CN106024973A - 一种抗pid单晶太阳电池镀双层减反射膜工艺 - Google Patents

一种抗pid单晶太阳电池镀双层减反射膜工艺 Download PDF

Info

Publication number
CN106024973A
CN106024973A CN201610371468.0A CN201610371468A CN106024973A CN 106024973 A CN106024973 A CN 106024973A CN 201610371468 A CN201610371468 A CN 201610371468A CN 106024973 A CN106024973 A CN 106024973A
Authority
CN
China
Prior art keywords
overpressure
power supply
passed
frequency power
radio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610371468.0A
Other languages
English (en)
Other versions
CN106024973B (zh
Inventor
丁继业
陈刚刚
安百俊
崔智秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGXIA YINXIANG ENERGY PHOTOVOLTAIC EQUIPMENT MANUFACTURING Co Ltd
Original Assignee
NINGXIA YINXIANG ENERGY PHOTOVOLTAIC EQUIPMENT MANUFACTURING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGXIA YINXIANG ENERGY PHOTOVOLTAIC EQUIPMENT MANUFACTURING Co Ltd filed Critical NINGXIA YINXIANG ENERGY PHOTOVOLTAIC EQUIPMENT MANUFACTURING Co Ltd
Priority to CN201610371468.0A priority Critical patent/CN106024973B/zh
Publication of CN106024973A publication Critical patent/CN106024973A/zh
Application granted granted Critical
Publication of CN106024973B publication Critical patent/CN106024973B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明涉及一种抗PID单晶太阳电池镀双层减反射膜工艺。其特点是,包括如下步骤:(1)在去磷硅玻璃后的硅片上生长一层氧化层,具体采用紫外氧化工艺,工艺温度控制在350~400℃,氧气流量控制在4~10L/min,时间控制在20‑50s,在硅片表面形成致密氧化层;(2)将硅片插入石墨舟后送进炉管;(3)炉管抽真空,使炉管内压力降到35mtorr以下;(4)给炉管通入氨气6000~6200sccm,控制炉管内压力在1600~1700mtorr,温度控制在425℃,打开射频电源。经过试用证明,采用本发明的方法后,可以通过紫外氧化和PECVD工序很好的解决太阳电池PID效应。

Description

一种抗PID单晶太阳电池镀双层减反射膜工艺
技术领域
本发明涉及一种抗PID单晶太阳电池镀双层减反射膜工艺。
背景技术
太阳能是一种清洁能源,太阳电池是把太阳能转化成电能的器件,太阳能电池片生产工艺中,为了减少太阳光的反射,一般通过PECVD(Plasma Enhanced Chemical VaporDeposition,等离子体增强化学气相沉积法)技术在太阳能电池片的表面表面沉积一层氮化硅膜,工作原理是高频电源使氨气和硅烷混合气体电离,形成等离子体,等离子体沉积在硅片上形成氮化硅薄膜,能够极大减少太阳光在硅片表面的反射,降低反射率。
太阳电池在长期使用过程中,组件边框和电池片之间会产生一个电场,电池组件边框以及EVA内的金属离子会在电场的作用下向电池表面漂移,最终导致太阳电池效率明显下降甚至失效,此过程称之为电致电性能衰减效应(PID),现有的单晶太阳电池镀膜工艺对太阳电池电致电性能衰减效应无明显阻抗作用,PID效应会导致太阳电池在长期使用过程中功率损失严重,从而导致电池性能大幅降低。
发明内容
本发明的目的是提供一种抗PID单晶太阳电池镀双层减反射膜工艺,能够使电池片具有抗PID功能。
一种抗PID单晶太阳电池镀双层减反射膜工艺,其特别之处在于,包括如下步骤:
(1)在去磷硅玻璃后的硅片上生长一层氧化层,具体采用紫外氧化工艺,工艺温度控制在350~400℃,氧气流量控制在4~10L/min,时间控制在20-50s,在硅片表面形成致密氧化层;
(2)将硅片插入石墨舟后送进炉管;
(3)炉管抽真空,使炉管内压力降到35mtorr以下;
(4)给炉管通入氨气6000~6200sccm,控制炉管内压力在1600~1700mtorr,温度控制在425℃,打开射频电源,控制射频电源功率6500~6650w,占空比4:45,持续时间300~330秒;
(5)关闭射频电源,抽真空使炉内压力降到35mtorr以下,通入氮气,氮气流量10000~20000sccm,使炉管内压力恢复至常压,停止通气,再抽真空使炉管内压力降到35毫托以下,通入氮气,氮气流量10000~20000sccm,使炉管内压力恢复常压,停止通气;
(6)抽真空使炉管内压力降到35mtorr以下,通入氨气,氨气流量6000~6200sccm,通入硅烷,硅烷流量800~850sccm,炉管压力控制在1600~1700mtorr,温度控制在425℃,打开射频电源,射频电源功率6500~6650w,占空比3:36,持续时间120~130秒;
(7)关闭射频电源,抽真空使炉管内压力降至35mtorr以下,通入氮气,氮气流量10000~20000sccm,使炉管压力恢复常压,停止通气;
(8)抽真空使炉管内压力降至35mtorr以下,通入氨气,氨气流量5300~5500sccm,通入硅烷,硅烷流量580~680sccm,炉管压力控制在1600~1700mtorr,温度控制在425℃,打开射频电源,射频电源功率6500~6650w,占空比3:36,持续时间620~630秒;
(9)关闭射频电源,抽真空使炉管内压力降至35mtorr以下,通入氮气,氮气流量10000~20000sccm,使炉管压力恢复常压,停止通气。
步骤(4)和(6)和(8)中均利用真空泵电磁阀控制炉管内压力。
经过试用证明,采用本发明的方法后,可以通过紫外氧化和PECVD工序很好的解决太阳电池PID效应。本发明PECVD后电池片膜厚为85nm,折射率为2.12。
具体实施方式
实施例1:
一种抗PID太阳电池片镀双层减反射膜工艺,包括如下步骤:
本实施例中所用炉管为深圳捷佳伟创公司380A炉管。
(1)将去磷硅玻璃完的硅片,进行紫外氧化工艺,工艺温度控制在300℃,氧气流量控制在6L/min,时间控制在35s,形成致密氧化层。
(2)将硅片插入石墨舟后送进炉管(炉管为深圳捷佳伟创公司380A炉管);
(3)炉管抽真空,使炉管内压力降到30mtorr;
(4)给炉管通入氨气6000sccm,利用真空泵电磁阀控制炉管内压力1600mtorr,继续通入氨气,温度控制在425℃,打开(炉子自带的)射频电源,射频电源功率6500w,占空比4:45,放电持续时间300秒;
(5)关闭射频电源,抽真空使炉内压力降到30mtorr,通入氮气,氮气流量10000sccm,使炉管内压力恢复至常压,然后停止通气,再抽真空使炉管内压力降到30mtorr,通入氮气,氮气流量10000sccm,使炉管压力恢复常压,停止通气;
(6)抽真空使炉管内压力降到30mtorr,通入氨气,氨气流量6000sccm,通入硅烷,硅烷流量800sccm,利用真空泵电磁阀炉管压力控制在1600mtorr,继续通入反应气体,温度控制在425℃,打开射频电源,射频电源功率6500w,占空比3:36,放电持续时间120秒;
(7)关闭射频电源,抽真空使炉管内压力降至30mtorr,通入氮气,氮气流量10000sccm,使炉管压力恢复常压,停止通气;
(8)抽真空使炉管内压力降至30mtorr,通入氨气,氨气流量5300sccm,通入硅烷,硅烷流量580sccm,炉管压力控制在1600mtorr,温度控制在425℃,打开射频电源,射频电源功率6500w,占空比3:36,放电持续时间620秒;
(9)关闭射频电源,抽真空使炉管内压力降至30mtorr,通入氮气,氮气流量10000sccm,使炉管压力恢复常压,然后停止通气。
(10)采用此工艺和常规工艺膜厚、折射率对比:
表一:电池片做成组件恒温恒湿(PID,温度85℃,相对湿度85%,1000h)环境测试数据记录:
由此可见,采用上述技术方案,从实验结果得出组件抗电性能衰减(PID)优于常规镀膜工艺行业衰减5%。

Claims (2)

1.一种抗PID单晶太阳电池镀双层减反射膜工艺,其特征在于,包括如下步骤:
(1)在去磷硅玻璃后的硅片上生长一层氧化层,具体采用紫外氧化工艺,工艺温度控制在350~400℃,氧气流量控制在4~10L/min,时间控制在20-50s,在硅片表面形成致密氧化层;
(2)将硅片插入石墨舟后送进炉管;
(3)炉管抽真空,使炉管内压力降到35mtorr以下;
(4)给炉管通入氨气6000~6200sccm,控制炉管内压力在1600~1700mtorr,温度控制在425℃,打开射频电源,控制射频电源功率6500~6650w,占空比4:45,持续时间300~330秒;
(5)关闭射频电源,抽真空使炉内压力降到35mtorr以下,通入氮气,氮气流量10000~20000sccm,使炉管内压力恢复至常压,停止通气,再抽真空使炉管内压力降到35毫托以下,通入氮气,氮气流量10000~20000sccm,使炉管内压力恢复常压,停止通气;
(6)抽真空使炉管内压力降到35mtorr以下,通入氨气,氨气流量6000~6200sccm,通入硅烷,硅烷流量800~850sccm,炉管压力控制在1600~1700mtorr,温度控制在425℃,打开射频电源,射频电源功率6500~6650w,占空比3:36,持续时间120~130秒;
(7)关闭射频电源,抽真空使炉管内压力降至35mtorr以下,通入氮气,氮气流量10000~20000sccm,使炉管压力恢复常压,停止通气;
(8)抽真空使炉管内压力降至35mtorr以下,通入氨气,氨气流量5300~5500sccm,通入硅烷,硅烷流量580~680sccm,炉管压力控制在1600~1700mtorr,温度控制在425℃,打开射频电源,射频电源功率6500~6650w,占空比3:36,持续时间620~630秒;
(9)关闭射频电源,抽真空使炉管内压力降至35mtorr以下,通入氮气,氮气流量10000~20000sccm,使炉管压力恢复常压,停止通气。
2.如权利要求1所述的一种抗PID单晶太阳电池镀双层减反射膜工艺,其特征在于:步骤(4)和(6)和(8)中均利用真空泵电磁阀控制炉管内压力。
CN201610371468.0A 2016-05-31 2016-05-31 一种抗pid单晶太阳电池镀双层减反射膜工艺 Active CN106024973B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610371468.0A CN106024973B (zh) 2016-05-31 2016-05-31 一种抗pid单晶太阳电池镀双层减反射膜工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610371468.0A CN106024973B (zh) 2016-05-31 2016-05-31 一种抗pid单晶太阳电池镀双层减反射膜工艺

Publications (2)

Publication Number Publication Date
CN106024973A true CN106024973A (zh) 2016-10-12
CN106024973B CN106024973B (zh) 2017-11-24

Family

ID=57092455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610371468.0A Active CN106024973B (zh) 2016-05-31 2016-05-31 一种抗pid单晶太阳电池镀双层减反射膜工艺

Country Status (1)

Country Link
CN (1) CN106024973B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392936A (zh) * 2017-01-10 2019-10-29 国立大学法人东北大学 太阳能电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864439A (zh) * 2012-09-03 2013-01-09 东方电气集团(宜兴)迈吉太阳能科技有限公司 一种制备具有抗pid效应的减反射膜的方法
CN103840032A (zh) * 2012-11-27 2014-06-04 陕西天宏硅材料有限责任公司 一种硅太阳能单晶电池片双层减反膜的制备工艺
CN103943718A (zh) * 2014-03-19 2014-07-23 晶澳(扬州)太阳能科技有限公司 一种制备抗pid薄膜的方法
JP2014239104A (ja) * 2013-06-06 2014-12-18 信越化学工業株式会社 太陽電池セル、太陽電池モジュール及びその製造方法
CN104538500A (zh) * 2015-01-06 2015-04-22 横店集团东磁股份有限公司 用于晶体硅太阳能电池抗lid和pid的pecvd镀膜和烧结工艺
CN105140306A (zh) * 2015-07-27 2015-12-09 尚德太阳能电力有限公司 抗pid效应的太阳能电池结构及生产方法
CN105609586A (zh) * 2015-12-24 2016-05-25 合肥晶澳太阳能科技有限公司 一种抗电势诱导衰减的晶体硅电池的制备工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864439A (zh) * 2012-09-03 2013-01-09 东方电气集团(宜兴)迈吉太阳能科技有限公司 一种制备具有抗pid效应的减反射膜的方法
CN103840032A (zh) * 2012-11-27 2014-06-04 陕西天宏硅材料有限责任公司 一种硅太阳能单晶电池片双层减反膜的制备工艺
JP2014239104A (ja) * 2013-06-06 2014-12-18 信越化学工業株式会社 太陽電池セル、太陽電池モジュール及びその製造方法
CN103943718A (zh) * 2014-03-19 2014-07-23 晶澳(扬州)太阳能科技有限公司 一种制备抗pid薄膜的方法
CN104538500A (zh) * 2015-01-06 2015-04-22 横店集团东磁股份有限公司 用于晶体硅太阳能电池抗lid和pid的pecvd镀膜和烧结工艺
CN105140306A (zh) * 2015-07-27 2015-12-09 尚德太阳能电力有限公司 抗pid效应的太阳能电池结构及生产方法
CN105609586A (zh) * 2015-12-24 2016-05-25 合肥晶澳太阳能科技有限公司 一种抗电势诱导衰减的晶体硅电池的制备工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110392936A (zh) * 2017-01-10 2019-10-29 国立大学法人东北大学 太阳能电池
CN110392936B (zh) * 2017-01-10 2023-11-24 国立大学法人东北大学 太阳能电池

Also Published As

Publication number Publication date
CN106024973B (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
TWI751098B (zh) 經施用塗層的電漿潤濕系統的構件及塗層之用途
CN102864439B (zh) 一种制备具有抗pid效应的减反射膜的方法
KR20210111885A (ko) 기판 제품 및 장치의 특성 및 성능을 향상시키기 위한 코팅
CN109148643B (zh) 一种解决ald方式的perc电池在电注入或光注入后效率降低的方法
WO2008139860A1 (ja) 半導体薄膜、半導体薄膜の製造方法、および、半導体素子
WO2012044622A3 (en) Low-temperature dielectric film formation by chemical vapor deposition
TWI748147B (zh) 石墨烯膠膜的製備方法及石墨烯的轉移方法
Sperlich et al. High productive Solar Cell Passivation on Roth&Rau MAiA® MW-PECVD inline machine–a comparison of Al2O3, SiO2 and SiNx-H process conditions and performance
MX336541B (es) Celula solar de pelicula fina de silicio que tiene turbidez mejorada y metodos de fabricacion de la misma.
CN104561928A (zh) 一种在玻璃基底上沉积二氧化硅薄膜的方法
KR20180054478A (ko) 진공 프로세스 챔버에서의 수소 분압 제어
CN105734524B (zh) 金属有机化学气相沉积装置及使用该装置的方法
WO2010067424A1 (ja) 触媒化学気相成長装置
CN108493105A (zh) 二氧化硅薄膜及其制备方法
CN102386277A (zh) 多层镀膜工艺
CN106024973A (zh) 一种抗pid单晶太阳电池镀双层减反射膜工艺
WO2019114060A1 (zh) 电极板及其表面处理方法
JP2008300793A (ja) 触媒化学気相成長装置
CN103037989A (zh) 使用分子氟的原位激活的沉积腔室清洁
CN108598212A (zh) 一种太阳能电池钝化的方法
CN105633175A (zh) 一种可以降低抗pid电池外观不良率的工艺
CN102832119B (zh) 低温二氧化硅薄膜的形成方法
CN105244412A (zh) 一种n型晶硅电池硼发射极的钝化方法
CN101671817B (zh) 一种等离子体增强式化学气相沉积处理方法
JP2016058643A (ja) プラズマエッチング方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Ding Jiye

Inventor after: Chen Ganggang

Inventor after: An Baijun

Inventor after: Wang Zhiqiang

Inventor after: Jia Peng

Inventor after: Xie Yucai

Inventor after: Cui Zhiqiu

Inventor before: Ding Jiye

Inventor before: Chen Ganggang

Inventor before: An Baijun

Inventor before: Cui Zhiqiu

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant