任意一种:
第一控制方法:第一开关管(S1)、第二开关管(S2)、第三开关管(S3)、第四开关管(S4)的占空比都等于0.5,第一开关管(S1)和第二开关管(S2)的开通时刻分别超前于第四开关管(S4)和第三开关管(S3)的开通时刻相同的移相角,通过调节第一开关管(S1)与第四开关管(S4)开通时刻之间的移相角来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过减小第一开关管(S1)与第四开关管(S4)开通时刻之间的移相角来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过增加第一开关管(S1)与第四开关管(S4)开通时刻之间的移相角来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第一开关管(S1)的开通时刻和第四开关管(S4)的开通时刻之间的中心线与第五开关管(S5)及第八开关管(S8)的开通时刻重合,第二开关管(S2)的开通时刻与第三开关管(S3)的开通时刻之间的中心线与第六开关管(S6)和第七开关(S7)管的开通时刻重合;
第二控制方法:第一开关管(S1)的占空比小于等于0.5,第一开关管(S1)与第三开关管(S3)的占空比相等,第二开关管(S2)与第四开关管(S4)的占空比相等,通过调节第一开关管(S1)与第三开关管(S3)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过增加第一开关管(S1)与第三开关管(S3)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过减小第一开关管(S1)与第三开关管(S3)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第一开关管(S1)与第四开关管(S4)的驱动信号的中心线重合,第二开关管(S2)与第三开关管(S3)的驱动信号的中心线重合,第一开关管(S1)的开通时刻和第四开关管(S4)的开通时刻之间的中心线与第五开关管(S5)及第八开关管(S8)的开通时刻重合,第二开关管(S2)的开通时刻与第三开关管(S3)的开通时刻之间的中心线与第六开关管(S6)和第七开关管(S7)开通时刻重合;
第三控制方法:第一开关管(S1)的占空比大于等于0.5,第一开关管(S1)与第三开关管(S3)的占空比相等,第二开关管(S2)与第四开关管(S4)的占空比相等,通过调节第二开关管(S2)与第四开关管(S4)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过增加第二开关管(S2)与第四开关管(S4)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过减小第二开关管(S2)与第四开关管(S4)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第一开关管(S1)与第四开关管(S4)的驱动信号的中心线重合,第二开关管(S2)与第三开关管(S3)的驱动信号的中心线重合,第一开关管(S1)的开通时刻和第四开关管(S4)的开通时刻之间的中心线与第五开关管(S5)及第八开关管(S8)的开通时刻重合,第二开关管(S2)的开通时刻与第三开关管(S3)的开通时刻之间的中心线与第六开关管(S6)和第七开关管(S7)开通时刻重合;
当第二电压源(V2)的电压高于第一电压源(V1)的电压时,原边全桥电路(10)中的第一开关管(S1)、第二开关管(S2)、第三开关管(S3)、第四开关管(S4)的占空比都等于0.5,第一开关管(S1)与第四开关管(S4)同时开通、同时关断,第二开关管(S2)与第三开关管(S3)同时开通、同时关断,副边全桥电路(30)中的开关管的控制方法采用以下三种控制方法中的任意一种:
第一控制方法:第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)的占空比都等于0.5,第五开关管(S5)和第六开关管(S6)的开通时刻分别超前于第八开关管(S8)和第七开关管(S7)的开通时刻相同的移相角,通过调节第五开关管(S5)和第八开关管(S8)开通时刻之间的移相角来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过增加第五开关管(S5)与第八开关管(S8)开通时刻之间的移相角来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过减小第五开关管(S5)与第八开关管(S8)开通时刻之间的移相角来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第五开关管(S5)的开通时刻和第八开关管(S8)的开通时刻之间的中心线与第一开关管(S1)及第四开关管(S4)的开通时刻重合,第六开关管(S6)的开通时刻和第七开关管(S7)的开通时刻之间的中心线与第二开关管(S2)及第三开关管(S3)的开通时刻重合;
第二控制方法:第五开关管(S5)的占空比小于等于0.5,第五开关管(S5)与第七开关管(S7)的占空比相等,第六开关管(S6)与第八开关管(S8)的占空比相等,通过调节第五开关管(S5)与第七开关管(S7)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过减小第五开关管(S5)与第七开关管(S7)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过增加第五开关管(S5)与第七开关管(S7)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第五开关管(S5)与第八开关管(S8)的驱动信号的中心线重合,第六开关管(S6)与第七开关管(S7)的驱动信号的中心线重合,第五开关管(S5)的开通时刻和第八开关管(S8)的开通时刻之间的中心线与第一开关管(S1)及第四开关管(S4)的开通时刻重合,第六开关管(S6)的开通时刻与第七开关管(S7)的开通时刻之间的中心线与第二开关管(S2)及第三开关管(S3)开通时刻重合;
第三控制方法:第五开关管(S5)的占空比大于等于0.5,第五开关管(S5)与第七开关管(S7)的占空比相等,第六开关管(S6)与第八开关管(S8)的占空比相等,通过调节第六开关管(S6)与第八开关管(S8)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过减小第六开关管(S6)与第八开关管(S8)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过增加第六开关管(S6)与第八开关管(S8)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第五开关管(S5)与第八开关管(S8)的驱动信号的中心线重合,第六开关管(S6)与第七开关管(S7)的驱动信号的中心线重合,第五开关管(S5)的开通时刻和第八开关管(S8)的开通时刻之间的中心线与第一开关管(S1)及第四开关管(S4)的开通时刻重合,第六开关管(S6)的开通时刻与第七开关管(S7)的开通时刻之间的中心线与第二开关管(S2)及第三开关管(S3)开通时刻重合。
本发明的目的是实现隔离双向直流功率变换,为了实现该目的,本发明提出了一种双向谐振变换器及其控制方法,通过原边全桥电路(10)或副边全桥电路(30)的移相角调节或占空比调节来控制输出电压,使谐振电路可以定频工作在谐振频率点,控制方式简单;全电压负载范围实现软开关,提升了传输效率。
下面以附图3所示的双向谐振变换器采用移相控制,第一电压源(V1)的电压大于第二电压源(V2)的电压,且第一电压源(V1)向第二电压源(V2)传输功率时的主要工作波形为例,说明本发明的工作原理。附图4~9给出了双向谐振变换器采用移相控制,第一电压源(V1)的电压大于第二电压源(V2)的电压,且第一电压源(V1)向第二电压源(V2)传输功率时各开关模态的等效电路。半周期中,共有6种工作模态。
开关模态1[t0,t1]:t0时刻之前,第一开关管(S1)和第三开关管(S3)导通,第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)处于死区时间内。副边全桥电路(30)的桥臂中点电压vcd由-V2上升到V2。在t0时刻,第五开关管(S5)和第八开关管(S8)实现ZVS开通。本时段内,第一开关管(S1)、第三开关管(S3)、第五开关管(S5)、第八开关管(S8)导通。原边全桥电路(10)的桥臂中点电压vab等于0,副边全桥电路(30)的桥臂中点电压vcd等于V2。变压器(T)激磁电感(Lm)电流开始上升,辅助电感(La)电流保持不变。
开关模态2[t1,t2]:t1时刻,第三开关管(S3)关断,第三开关管(S3)和第四开关管(S4)处于死区时间内,谐振电感(Lr)电流和辅助电感(La)电流共同对第三开关管(S3)和第四开关管(S4)的结电容进行充放电,为第四开关管(S4)的ZVS开通做准备。本时段内,第一开关管(S1)、第五开关管(S5)和第八开关管(S8)处于导通状态。原边全桥电路(10)的桥臂中点电压vab由0上升到V1,副边全桥电路(30)的桥臂中点电压vcd等于V2。变压器(T)激磁电感(Lm)电流继续上升,辅助电感(La)电流保持不变。
开关模态3[t2,t3]:t2时刻,第四开关管(S4)实现ZVS开通。本时段内,第一开关管(S1)和第四开关管(S4)导通,第五开关管(S5)和第八开关管(S8)导通。原边全桥电路(10)的桥臂中点电压vab等于V1,副边全桥电路(30)桥臂中点电压vcd等于V2。谐振电路(20)在V1-V2的电压下进行谐振。变压器(T)激磁电感(Lm)电流及辅助电感(La)电流随时间线性上升。
开关模态4[t3,t4]:t3时刻,第一开关管(S1)关断,第一开关管(S1)和第二开关管(S2)处于死区时间内,谐振电感(Lr)电流与辅助电感(La)电流共同对第一开关管(S1)和第二开关管(S2)的结电容进行充放电,为第二开关管(S2)的ZVS开通做准备。本时段内,第四开关管(S4)、第五开关管(S5)和第八开关管(S8)处于导通状态。原边全桥电路(10)的桥臂中点电压vab由V1下降到0,副边全桥电路(30)的桥臂中点电压vcd等于V2。变压器(T)激磁电感(Lm)电流及辅助电感(La)电流随时间线性上升。
开关模态5[t4,t5]:t4时刻,第二开关管(S2)实现ZVS开通。本时段内,第二开关管(S2)、第四开关管(S4)、第五开关管(S5)和第八开关管(S8)处于导通状态。原边全桥电路(10)的桥臂中点电压vab等于0,副边全桥电路(30)的桥臂中点电压vcd等于V2。变压器(T)激磁电感(Lm)电流继续上升,辅助电感(La)电流维持不变。
开关模态6[t5,t6]:t5时刻,第五开关管(S5)与第八开关管(S8)关断,第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)处于死区时间内。本时段内,第二开关管(S2)和第四开关管(S4)导通。原边全桥电路(10)的桥臂中点电压vab等于0,副边全桥电路(30)的桥臂中点电压vcd由V2下降到-V2。在t6时刻,第六开关管(S6)和第七开关管(S7)实现ZVS开通。变压器(T)激磁电感(Lm)电流继续上升,辅助电感(La)电流维持不变。
另外半周期的工作模态与上述工作模态类似,这里不再叙述。根据上述工作过程的描述可知,本发明可以实现所有开关管的软开关,能够有效改善变换效率。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (1)

1.一种双向谐振变换器控制方法,其特征在于:
所述双向谐振变换器由原边全桥电路(10)、辅助电感(La)、谐振电路(20)、变压器(T)和副边全桥电路(30)构成,其中原边全桥电路(10)由第一开关管(S1)、第二开关管(S2)、第三开关管(S3)、第四开关管(S4)和第一电压源(V1)构成,谐振电路(20)由谐振电感(Lr)、谐振电容(Cr)构成,变压器(T)包含一个副边绕组(NS)和一个原边绕组(NP),副边全桥电路(30)由第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)和第二电压源(V2)组成;
所述第一电压源(V1)的正极分别与第一开关管(S1)的漏极和第三开关管(S3)的漏极相连,第一开关管(S1)的源极分别连于第二开关管(S2)的漏极、谐振电感(Lr)的一端和辅助电感(La)的一端,谐振电感(Lr)的另一端连于变压器(T)原边绕组(NP)的同名端,变压器(T)原边绕组(NP)的非同名端连于谐振电容(Cr)的一端,谐振电容(Cr)的另一端连于第三开关管(S3)的源极、第四开关管(S4)的漏极以及辅助电感(La)的另一端,第四开关管(S4)的源极连于第二开关管(S2)的源极和第一电压源(V1)的负极;
所述变压器(T)副边绕组(NS)的同名端分别与第五开关管(S5)的源极和第六开关管(S6)的漏极相连,第五开关管(S5)的漏极分别连于第七开关管(S7)的漏极和第二电压源(V2)的正极,第二电压源(V2)的负极连接到第六开关管(S6)的源极和第八开关管(S8)的源极,第八开关管(S8)的漏极连接到变压器副边绕组(NS)的非同名端;
所述所有开关管开关频率固定,第一开关管(S1)与第二开关管(S2)互补导通,第三开关管(S3)与第四开关管(S4)互补导通,第五开关管(S5)与第六开关管(S6)互补导通,第七开关管(S7)与第八开关管(S8)互补导通;
当第一电压源(V1)的电压高于第二电压源(V2)的电压时,副边全桥电路(30)中的第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)的占空比都等于0.5,第五开关管(S5)与第八开关管(S8)同时开通、同时关断,第六开关管(S6)与第七开关管(S7)同时开通、同时关断,原边全桥电路(10)中的开关管的控制方法采用以下三种控制方法中的任意一种:
第一控制方法:第一开关管(S1)、第二开关管(S2)、第三开关管(S3)、第四开关管(S4)的占空比都等于0.5,第一开关管(S1)和第二开关管(S2)的开通时刻分别超前于第四开关管(S4)和第三开关管(S3)的开通时刻相同的移相角,通过调节第一开关管(S1)与第四开关管(S4)开通时刻之间的移相角来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过减小第一开关管(S1)与第四开关管(S4)开通时刻之间的移相角来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过增加第一开关管(S1)与第四开关管(S4)开通时刻之间的移相角来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第一开关管(S1)的开通时刻和第四开关管(S4)的开通时刻之间的中心线与第五开关管(S5)及第八开关管(S8)的开通时刻重合,第二开关管(S2)的开通时刻与第三开关管(S3)的开通时刻之间的中心线与第六开关管(S6)和第七开关(S7)管的开通时刻重合;
第二控制方法:第一开关管(S1)的占空比小于等于0.5,第一开关管(S1)与第三开关管(S3)的占空比相等,第二开关管(S2)与第四开关管(S4)的占空比相等,通过调节第一开关管(S1)与第三开关管(S3)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过增加第一开关管(S1)与第三开关管(S3)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过减小第一开关管(S1)与第三开关管(S3)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第一开关管(S1)与第四开关管(S4)的驱动信号的中心线重合,第二开关管(S2)与第三开关管(S3)的驱动信号的中心线重合,第一开关管(S1)的开通时刻和第四开关管(S4)的开通时刻之间的中心线与第五开关管(S5)及第八开关管(S8)的开通时刻重合,第二开关管(S2)的开通时刻与第三开关管(S3)的开通时刻之间的中心线与第六开关管(S6)和第七开关管(S7)开通时刻重合;
第三控制方法:第一开关管(S1)的占空比大于等于0.5,第一开关管(S1)与第三开关管(S3)的占空比相等,第二开关管(S2)与第四开关管(S4)的占空比相等,通过调节第二开关管(S2)与第四开关管(S4)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过增加第二开关管(S2)与第四开关管(S4)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过减小第二开关管(S2)与第四开关管(S4)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第一开关管(S1)与第四开关管(S4)的驱动信号的中心线重合,第二开关管(S2)与第三开关管(S3)的驱动信号的中心线重合,第一开关管(S1)的开通时刻和第四开关管(S4)的开通时刻之间的中心线与第五开关管(S5)及第八开关管(S8)的开通时刻重合,第二开关管(S2)的开通时刻与第三开关管(S3)的开通时刻之间的中心线与第六开关管(S6)和第七开关管(S7)开通时刻重合;
当第二电压源(V2)的电压高于第一电压源(V1)的电压时,原边全桥电路(10)中的第一开关管(S1)、第二开关管(S2)、第三开关管(S3)、第四开关管(S4)的占空比都等于0.5,第一开关管(S1)与第四开关管(S4)同时开通、同时关断,第二开关管(S2)与第三开关管(S3)同时开通、同时关断,副边全桥电路(30)中的开关管的控制方法采用以下三种控制方法中的任意一种:
第一控制方法:第五开关管(S5)、第六开关管(S6)、第七开关管(S7)、第八开关管(S8)的占空比都等于0.5,第五开关管(S5)和第六开关管(S6)的开通时刻分别超前于第八开关管(S8)和第七开关管(S7)的开通时刻相同的移相角,通过调节第五开关管(S5)和第八开关管(S8)开通时刻之间的移相角来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过增加第五开关管(S5)与第八开关管(S8)开通时刻之间的移相角来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过减小第五开关管(S5)与第八开关管(S8)开通时刻之间的移相角来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第五开关管(S5)的开通时刻和第八开关管(S8)的开通时刻之间的中心线与第一开关管(S1)及第四开关管(S4)的开通时刻重合,第六开关管(S6)的开通时刻和第七开关管(S7)的开通时刻之间的中心线与第二开关管(S2)及第三开关管(S3)的开通时刻重合;
第二控制方法:第五开关管(S5)的占空比小于等于0.5,第五开关管(S5)与第七开关管(S7)的占空比相等,第六开关管(S6)与第八开关管(S8)的占空比相等,通过调节第五开关管(S5)与第七开关管(S7)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过减小第五开关管(S5)与第七开关管(S7)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过增加第五开关管(S5)与第七开关管(S7)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第五开关管(S5)与第八开关管(S8)的驱动信号的中心线重合,第六开关管(S6)与第七开关管(S7)的驱动信号的中心线重合,第五开关管(S5)的开通时刻和第八开关管(S8)的开通时刻之间的中心线与第一开关管(S1)及第四开关管(S4)的开通时刻重合,第六开关管(S6)的开通时刻与第七开关管(S7)的开通时刻之间的中心线与第二开关管(S2)及第三开关管(S3)开通时刻重合;
第三控制方法:第五开关管(S5)的占空比大于等于0.5,第五开关管(S5)与第七开关管(S7)的占空比相等,第六开关管(S6)与第八开关管(S8)的占空比相等,通过调节第六开关管(S6)与第八开关管(S8)的占空比的大小来调节所述双向谐振变换器所传输的功率的大小和方向,当功率由第一电压源(V1)传输到第二电压源(V2)时,通过减小第六开关管(S6)与第八开关管(S8)的占空比来增加由第一电压源(V1)传输到第二电压源(V2)的功率,当功率由第二电压源(V2)传输到第一电压源(V1)时,通过增加第六开关管(S6)与第八开关管(S8)的占空比来增加由第二电压源(V2)传输到第一电压源(V1)的功率,第五开关管(S5)与第八开关管(S8)的驱动信号的中心线重合,第六开关管(S6)与第七开关管(S7)的驱动信号的中心线重合,第五开关管(S5)的开通时刻和第八开关管(S8)的开通时刻之间的中心线与第一开关管(S1)及第四开关管(S4)的开通时刻重合,第六开关管(S6)的开通时刻与第七开关管(S7)的开通时刻之间的中心线与第二开关管(S2)及第三开关管(S3)开通时刻重合。
CN201610578503.6A 2016-07-20 2016-07-20 一种双向谐振变换器及其控制方法 Active CN106026645B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610578503.6A CN106026645B (zh) 2016-07-20 2016-07-20 一种双向谐振变换器及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610578503.6A CN106026645B (zh) 2016-07-20 2016-07-20 一种双向谐振变换器及其控制方法

Publications (2)

Publication Number Publication Date
CN106026645A CN106026645A (zh) 2016-10-12
CN106026645B true CN106026645B (zh) 2018-08-14

Family

ID=57117090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610578503.6A Active CN106026645B (zh) 2016-07-20 2016-07-20 一种双向谐振变换器及其控制方法

Country Status (1)

Country Link
CN (1) CN106026645B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106787779B (zh) * 2016-12-29 2019-03-05 北京天诚同创电气有限公司 多相双向谐振直流变换电路及其控制方法、控制系统
CN108809104A (zh) * 2018-06-11 2018-11-13 南京航空航天大学 一种双向谐振变换器及其同步整流的控制方法
CN109787372A (zh) * 2019-03-07 2019-05-21 重庆理工大学 一种双向非接触式充电系统及可逆无线充电模组
CN109889049B (zh) 2019-03-08 2021-04-13 台达电子企业管理(上海)有限公司 Dc/dc变换器的控制方法和装置
CN109831099B (zh) * 2019-03-12 2020-03-27 浙江大学 应用于双向谐振式cllc电路的工作方向平滑切换控制方法
CN110572042B (zh) * 2019-09-30 2020-08-14 华中科技大学 一种双向无线电能传输系统的双侧不对称电压控制方法
CN111030464B (zh) * 2019-12-20 2023-01-24 深圳市能效电气技术有限公司 一种功率变换器双向llc电路的控制方法
CN111614256B (zh) * 2020-04-29 2022-04-05 华为技术有限公司 一种非隔离dcdc谐振变换控制电路及控制方法
CN112072923B (zh) * 2020-09-11 2022-01-25 深圳市永联科技股份有限公司 一种双向电路等效控制方法
CN113424426B (zh) * 2020-10-14 2023-02-10 深圳欣锐科技股份有限公司 双向谐振电路和汽车
CN114301297A (zh) * 2021-06-23 2022-04-08 华为数字能源技术有限公司 一种功率变换器、增大逆向增益范围的方法、装置、介质
CN113572365B (zh) * 2021-08-12 2022-10-11 湖南华阵电子科技有限公司 基于功率实时估计的dab-llc双向变换器及同步整流方法
CN114744888A (zh) * 2022-06-10 2022-07-12 深圳市国电赛思电源技术有限责任公司 一种双向直流电源及控制方法
CN115224952B (zh) * 2022-09-19 2023-01-17 如果新能源科技(江苏)股份有限公司 双向功率变换装置的控制方法及双向功率变换装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5995139B2 (ja) * 2012-10-12 2016-09-21 富士電機株式会社 双方向dc/dcコンバータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
同步控制双向LLC 谐振变换器;江添洋等;《电工技术学报》;20150630;第30卷(第12期);第87-96页 *

Also Published As

Publication number Publication date
CN106026645A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106026645B (zh) 一种双向谐振变换器及其控制方法
WO2021077757A1 (zh) 一种变拓扑llc谐振变换器的宽增益控制方法
CN108448913B (zh) 一种单级式基于交错并联无桥pfc电路和llc谐振的隔离型ac-dc变换器
CN109217681B (zh) 一种双向谐振变换器
CN102201739B (zh) 一种对称半桥llc谐振式双向直流-直流变换器
WO2021042773A1 (zh) 一种llc谐振变换器及控制方法
CN109889047B (zh) 一种适用于宽输入宽输出电压范围的两级式dc-dc变换器
CN108900100B (zh) 一种单相高效高频隔离型整流器
CN105305829B (zh) 电流型单向dc‑dc变换器及对称双pwm加移相控制方法
CN100353654C (zh) 级联式双向dc-dc变换器
CN106685231B (zh) 一种原边钳位型软开关全桥变换器及其不对称控制方法
CN101562399B (zh) 一种全桥双输出直流-直流变换器
WO2023098218A1 (zh) 一种宽范围谐振式软开关双向直流变换器及其控制方法
CN110504852B (zh) 一种带电压解耦的单相软开关充电器拓扑及其调制方法
CN105896986A (zh) 一种谐振变换器及其控制方法
CN105515417A (zh) 双输出单相pfc变换器及其组合式功率变换系统和控制方法
CN110071640A (zh) 一种三倍流整流llc三相全桥直流变换器
CN111431415B (zh) 一种并联输入串联输出的高升压隔离型直流变换器
CN105226929A (zh) 一种变模态级联变换器
CN101604916B (zh) 基于π型辅助网络零电压开关全桥直流变换器
CN114337344A (zh) 一种基于自适应混合整流多开关谐振llc变换器的控制方法
CN111817566A (zh) 一种llct谐振型双向直流变换器
CN115242108A (zh) 双向推挽/全桥谐振变换器及其控制方法
CN109451628A (zh) 基于GaN器件的单级隔离型LED驱动电源
CN204304823U (zh) 基于移相全桥控制的同步整流软开关变换器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant