WO2019114060A1 - 电极板及其表面处理方法 - Google Patents

电极板及其表面处理方法 Download PDF

Info

Publication number
WO2019114060A1
WO2019114060A1 PCT/CN2018/071431 CN2018071431W WO2019114060A1 WO 2019114060 A1 WO2019114060 A1 WO 2019114060A1 CN 2018071431 W CN2018071431 W CN 2018071431W WO 2019114060 A1 WO2019114060 A1 WO 2019114060A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
electrode plate
film
alloy material
fluorine
Prior art date
Application number
PCT/CN2018/071431
Other languages
English (en)
French (fr)
Inventor
邢升阳
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/749,071 priority Critical patent/US10797299B2/en
Publication of WO2019114060A1 publication Critical patent/WO2019114060A1/zh
Priority to US16/997,298 priority patent/US20200381700A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/46Alloys based on magnesium or aluminium
    • H01M4/466Magnesium based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of chemical vapor deposition, in particular to an electrode plate and a surface treatment method thereof.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • the working principle of the PECVD equipment is: placing two parallel and spaced electrode plates in a vacuum environment, one of which is connected to a radio frequency (Radio Frequency) power supply, and the other electrode plate is grounded, so that between the two electrode plates The radio frequency electric field is generated, and the substrate to be coated is placed between the two electrode plates; the coating process gas is firstly flowed through the reflow chamber, then enters between the two electrode plates, and is excited into a plasma under the action of the RF electric field. The plasma reacts on the surface of the substrate to form a film on the surface of the substrate.
  • Radio Frequency Radio Frequency
  • the electrode plate in the PECVD equipment is usually a magnesium-aluminum alloy substrate, and the magnesium-aluminum alloy substrate is usually placed in a chemical solution such as oxalic acid or sulfuric acid before use, and an anode reaction occurs on the surface of the magnesium-aluminum alloy substrate to form an Al 2 O 3 film.
  • the Al 2 O 3 film serves as a protective layer to protect the internal material of the magnesium-aluminum alloy substrate.
  • the film on the electrode plate will fall off when it reaches a certain thickness, and the falling film will fall on the surface of the substrate, which will affect the quality of the substrate coating. It is necessary to clean the surface of the electrode plate to remove the film deposited on the electrode plate. Specifically, the surface of the electrode plate is cleaned by introducing NF 3 gas into the chamber where the electrode plate is located, ionizing the NF 3 gas to form an NF 3 plasma, and depositing the electrode layer on the electrode plate by using the NF 3 plasma. The film is cleaned, so that the electrode plate will exist in the environment containing F ions for a long time.
  • the porous hole structure will adsorb in the F ion environment for a long time.
  • fluoride sources is formed, and Al 2 O 3 film will react with F ions, AlF 3 generates dust particles in the film surface 2 O 3 Al, the Al 2 O 3 film surface adsorption of fluoride sources and generating AlF 3 Dust particles may fall on the surface of the substrate during subsequent chemical vapor deposition, thereby reducing the quality of the coating, so it is necessary to take measures to solve the technical problem.
  • An object of the present invention is to provide a surface treatment method for an electrode plate, which can improve the fluorine ion corrosion resistance of the electrode plate and improve the quality of chemical vapor deposition film formation.
  • the present invention provides a surface treatment method for an electrode plate, comprising the following steps:
  • Step 1 providing an electrode plate, the electrode plate comprising a layer of magnesium alloy material
  • Step 2 the electrode plate is disposed in a sealed chamber, and a plasma containing fluoride ions is introduced into the sealed chamber, and a magnesium film on the surface of the electrode plate is chemically reacted with fluorine ions at the electrode. A magnesium fluoride film is formed on the surface of the plate.
  • the entire magnesium film is converted into a magnesium fluoride film.
  • the temperature of annealing the electrode plate is 500 ° C to 700 ° C, and the holding time is 30 minutes to 2 hours.
  • the magnesium alloy material layer has a magnesium element content of 0.2% by weight to 2% by weight.
  • the magnesium film obtained in the step 1 has a thickness of 5 to 10 ⁇ m.
  • the fluoride ion-containing plasma is a fluorine-containing gas plasma; and the fluorine-containing gas includes one or more of NF 3 and SF 6 .
  • the electrode plate is an electrode plate for generating a radio frequency electric field in a PECVD device, and the number of the electrode plates is two, which are oppositely disposed;
  • the specific operation of the step 2 is: introducing a fluorine-containing gas into the PECVD device, energizing the two opposite electrode plates to generate a radio frequency electric field between the two electrode plates, and the fluorine-containing gas is solved by the radio frequency electric field.
  • the magnesium film on the surface of the two electrode plates chemically reacts with fluorine ions to form a magnesium fluoride film on the surface of the electrode plate.
  • the present invention also provides an electrode plate comprising a surface magnesium fluoride film and a magnesium aluminum alloy material layer under the magnesium fluoride film.
  • the magnesium fluoride film is disposed on a surface of the magnesium-aluminum alloy material layer, and the magnesium fluoride film has a thickness of 5 to 10 ⁇ m.
  • a magnesium film is further disposed between the magnesium aluminum alloy material layer and the magnesium fluoride film, and the total thickness of the magnesium film and the magnesium fluoride film is 5 to 10 ⁇ m.
  • the invention also provides a surface treatment method for an electrode plate, comprising the following steps:
  • Step 1 providing an electrode plate, the electrode plate comprising a layer of magnesium alloy material
  • Step 2 the electrode plate is disposed in a sealed chamber, and a plasma containing fluoride ions is introduced into the sealed chamber, and a magnesium film on the surface of the electrode plate is chemically reacted with fluorine ions at the electrode. Forming a magnesium fluoride film on the surface of the plate;
  • the temperature of annealing the electrode plate is 500 ° C to 700 ° C, and the holding time is 30 minutes to 2 hours;
  • magnesium-aluminum alloy material layer the content of magnesium element is 0.2 wt% to 2 wt%;
  • the magnesium film obtained in the step 1 has a thickness of 5 to 10 ⁇ m.
  • the surface treatment method of the electrode plate of the present invention firstly treats the electrode plate by a special annealing process, forms a magnesium film on the surface of the magnesium-aluminum alloy material layer, and then chemically reacts the magnesium film with fluoride ions.
  • the surface of the electrode plate of the present invention is provided with a magnesium fluoride film which can protect the magnesium aluminum alloy material layer as a protective layer, so that the electrode plate has excellent resistance to fluoride ion corrosion and can improve the chemical vapor phase. Deposition film quality.
  • FIG. 1 is a flow chart showing a surface treatment method of an electrode plate of the present invention
  • FIG. 2 and FIG. 3 are schematic diagrams showing the first step of the surface treatment method of the electrode plate of the present invention.
  • 4A is a schematic view showing a first embodiment of the step 2 of the surface treatment method of the electrode plate of the present invention and a schematic structural view of the first embodiment of the electrode plate of the present invention;
  • 4B is a schematic view showing a second embodiment of the second step of the surface treatment method of the electrode plate of the present invention and a second embodiment of the electrode plate of the present invention.
  • the present invention provides a surface treatment method for an electrode plate, comprising the following steps:
  • Step 1 as shown in Figure 2 and Figure 3, providing an electrode plate 10, the electrode plate 10 comprises a layer of magnesium aluminum (MgAl) alloy material 11;
  • the electrode plate 10 is annealed to deposit a part of magnesium (Mg) element from the magnesium-aluminum alloy material layer 11, and a magnesium film 12 is formed on the surface of the magnesium-aluminum alloy material layer 11.
  • Mg magnesium
  • the temperature of annealing the electrode plate 10 is 500 ° C to 700 ° C, and the holding time is 30 minutes to 2 hours, preferably 1 hour.
  • the content of the magnesium element is 0.2% by weight to 2% by weight, usually about 1% by weight.
  • the magnesium thin film 12 obtained in the step 1 has a thickness of 5 to 10 ⁇ m.
  • Step 2 as shown in FIG. 4A and FIG. 4B, the electrode plate 10 is disposed in a sealed chamber, and a plasma containing fluorine ions is introduced into the sealed chamber, and a magnesium film on the surface of the electrode plate 10 is provided. 12 is chemically reacted with fluorine ions to form a magnesium fluoride (MgF 2 ) film 13 on the surface of the electrode plate 10.
  • MgF 2 magnesium fluoride
  • the entire magnesium thin film 12 is converted into the magnesium fluoride thin film 13.
  • the magnesium fluoride film 13 can protect the magnesium alloy material layer 11 as a protective layer.
  • the magnesium fluoride film 13 has a denser structure and no pores than the Al 2 O 3 protective layer on the surface of the electrode plate. Structure, and the chemical properties of magnesium fluoride are more stable, do not react with fluoride ions, and thus have better corrosion resistance.
  • the plasma containing fluoride ions is a plasma of a fluorine-containing gas
  • the fluorine-containing gas includes one or more of NF 3 and SF 6 .
  • the electrode plate 10 is an electrode plate for generating a radio frequency electric field in a PECVD device, and the number of the electrode plates 10 is two, which are oppositely disposed;
  • the specific operation of the step 2 is: introducing a fluorine-containing gas into the PECVD device, energizing the two electrode plates 10 disposed oppositely, generating a radio frequency electric field between the two electrode plates 10, and the fluorine-containing gas acts on the radio frequency electric field.
  • the lower dissociation is a plasma containing fluorine ions, and the magnesium thin film 12 on the surface of the two electrode plates 10 chemically reacts with fluorine ions to form a magnesium fluoride (MgF 2 ) thin film 13 on the surface of the electrode plate 10.
  • the present invention further provides an electrode plate 10 including a surface magnesium fluoride film 13 and a magnesium aluminum alloy material under the magnesium fluoride film 13 based on the surface treatment method of the electrode plate.
  • Layer 11 the present invention further provides an electrode plate 10 including a surface magnesium fluoride film 13 and a magnesium aluminum alloy material under the magnesium fluoride film 13 based on the surface treatment method of the electrode plate.
  • the magnesium fluoride film 13 is disposed on the surface of the magnesium-aluminum alloy material layer 11, and the magnesium fluoride film 13 has a thickness of 5 to 10 ⁇ m. .
  • a magnesium film 12 is further disposed between the magnesium aluminum alloy material layer 11 and the magnesium fluoride film 13, and the magnesium film 12 and magnesium fluoride are provided.
  • the total thickness of the film 13 is 5 to 10 ⁇ m.
  • the electrode plate 10 is an electrode plate used in a PECVD device to generate a radio frequency electric field.
  • the present invention provides an electrode plate and a surface treatment method thereof.
  • the surface treatment method of the electrode plate of the present invention firstly treats the electrode plate by a special annealing process, forms a magnesium film on the surface of the magnesium-aluminum alloy material layer, and then chemically reacts the magnesium film with the fluoride ion on the surface layer of the magnesium film.
  • magnesium fluoride film Forming a magnesium fluoride film, or converting the entire magnesium film into a magnesium fluoride film, which can serve as a protective layer to protect the magnesium aluminum alloy material layer compared to the existing electrode plate surface Al 2 O 3 protective layer, magnesium fluoride film has a denser structure, no pore structure, and the chemical characteristics of magnesium fluoride are more stable and will not react with fluoride ions, thereby improving the fluoride ion corrosion resistance of the electrode plate and improving chemical vapor deposition. Film formation quality.
  • the surface of the electrode plate of the present invention is provided with a magnesium fluoride film which can protect the magnesium aluminum alloy material layer as a protective layer, so that the electrode plate has excellent resistance to fluoride ion corrosion and can improve the chemical vapor phase. Deposition film quality.

Abstract

一种电极板(10)及其表面处理方法。电极板(10)的表面处理方法首先采用退火工艺对电极板(10)进行处理,在镁铝合金材料层(11)表面形成一层镁薄膜(12),然后使镁薄膜(12)与氟离子发生化学反应,在镁薄膜(12)的表层生成氟化镁薄膜(13),或者将整个镁薄膜(12)转化为氟化镁薄膜(13)。电极板(10)表面设有氟化镁薄膜(13),所述氟化镁薄膜(13)能够作为保护层对镁铝合金材料层(11)进行保护,因此所述电极板(10)具有优异的耐氟离子腐蚀性能,能够提高化学气相沉积成膜质量。

Description

电极板及其表面处理方法 技术领域
本发明涉及化学气相沉积技术领域,尤其涉及一种电极板及其表面处理方法。
背景技术
随着气相沉积技术的不断发展,等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)技术越来越多的应用于光伏(Photovoltaic,PV)、薄膜晶体管等领域。
PECVD设备的工作原理是:将两块相互平行且具有一定间距的电极板置于真空环境中,其中一块电极板接射频(Radio Frequency)电源,另一块电极板接地,使两块电极板之间产生射频电场,将需要镀膜的基材放置于两块电极板间;镀膜工艺气体先经过匀流室进行匀流,之后进入两块电极板之间,在射频电场的作用下激发成为等离子体,等离子体在基材表面发生反应从而在基材表面形成薄膜。
目前PECVD设备中的电极板通常为镁铝合金基板,在使用之前通常会将镁铝合金基板放入草酸或硫酸等化学溶液中,所述镁铝合金基板表面发生阳极反应生成Al 2O 3薄膜,该Al 2O 3薄膜作为保护层能够对镁铝合金基板的内部材料进行保护。
由于在化学气相沉积过程中电极板的表面也会沉积薄膜,当电极板上的薄膜达到一定厚度就会脱落,脱落的薄膜落在基材表面会影响基材镀膜的质量,所以每隔一段时间就需要对电极板表面进行清洗,以清除沉积于电极板的薄膜。具体的,对电极板表面进行清洗的方法为:向电极板所在的腔室内通入NF 3气体,对NF 3气体进行电离后形成NF 3等离子体,利用NF 3等离子体对沉积于电极板的薄膜进行清洗,这样,电极板就会长期存在于含F离子的环境中,由于电极板表层的Al 2O 3薄膜表面为多孔洞结构,长期在F离子环境中,所述多孔洞结构会吸附氟化物形成污染源,并且Al 2O 3薄膜还会与F离子发生反应,在Al 2O 3薄膜表面生成AlF 3粉尘颗粒,所述Al 2O 3薄膜表面吸附的氟化物污染源以及生成的AlF 3粉尘颗粒均有可能在后续的化学气相沉积过程中掉落于基材表面,从而降低镀膜质量,因此有必要采取措施以解决该技术问题。
发明内容
本发明的目的在于提供一种电极板的表面处理方法,能够提高电极板的耐氟离子腐蚀性能,提高化学气相沉积成膜质量。
本发明的目的还在于提供一种电极板,具有优异的耐氟离子腐蚀性能,能够提高化学气相沉积成膜质量。
为实现上述目的,本发明提供一种电极板的表面处理方法,包括如下步骤:
步骤1、提供电极板,所述电极板包括镁铝合金材料层;
对所述电极板进行退火处理,使一部分镁元素从镁铝合金材料层中析出,在镁铝合金材料层表面形成一层镁薄膜;
步骤2、将所述电极板设于密闭腔室中,在所述密闭腔室中通入含有氟离子的等离子体,所述电极板表面的镁薄膜与氟离子发生化学反应,在所述电极板表面形成氟化镁薄膜。
所述步骤2中,当所述镁薄膜完全反应时,整个镁薄膜转化为氟化镁薄膜。
所述步骤1中,对所述电极板进行退火处理的温度为500℃~700℃,保温时间为30分钟至2小时。
所述镁铝合金材料层中,镁元素的含量为0.2wt%~2wt%。
所述步骤1得到的镁薄膜的厚度为5~10μm。
所述步骤2中,所述含有氟离子的等离子体为含氟气体的等离子体;所述含氟气体包括NF 3与SF 6中的一种或多种。
所述电极板为PECVD设备中用来产生射频电场的电极板,所述电极板的数量为两个,呈相对设置;
所述步骤2的具体操作为:向PECVD设备中通入含氟气体,对相对设置的两个电极板进行通电,使两个电极板之间产生射频电场,含氟气体在射频电场作用下解离为含有氟离子的等离子体,所述两个电极板表面的镁薄膜与氟离子发生化学反应,在所述电极板表面形成氟化镁薄膜。
本发明还提供一种电极板,包括表面的氟化镁薄膜以及所述氟化镁薄膜之下的镁铝合金材料层。
所述氟化镁薄膜设置于所述镁铝合金材料层表面,所述氟化镁薄膜的厚度为5~10μm。
所述镁铝合金材料层与氟化镁薄膜之间还设有镁薄膜,所述镁薄膜与氟化镁薄膜的总厚度为5~10μm。
本发明还提供一种电极板的表面处理方法,包括如下步骤:
步骤1、提供电极板,所述电极板包括镁铝合金材料层;
对所述电极板进行退火处理,使一部分镁元素从镁铝合金材料层中析出,在镁铝合金材料层表面形成一层镁薄膜;
步骤2、将所述电极板设于密闭腔室中,在所述密闭腔室中通入含有氟离子的等离子体,所述电极板表面的镁薄膜与氟离子发生化学反应,在所述电极板表面形成氟化镁薄膜;
其中,所述步骤2中,当所述镁薄膜完全反应时,整个镁薄膜转化为氟化镁薄膜;
其中,所述步骤1中,对所述电极板进行退火处理的温度为500℃~700℃,保温时间为30分钟至2小时;
其中,所述镁铝合金材料层中,镁元素的含量为0.2wt%~2wt%;
其中,所述步骤1得到的镁薄膜的厚度为5~10μm。
本发明的有益效果:本发明的电极板的表面处理方法首先采用特殊的退火工艺对电极板进行处理,在镁铝合金材料层表面形成一层镁薄膜,然后使镁薄膜与氟离子发生化学反应,在镁薄膜的表层生成氟化镁薄膜,或者将整个镁薄膜转化为氟化镁薄膜,所述氟化镁薄膜能够作为保护层对镁铝合金材料层进行保护,由于氟化镁薄膜的结构致密、化学性能稳定,从而能够提高电极板的耐氟离子腐蚀性能,提高化学气相沉积成膜质量。本发明的电极板表面设有氟化镁薄膜,所述氟化镁薄膜能够作为保护层对镁铝合金材料层进行保护,因此所述电极板具有优异的耐氟离子腐蚀性能,能够提高化学气相沉积成膜质量。
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图说明
下面结合附图,通过对本发明的具体实施方式详细描述,将使本发明的技术方案及其它有益效果显而易见。
附图中,
图1为本发明的电极板的表面处理方法的流程图;
图2与图3为本发明的电极板的表面处理方法的步骤1的示意图;
图4A为本发明的电极板的表面处理方法的步骤2的第一实施例的示意图及本发明的电极板的第一实施例的结构示意图;
图4B为本发明的电极板的表面处理方法的步骤2的第二实施例的示意图及本发明的电极板的第二实施例的结构示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图1,本发明提供一种电极板的表面处理方法,包括如下步骤:
步骤1、如图2与图3所示,提供电极板10,所述电极板10包括镁铝(MgAl)合金材料层11;
对所述电极板10进行退火处理,使一部分镁(Mg)元素从镁铝合金材料层11中析出,在镁铝合金材料层11表面形成一层镁薄膜12。
具体的,所述步骤1中,对所述电极板10进行退火处理的温度为500℃~700℃,保温时间为30分钟至2小时,优选为1小时。
具体的,所述镁铝合金材料层11中,镁元素的含量为0.2wt%~2wt%,通常为1wt%左右。
具体的,所述步骤1得到的镁薄膜12的厚度为5~10μm。
步骤2、如图4A与图4B所示,将所述电极板10设于密闭腔室中,在所述密闭腔室中通入含有氟离子的等离子体,所述电极板10表面的镁薄膜12与氟离子发生化学反应,在所述电极板10表面形成氟化镁(MgF 2)薄膜13。
具体的,所述步骤2中,当所述镁薄膜12完全反应时,整个镁薄膜12转化为氟化镁薄膜13。
所述氟化镁薄膜13能够作为保护层对镁铝合金材料层11进行保护,相较于现有的电极板表面的Al 2O 3保护层,氟化镁薄膜13的结构更致密,无孔洞结构,并且氟化镁的化学特性更稳定,不会与氟离子反应,从而具有更好的抗腐蚀性。
具体的,所述步骤2中,所述含有氟离子的等离子体为含氟气体的等离子体,所述含氟气体包括NF 3与SF 6中的一种或多种。
具体的,所述电极板10为PECVD设备中用来产生射频电场的电极板,所述电极板10的数量为两个,呈相对设置;
所述步骤2的具体操作为:向PECVD设备中通入含氟气体,对相对设置的两个电极板10进行通电,使两个电极板10之间产生射频电场,含氟气体在射频电场作用下解离为含有氟离子的等离子体,所述两个电极板10表面的镁薄膜12与氟离子发生化学反应,在所述电极板10表面形成氟化 镁(MgF 2)薄膜13。
请参阅图4A与图4B,基于上述电极板的表面处理方法,本发明还提供一种电极板10,包括表面的氟化镁薄膜13以及所述氟化镁薄膜13之下的镁铝合金材料层11。
如图4A所示,本发明的电极板的第一实施例中,所述氟化镁薄膜13设置于所述镁铝合金材料层11表面,所述氟化镁薄膜13的厚度为5~10μm。
如图4B所示,本发明的电极板的第二实施例中,所述镁铝合金材料层11与氟化镁薄膜13之间还设有镁薄膜12,所述镁薄膜12与氟化镁薄膜13的总厚度为5~10μm。
具体的,所述电极板10为PECVD设备中用来产生射频电场的电极板。
综上所述,本发明提供一种电极板及其表面处理方法。本发明的电极板的表面处理方法首先采用特殊的退火工艺对电极板进行处理,在镁铝合金材料层表面形成一层镁薄膜,然后使镁薄膜与氟离子发生化学反应,在镁薄膜的表层生成氟化镁薄膜,或者将整个镁薄膜转化为氟化镁薄膜,所述氟化镁薄膜能够作为保护层对镁铝合金材料层进行保护,相较于现有的电极板表面的Al 2O 3保护层,氟化镁薄膜的结构更致密,无孔洞结构,并且氟化镁的化学特性更稳定,不会与氟离子反应,从而能够提高电极板的耐氟离子腐蚀性能,提高化学气相沉积成膜质量。本发明的电极板表面设有氟化镁薄膜,所述氟化镁薄膜能够作为保护层对镁铝合金材料层进行保护,因此所述电极板具有优异的耐氟离子腐蚀性能,能够提高化学气相沉积成膜质量。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims (13)

  1. 一种电极板的表面处理方法,包括如下步骤:
    步骤1、提供电极板,所述电极板包括镁铝合金材料层;
    对所述电极板进行退火处理,使一部分镁元素从镁铝合金材料层中析出,在镁铝合金材料层表面形成一层镁薄膜;
    步骤2、将所述电极板设于密闭腔室中,在所述密闭腔室中通入含有氟离子的等离子体,所述电极板表面的镁薄膜与氟离子发生化学反应,在所述电极板表面形成氟化镁薄膜。
  2. 如权利要求1所述的电极板的表面处理方法,其中,所述步骤2中,当所述镁薄膜完全反应时,整个镁薄膜转化为氟化镁薄膜。
  3. 如权利要求1所述的电极板的表面处理方法,其中,所述步骤1中,对所述电极板进行退火处理的温度为500℃~700℃,保温时间为30分钟至2小时。
  4. 如权利要求1所述的电极板的表面处理方法,其中,所述镁铝合金材料层中,镁元素的含量为0.2wt%~2wt%。
  5. 如权利要求1所述的电极板的表面处理方法,其中,所述步骤1得到的镁薄膜的厚度为5~10μm。
  6. 如权利要求1所述的电极板的表面处理方法,其中,所述步骤2中,所述含有氟离子的等离子体为含氟气体的等离子体;所述含氟气体包括NF 3与SF 6中的一种或多种。
  7. 如权利要求6所述的电极板的表面处理方法,其中,所述电极板为PECVD设备中用来产生射频电场的电极板,所述电极板的数量为两个,呈相对设置;
    所述步骤2的具体操作为:向PECVD设备中通入含氟气体,对相对设置的两个电极板进行通电,使两个电极板之间产生射频电场,含氟气体在射频电场作用下解离为含有氟离子的等离子体,所述两个电极板表面的镁薄膜与氟离子发生化学反应,在所述电极板表面形成氟化镁薄膜。
  8. 一种电极板,包括表面的氟化镁薄膜以及所述氟化镁薄膜之下的镁铝合金材料层。
  9. 如权利要求8所述的电极板,其中,所述氟化镁薄膜设置于所述镁铝合金材料层表面,所述氟化镁薄膜的厚度为5~10μm。
  10. 如权利要求8所述的电极板,其中,所述镁铝合金材料层与氟化 镁薄膜之间还设有镁薄膜,所述镁薄膜与氟化镁薄膜的总厚度为5~10μm。
  11. 一种电极板的表面处理方法,包括如下步骤:
    步骤1、提供电极板,所述电极板包括镁铝合金材料层;
    对所述电极板进行退火处理,使一部分镁元素从镁铝合金材料层中析出,在镁铝合金材料层表面形成一层镁薄膜;
    步骤2、将所述电极板设于密闭腔室中,在所述密闭腔室中通入含有氟离子的等离子体,所述电极板表面的镁薄膜与氟离子发生化学反应,在所述电极板表面形成氟化镁薄膜;
    其中,所述步骤2中,当所述镁薄膜完全反应时,整个镁薄膜转化为氟化镁薄膜;
    其中,所述步骤1中,对所述电极板进行退火处理的温度为500℃~700℃,保温时间为30分钟至2小时;
    其中,所述镁铝合金材料层中,镁元素的含量为0.2wt%~2wt%;
    其中,所述步骤1得到的镁薄膜的厚度为5~10μm。
  12. 如权利要求11所述的电极板的表面处理方法,其中,所述步骤2中,所述含有氟离子的等离子体为含氟气体的等离子体;所述含氟气体包括NF 3与SF 6中的一种或多种。
  13. 如权利要求12所述的电极板的表面处理方法,其中,所述电极板为PECVD设备中用来产生射频电场的电极板,所述电极板的数量为两个,呈相对设置;
    所述步骤2的具体操作为:向PECVD设备中通入含氟气体,对相对设置的两个电极板进行通电,使两个电极板之间产生射频电场,含氟气体在射频电场作用下解离为含有氟离子的等离子体,所述两个电极板表面的镁薄膜与氟离子发生化学反应,在所述电极板表面形成氟化镁薄膜。
PCT/CN2018/071431 2017-12-14 2018-01-04 电极板及其表面处理方法 WO2019114060A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/749,071 US10797299B2 (en) 2017-12-14 2018-01-04 Electrode plate and surface treatment method thereof
US16/997,298 US20200381700A1 (en) 2017-12-14 2020-08-19 Electrode plate and surface treatment method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711340305.7 2017-12-14
CN201711340305.7A CN108103435A (zh) 2017-12-14 2017-12-14 电极板及其表面处理方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/749,071 A-371-Of-International US10797299B2 (en) 2017-12-14 2018-01-04 Electrode plate and surface treatment method thereof
US16/997,298 Division US20200381700A1 (en) 2017-12-14 2020-08-19 Electrode plate and surface treatment method thereof

Publications (1)

Publication Number Publication Date
WO2019114060A1 true WO2019114060A1 (zh) 2019-06-20

Family

ID=62216902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071431 WO2019114060A1 (zh) 2017-12-14 2018-01-04 电极板及其表面处理方法

Country Status (3)

Country Link
US (2) US10797299B2 (zh)
CN (1) CN108103435A (zh)
WO (1) WO2019114060A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853323A (zh) * 2020-12-31 2021-05-28 拓荆科技股份有限公司 一种电极板的表面处理方法及电极板

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112062234A (zh) * 2020-09-03 2020-12-11 上海金铎禹辰水环境工程有限公司 一种消除水体生长蓝藻装置及使用方法
CN114592180A (zh) * 2022-03-07 2022-06-07 嘉兴中科微电子仪器与设备工程中心 一种氟化镁薄膜的制备方法及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169953A (ja) * 1998-12-03 2000-06-20 Taiheiyo Cement Corp 耐食性部材
JP2006089821A (ja) * 2004-09-27 2006-04-06 Tocalo Co Ltd 半導体加工装置用部材の耐食処理方法およびその処理部材
CN101921981A (zh) * 2009-06-12 2010-12-22 安禾耐金科技股份有限公司 金属材料的表面氟化防护法
CN105603393A (zh) * 2016-02-22 2016-05-25 中国石油大学(北京) 一种具有石墨烯保护膜的镁合金及其制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104127A (ja) * 1993-09-29 1995-04-21 Toppan Printing Co Ltd 反射型液晶表示装置用偏光フィルム
US6064151A (en) * 1997-12-08 2000-05-16 Motorola, Inc. Organic electroluminescent device with enhanced performance
JP2010135708A (ja) * 2008-12-03 2010-06-17 Akitoshi O 太陽電池の透明導電薄膜電極及びその製造方法
CN103137793A (zh) * 2011-11-25 2013-06-05 同方光电科技有限公司 一种采用多层介质膜反射的垂直结构发光二极管制作方法
CN103050554B (zh) * 2012-12-07 2015-04-01 上海交通大学 太阳能集热发电一体化薄膜及其构成的发电集热热水器
CN103934238A (zh) * 2013-01-23 2014-07-23 深南电路有限公司 等离子清洗用电极板和电极装置及设备
CN103550798A (zh) * 2013-10-27 2014-02-05 王兆进 一种射频发生器的电极
CN104393062B (zh) * 2014-12-08 2016-07-06 天津三安光电有限公司 一种太阳电池减反射膜层的制备方法
CN105274499A (zh) * 2015-11-23 2016-01-27 上海卫星装备研究所 一种单室多极型pecvd反应室
CN106206871A (zh) * 2016-08-03 2016-12-07 纳晶科技股份有限公司 发光器件的制备方法与发光器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000169953A (ja) * 1998-12-03 2000-06-20 Taiheiyo Cement Corp 耐食性部材
JP2006089821A (ja) * 2004-09-27 2006-04-06 Tocalo Co Ltd 半導体加工装置用部材の耐食処理方法およびその処理部材
CN101921981A (zh) * 2009-06-12 2010-12-22 安禾耐金科技股份有限公司 金属材料的表面氟化防护法
CN105603393A (zh) * 2016-02-22 2016-05-25 中国石油大学(北京) 一种具有石墨烯保护膜的镁合金及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112853323A (zh) * 2020-12-31 2021-05-28 拓荆科技股份有限公司 一种电极板的表面处理方法及电极板

Also Published As

Publication number Publication date
CN108103435A (zh) 2018-06-01
US20200381700A1 (en) 2020-12-03
US10797299B2 (en) 2020-10-06
US20200091497A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US20200381700A1 (en) Electrode plate and surface treatment method thereof
TW201509871A (zh) 一種容置裝置,製造方法,及其用途
US20160181066A1 (en) Laminated materials, methods and apparatus for making same, and uses thereof
JP6311963B2 (ja) 成膜方法及び磁気記録媒体の製造方法
TW201545198A (zh) 電感耦合型等離子體處理腔室及其抗腐蝕絕緣視窗及製造方法
JP2004221397A (ja) 半導体製造装置の洗浄方法、及び半導体装置の製造方法
CN103266306A (zh) 一种用pvd技术制备石墨烯或超薄碳膜的方法
CN111384209A (zh) Ald方式perc电池降低污染和提升转换效率的方法
CN104103841A (zh) 用于燃料电池的金属隔板及其制造方法
JP2837087B2 (ja) 薄膜形成方法
TW201529141A (zh) 自清潔真空處理腔室
CN115612971B (zh) 一种铝合金材料的表面处理方法
CN110965039A (zh) 用于电子设备的带石墨烯散热膜的合金材料及其制备方法
JP5170788B2 (ja) 新規金属窒素酸化物プロセス
TW202126836A (zh) 在零部件上形成耐等離子體塗層的方法、裝置及零部件和等離子體處理裝置
JP2934263B2 (ja) アルミニウム材及びその製造方法
CN103556127A (zh) 一种气相沉积成膜设备的清洗方法
Hsieh et al. Improved process stability on an extremely thin amorphous/crystalline silicon interface passivation layer by using predeposition on the chamber wall
TW201831723A (zh) 成膜方法、硼膜、及成膜裝置
JP5699065B2 (ja) 透明電極膜のクリーニング方法
JPH01136970A (ja) プラズマcvd装置のクリーニング方法
JPH0247252A (ja) 複合材料膜の製造方法
TWI472637B (zh) 鋁合金的表面處理方法及由鋁合金製得的殼體
JPH01157437A (ja) ガラスの表面改質法
JPS5973413A (ja) 薄膜状絶縁材とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889235

Country of ref document: EP

Kind code of ref document: A1