CN106024195A - 一种尺寸可控的钨纳米点的制备方法 - Google Patents

一种尺寸可控的钨纳米点的制备方法 Download PDF

Info

Publication number
CN106024195A
CN106024195A CN201610339005.6A CN201610339005A CN106024195A CN 106024195 A CN106024195 A CN 106024195A CN 201610339005 A CN201610339005 A CN 201610339005A CN 106024195 A CN106024195 A CN 106024195A
Authority
CN
China
Prior art keywords
tungsten
preparation
size
coating
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610339005.6A
Other languages
English (en)
Other versions
CN106024195B (zh
Inventor
唐静
金利华
王燕
张爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Institute of International Trade and Commerce
Original Assignee
Shaanxi Institute of International Trade and Commerce
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Institute of International Trade and Commerce filed Critical Shaanxi Institute of International Trade and Commerce
Priority to CN201610339005.6A priority Critical patent/CN106024195B/zh
Publication of CN106024195A publication Critical patent/CN106024195A/zh
Application granted granted Critical
Publication of CN106024195B publication Critical patent/CN106024195B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/52Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating using reducing agents for coating with metallic material not provided for in a single one of groups C23C18/32 - C23C18/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种尺寸可控的钨纳米点的制备方法,其采用化学溶液沉积的方法在NiW基底上制备尺寸均匀的钨纳米点,通过步骤(1)采用钨酸铵为前驱体配制前驱溶液;步骤(2)采用旋涂或浸涂方法将前驱溶液涂敷在衬底上;步骤(3)将涂敷溶液的衬底进行热处理得到钨纳米点,本发明可以在NiW衬底上获得形貌尺寸一致的钨纳米点,而且钨纳米点在衬底表面均匀分布,有利于氧化物的异质外延生长,本发明制备方法简单,成本低易于实现工业化。

Description

一种尺寸可控的钨纳米点的制备方法
技术领域
本发明属于高温超导材料技术领域,具体涉及一种尺寸可控的钨纳米点的制备方法。
背景技术
高温超导涂层导体由金属基带/缓冲层/超导层/保护层组成,在涂层导体的各组成部分中,金属基带的主要功能是提供支撑和织构模板,是一种极其重要的衬底材料。在各种合金基带中,Ni5%W合金具有较高的强度和再结晶热处理后易于形成锐利立方织构等特点,成为了目前商业化制备基带材料之一。
镍钨金属基带因此除了立方织构质量,基带的表面特性也十分重要,将直接影响后续氧化物材料的制备以及超导层的性能。目前对于基带NiW基带的表面特性研究主要包括:表面腐蚀、抛光、退火、表面硫化改性等。传统的腐蚀抛光等方法可以提高表面平整度,但是并没有改善基带表面活性;退火处理会导致基带表面出现晶界热蚀钩等缺陷。表面硫化利用硫在Ni基带表面形成的c(2×2)-S超结构可以控制氧化物缓冲层在Ni基带表面的织构,但是这种微弱结构在空气中容易被破坏,不易于长时间保存。本发明提出在NiW基带表面采用低成本的化学法制备出W的纳米点,将提高基带的表面活性,促进氧化物层异质外延生长。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种钨纳米点的制备方法,采用该方法制备的钨纳米点在衬底表面尺寸可控、均匀分布,具有良好的表面质量,有利于外延生长氧化物层。
为解决上述技术问题,本发明所采用的技术方案是由以下步骤组成:
(1)将钨酸铵溶解于乙醇和极性溶剂的混合溶剂中,加入聚乙二醇作为添加剂,配制成钨离子摩尔浓度为0.0005~0.01mol/L的前驱液,其中乙醇与极性溶剂的体积比为1:0.5~1,钨酸铵与添加剂的质量比例为1:0.1~1;
(2)将步骤(1)的前驱液采用旋涂法或浸涂法涂敷于NiW金属基底上,得到湿膜涂层;
(3)将步骤(2)的湿膜涂层置于管式炉中,在还原性气氛中,以20~300℃/min的升温速率将炉内温度从室温升至400~900℃,并保温0.5h~1h,在NiW金属基底上得到尺寸可控的钨纳米点。
上述极性溶剂为氮甲基吡咯烷酮、二甲基甲酰胺或者乙腈。
上述步骤(2)中所述旋涂法的转速为500~4000rpm,旋涂时间为30~180s。
上述步骤(2)中浸涂法的提拉速度为0.1~5m/h,浸涂时间是8~15s。
上述还原性气氛为氮气或氩气与氢气的混合气氛,所述混合气氛中氢气的体积百分含量为4~50%。
上述湿膜涂层的厚度为150~500nm。
与现有技术相比,本发明具有以下优点:
(1)本发明在镍钨基带上制备钨纳米点,属于同质外延,制备的纳米结构具有良好的稳定性,纳米点可以提高基带的活性,促进后续功能层的生长。
(2)本发明通过化学溶液方法实现钨纳米点的可控制备,前驱液配制过程简单和所需实验装置简单、制备方法成本低。
(3)本发明制备的钨纳米点尺寸一致且大小可控、均匀分布,具有良好的表面质量,并不增加基带表面的粗糙度,有利于外延生长氧化物层。
附图说明
图1为本发明实施例1制备的钨纳米点的的原子力显微镜(AFM)图。
图2为本发明实施例1制备的钨纳米点的X射线衍射θ-2θ扫描图。
具体实施方式
下面结合附图和实施例,对本发明的技术方案做进一步的详细描述。
实施例1
以0.0147g钨酸铵为原料,制备钨纳米点的方法由以下步骤实现:
(1)将钨酸铵溶解于3mL乙醇和2mL氮甲基吡咯烷酮的混合溶剂中,加入14.7mg的聚乙二醇,配制成钨离子摩尔浓度为0.001mol/L的前驱液;
(2)将步骤(1)的前驱液采用旋涂法涂敷于NiW金属基底上,旋涂的转速为2000rpm,旋涂时间为60s,得到厚度为300nm的湿膜涂层;
(3)将步骤(2)的湿膜涂层置于管式炉中,在氩气与氢气的混合气氛中以20℃/min的升温速率将炉内温度从室温升至600℃,并保温0.5h,混合气氛中氢气的体积百分含量为4%,在NiW金属基底上得到高度约为15nm的钨纳米点。
图1为本实施例制备的钨纳米点的的原子力显微镜(AFM)图,从图中可以看出钨纳米点尺寸均匀、具有良好分布,NiW衬底表面的均方根粗糙度为1.1nm,衬底具有良好的表面形貌和优异的表面质量。
图2为本实施例制备的钨纳米点的X射线衍射θ-2θ扫描图,从图中可以看出钨纳米点具有(110)衍射峰,没有其他杂相存在,说明制备出纯纳米钨点。
实施例2
以0.147g钨酸铵为原料,制备钨纳米点的方法由以下步骤实现:
(1)将钨酸铵溶解于乙醇和二甲基甲酰胺的混合溶剂中,乙醇和二甲基甲酰胺的以及比为1:1,加入14.7mg的聚乙二醇,配制成钨离子摩尔浓度为0.01mol/L的前驱液;
(2)将步骤(1)的前驱液采用旋涂法涂敷于NiW金属基底上,旋涂的转速为4000rpm,旋涂时间为30s,得到厚度为500nm的湿膜涂层;
(3)将步骤(2)的湿膜涂层置于管式炉中,在氩气与氢气的混合气氛中以300℃/min的升温速率将炉内温度从室温升至900℃,并保温0.5h,混合气氛中氢气的体积百分含量为50%,在NiW金属基底上得到高度约为20nm且分布均匀的钨纳米点。
实施例3
以0.0074g钨酸铵为原料,制备钨纳米点的方法由以下步骤实现:
(1)将钨酸铵溶解于乙醇和乙腈的混合溶剂中,乙醇和二甲基甲酰胺的以及比为1:0.5,加入7mg的聚乙二醇,配制成钨离子摩尔浓度为0.0005mol/L的前驱液;
(2)将步骤(1)的前驱液采用旋涂法涂敷于NiW金属基底上,旋涂的转速为500rpm,旋涂时间为180s,得到厚度为350nm的湿膜涂层;
(3)将步骤(2)的湿膜涂层置于管式炉中,在氮气与氢气的混合气氛中以100℃/min的升温速率将炉内温度从室温升至400℃,并保温1h,混合气氛中氢气的体积百分含量为25%,在NiW金属基底上得到高度约为8nm且分布均匀的钨纳米点。
实施例4
以0.0735g钨酸铵为原料,制备钨纳米点的方法由以下步骤实现:
(1)将钨酸铵溶解于乙醇和乙腈的混合溶剂中,加入35mg的聚乙二醇,配制成钨离子摩尔浓度为0.005mol/L的前驱液;
(2)将步骤(1)的前驱液采用浸涂法涂敷于NiW金属基底上,提拉速度为2m/h,浸涂时间为8秒,得到厚度为200nm的湿膜涂层;
(3)将步骤(2)的湿膜涂层置于管式炉中,在氮气与氢气的混合气氛中以100℃/min的升温速率将炉内温度从室温升至500℃,并保温0.75h,混合气氛中氢气的体积百分含量为30%,在NiW金属基底上得到高度约为10nm且分布均匀的钨纳米点。
上述实施例4中的提拉速度可以在提拉速度为0.1~5m/h、浸涂时间为8~15s的范围内调整,其均能够在NiW金属基底上得到分布均匀,尺寸均一的钨纳米点,钨纳米点的高度为8~20nm。
上述实施例制备的钨纳米点为钨单质、纳米点尺寸均一,分布均匀,NiW/W衬底表面均方根粗糙度低,具有良好的表面形貌和优异的表面质量,有利于异质外延生长氧化物缓冲层。
以上所述,仅是本发明的较佳实施例,并非对本发明做任何限制,凡是根据发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (6)

1.一种尺寸可控的钨纳米点的制备方法,其特征在于由以下步骤组成:
(1)将钨酸铵溶解于乙醇和极性溶剂的混合溶剂中,加入聚乙二醇作为添加剂,配制成钨离子摩尔浓度为0.0005~0.01mol/L的前驱液,其中乙醇与极性溶剂的体积比为1:0.5~1,钨酸铵与添加剂的质量比例为1:0.1~1;
(2)将步骤(1)的前驱液采用旋涂法或浸涂法涂敷于NiW金属基底上,得到湿膜涂层;
(3)将步骤(2)的湿膜涂层置于管式炉中,在还原性气氛中,以20~300℃/min的升温速率将炉内温度从室温升至400~900℃,并保温0.5h~1h,在NiW金属基底上得到尺寸可控的钨纳米点。
2.根据权利要求1所述的尺寸可控的钨纳米点的制备方法,其特征在于:所述极性溶剂为氮甲基吡咯烷酮、二甲基甲酰胺或者乙腈。
3.根据权利要求1所述的尺寸可控的钨纳米点的制备方法,其特征在于:所述步骤(2)中所述旋涂法的转速为500~4000rpm,旋涂时间为30~180s。
4.根据权利要求1所述的尺寸可控的钨纳米点的制备方法,其特征在于:所述步骤(2)中浸涂法的提拉速度为0.1~5m/h,浸涂时间是8~15s。
5.根据权利要求1所述的尺寸可控的钨纳米点的制备方法,其特征在于:所述还原性气氛为氮气或氩气与氢气的混合气氛,所述混合气氛中氢气的体积百分含量为4~50%。
6.根据权利要求1所述的尺寸可控的钨纳米点的制备方法,其特征在于:所述湿膜涂层的厚度为150~500nm。
CN201610339005.6A 2016-05-20 2016-05-20 一种尺寸可控的钨纳米点的制备方法 Expired - Fee Related CN106024195B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610339005.6A CN106024195B (zh) 2016-05-20 2016-05-20 一种尺寸可控的钨纳米点的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610339005.6A CN106024195B (zh) 2016-05-20 2016-05-20 一种尺寸可控的钨纳米点的制备方法

Publications (2)

Publication Number Publication Date
CN106024195A true CN106024195A (zh) 2016-10-12
CN106024195B CN106024195B (zh) 2017-09-15

Family

ID=57095311

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610339005.6A Expired - Fee Related CN106024195B (zh) 2016-05-20 2016-05-20 一种尺寸可控的钨纳米点的制备方法

Country Status (1)

Country Link
CN (1) CN106024195B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111168076A (zh) * 2020-01-03 2020-05-19 广东工业大学 纳米导体或半导体材料尺寸可控的制备系统及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734866A (zh) * 2009-12-17 2010-06-16 中南大学 一种纳米三氧化钨薄膜的制备方法
CN102509762A (zh) * 2011-10-24 2012-06-20 西北有色金属研究院 一种Bi-2212高温超导厚膜的制备方法
CN102757764A (zh) * 2011-04-28 2012-10-31 中国科学院上海硅酸盐研究所 酸性钨溶胶及其制备方法和应用
JP2013055061A (ja) * 2009-11-24 2013-03-21 Sumitomo Electric Ind Ltd 薄膜超電導線材用金属基材、その製造方法および薄膜超電導線材の製造方法
CN103215546A (zh) * 2013-05-14 2013-07-24 上海超导科技股份有限公司 基于IBAD-MgO金属基带的简化隔离层及其制备方法
JP2013162049A (ja) * 2012-02-07 2013-08-19 Japan Steel Works Ltd:The 超電導多層構造薄膜
CN103985479A (zh) * 2014-04-28 2014-08-13 赵遵成 一种低成本高温超导涂层导体带材的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013055061A (ja) * 2009-11-24 2013-03-21 Sumitomo Electric Ind Ltd 薄膜超電導線材用金属基材、その製造方法および薄膜超電導線材の製造方法
CN101734866A (zh) * 2009-12-17 2010-06-16 中南大学 一种纳米三氧化钨薄膜的制备方法
CN102757764A (zh) * 2011-04-28 2012-10-31 中国科学院上海硅酸盐研究所 酸性钨溶胶及其制备方法和应用
CN102509762A (zh) * 2011-10-24 2012-06-20 西北有色金属研究院 一种Bi-2212高温超导厚膜的制备方法
JP2013162049A (ja) * 2012-02-07 2013-08-19 Japan Steel Works Ltd:The 超電導多層構造薄膜
CN103215546A (zh) * 2013-05-14 2013-07-24 上海超导科技股份有限公司 基于IBAD-MgO金属基带的简化隔离层及其制备方法
CN103985479A (zh) * 2014-04-28 2014-08-13 赵遵成 一种低成本高温超导涂层导体带材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金篆芷等: "《现代传感技术》", 31 March 1995, 电子工业出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111168076A (zh) * 2020-01-03 2020-05-19 广东工业大学 纳米导体或半导体材料尺寸可控的制备系统及制备方法
CN111168076B (zh) * 2020-01-03 2020-10-27 广东工业大学 纳米导体或半导体材料尺寸可控的制备系统及制备方法
WO2021136059A1 (zh) * 2020-01-03 2021-07-08 广东工业大学 纳米导体或半导体材料尺寸可控的制备系统及制备方法

Also Published As

Publication number Publication date
CN106024195B (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN101845672B (zh) 尖锐程度可控的氧化锌纳米锥阵列及其制备方法
CN104310372B (zh) 一种在纤维基底上直接生长碳纳米管阵列的方法
CN102142300B (zh) 一种第二相纳米粒子掺杂ybco薄膜的制备方法
CN107557718B (zh) 一种在柔性材料表面制备无机纳米材料层的方法
CN113881939A (zh) 一种去合金化制备纳米多孔铜的方法
CN103351027A (zh) 一维五氧化二钒纳米结构的制备方法
CN106024195B (zh) 一种尺寸可控的钨纳米点的制备方法
CN104651899A (zh) 一种用于碳纳米管生长的金属基底的阳极化工艺
CN102061439B (zh) 中温表面氧化外延制备双轴织构NiO(200)涂层导体缓冲层的方法
CN108588771A (zh) 一种含贵金属中间层的复合陶瓷涂层及其制备工艺
CN107739869B (zh) 纳米多孔铜复合材料及其制备方法
CN103952740B (zh) 一种电化学沉积制备氧化铈缓冲层的方法
Tu et al. Facile synthesis of SnO2 nanotube arrays by using ZnO nanorod arrays as sacrificial templates
CN111573658A (zh) 一种大面积直接生长的扭角双层石墨烯及其制备方法
CN109112483B (zh) 一种高速率生长高性能稀土钡铜氧高温超导膜的热处理方法
CN104761154A (zh) 一种利用有机大分子材料作催化制备ito纳米线的方法
CN105648419B (zh) 一种降低六方氮化硼二维薄膜厚度的方法
CN103498140B (zh) 一种纳米银掺杂氧化铈涂层的制备方法
CN105063578B (zh) 一种双离子掺杂氧化铈缓冲层及其制备方法
CN109913851B (zh) 一种采用后退火处理的共溅射制备mwcnt@xy的方法及mwcnt@xy
CN102683572A (zh) 一种在双轴织构NiW合金基片上制备高温超导涂层导体NiO/SmBiO3复合缓冲层薄膜的方法
CN116005128B (zh) 垂直二维异质结的构筑方法
CN108648883A (zh) 一种双层减反结构与石墨烯复合的透明导电薄膜制备方法
CN115874232B (zh) 一种熔盐电解制备梯度高硅钢的方法
CN102290332A (zh) 一种制备高密度硅纳米孔阵列的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170915

Termination date: 20200520